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ABSTRACT The high dimensionality of data brings great challenges to the classification accuracy and
complexity of the algorithm. Feature selection technology can improve the classification performance of the
algorithm effectively. In this paper, a novel binary differential evolution based on individual entropy (BDIE)
is proposed. First, the individual entropy method is constructed to quantify the diversity of the population,
and the relationship between population diversity and convergence is analyzed. Then, the objective function
based on individual entropy is designed to evaluate the feature subset. A new binary mutation strategy is
proposed, and it can effectively search the global optimal solution. In order to validate the BDIE, the datasets
with different sizes and the classifiers of different types are used for testing. In addition, the well-known
algorithms are introduced for comparison. The experimental results show that the proposed algorithm can
effectively improve the classification performance and reduce the time cost without increasing the size of
the feature subset.

INDEX TERMS Feature selection, differential evolution, optimization algorithm, evaluation criterion.

I. INTRODUCTION
Feature selection (FS) is an effective data processing technol-
ogy in data mining and machine learning. The purpose of FS
is to find the smaller size of feature subset and ensure that the
performance of the algorithm model is not reduced [1]. It is
clear that the data usually contains many irrelevant features
or redundant features which may leads to the phenomenon of
over-fitting and limits the generalization ability of algorithm.
While FS can remove the irrelevant features or redundant
features effectively to reduce the dimensionality of data.Most
notably, the reduced feature subset can significantly improve
the speed of algorithm, enhance the interpretability of the
model and prevent over-fitting. Therefore, feature selection
has been studied and applied to pattern recognition, task
decision and other fields effectively.

Obtaining the ideal subset of features is a difficult task
because of the arbitrary combination of features. In essence,
FS is a kind of NP-hard combination optimization problem.
With the dimensionality of data increasing, the number of fea-
ture subsets increases exponentially [2]. Hence, it is essential
to explore the efficient search mechanism to address feature
selection problem. There are many search techniques are
designed to handle feature selection, such as complete search,
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heuristic search and random search. Among them, the com-
plete search methods cost a considerable amount of compu-
tation time, especially for high-dimensional data. Heuristic
algorithm can get the convergent solution, but it is easy to
fall into local optimum or premature. However, the methods
based random search consider both local optimum and global
optimal solution simultaneously, and the better solution can
be obtained. Hence, the evolutionary computation (EC) algo-
rithms based on population randomization have been per-
formed to search for the optimal feature subset.

Feature selection methods are generally divided into three
types: wrappers, filters and embedded. Because most evo-
lutionary algorithms usually combine specific classifier to
select feature subsets, so the kind of evolutionary algorithm
based on random strategy is used as evolving wrapper-
evolution method [3]. While the evolution algorithm without
classifier is called filter-evolution method. Currently, many
researchers have studied the EC-based approaches for feature
selection, such as genetic algorithm (GA), particle swarm
optimization (PSO), ant colony optimization (ACO) and dif-
ferential evolution (DE). Among the existing approaches,
genetic algorithm (GA) should be the most popular opti-
mization algorithm in evolutionary algorithm. For exam-
ple, considering the effect of chromosome length on the
search process, an adapted version of GAwith variable length
representation scheme was developed by Yahya et al. [4].
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In addition, the hybrid GA with neural networks is pre-
sented to identify an optimum feature subset [5], which is
based on feature ranking with fast algorithms and initial
population with enhancements. A number of improved PSO
algorithms have been applied to optimize the feature subset.
In order to design the optimal individual update strategy,
Xue et al. [6] proposed a new global optimal individual
updating mechanism, which significantly improves the per-
formance of the PSO. While other scholars put forward the
combination of different evolutionary algorithms, such as a
novel hybrid feature selection algorithm with a new local
search strategy [7] that is embedded in the PSO to select the
less correlated and salient feature subset. Besides, there are
many typical feature selection approaches based on ACO.
For instance, ant colony optimization was applied in unsuper-
vised probabilistic feature selection [8] and the inter-feature
information is utilized to evaluate the similarity between
features for selecting the optimal feature subset. A new study
proposed a novel swarm based hybrid algorithm [9], which
combines the characteristics of ant colony optimization and
artificial bee colony algorithms to optimize feature selection,
and it performs well both the dimensionality reduction and
the classification accuracy.

Differential evolution is arguably one of the efficient and
powerful population-based random search techniques for
global optimization [10]. Compare with GA, PSO and ACO
algorithm [11], [12], the easy to operate of DEmake it widely
applied in many scientific and engineering fields, especially
in the optimization of continuous search domain [13]. Many
researchers have explored DE to improve the performance
of the algorithm in terms of accuracy, convergence speed
and stability. Since DE is usually an effective tool for solv-
ing continuous problems, so it is expert in optimizing the
parameters of the learning model. As a combinatorial opti-
mization problem, feature selection is a discrete problem.
Thus, the continuous DE should be improved to suit for the
feature subset optimization. The binary differential evolution
was proposed by Pampara et al. [14] and the trigonomet-
ric function is utilized to generate 0-1 strings, realizing the
transformation of floating point variables into binary forms.
Combining artificial bee colony optimization technique with
differential evolution algorithm for feature selection [15] and
the hybrid method improves run-time performance and accu-
racy of the classifier. Moreover, a supervised feature selection
technique guided by self-adaptive differential evolution for
feature subset generation was developed [2]. The proposed
method shows promising results compared to others in terms
of overall classification accuracy and Kappa coefficient.

Based on the above analysis, we find that most of the
existing DE algorithms mainly improve their performance
from three aspects: individual coding, evaluation criteria and
search strategy. However, there are still significant issues
require further survey:

1) Individual evaluation without considering the effect of
diversity on the evolution process. Population diversity not
only affects the convergence rate of the algorithm, but also

affects the quality of the global optimal solution. Therefore,
it is necessary to analyze the diversity of each individual.
For feature selection, each individual represents a candidate
feature subset. According to the evaluation criteria of feature
subset, we hope that the selected subset has fewer features and
better classification ability, and the algorithm can converge
the optimal solution quickly. Therefore, how to quantita-
tively judge individual diversity is critical for the population
evolution.

2) The discrete operators satisfying the closed condition
need to be developed. We all know that discrete and con-
tinuous evolutionary algorithms can transform each other by
encoding strategies. However, the discretization process may
need other auxiliary operations for feature selection. It not
only increases the time cost, but also causes instability of the
algorithm.

3) Adaptive parameter selection strategy needs further
study. The results are subjective because of the artificial set-
ting of parameters. Choosing different parameters according
to the evolution process is of great significance to improve
the performance of the algorithm. Therefore, how to select
reasonable parameter is also an important problem when
using evolutionary algorithm to optimize feature subset.

In this paper, a novel binary differential evolution based
on individual entropy is proposed for feature selection. It can
obtain the optimal feature subset with superior classifica-
tion performance. The rest of the paper is organized as
follows: In Section II, related works on DE algorithm are
reviewed. Then, in Section III, the individual entropy method
is constructed, and the effect of individual diversity on fea-
ture subset is discussed. Moreover, a detailed description
of the proposed methodology is presented in Section IV.
In Section V, the experimental results and comparisons with
other algorithms are given. Finally, the paper is summarized
in Section VI.

II. RELATED WORK
When using evolutionary algorithm to handle feature selec-
tion problem, the common way to pose feature selection
as an minimization (or maximization) problem is to opti-
mize the evaluation index. In this paper, the feature subset
is measured by minimizing the objective function. Suppose
X = [x1, x2, · · · , xn] is the parameter vector to be optimized,
where x is is a real number. If the objective function f : � ⊆
RD→ R, then the local minimum fmin can be defined as

fmin(xl) = {xl |‖x − xl‖ < ε ⇒ fmin(xl) ≤ f (x),

∃ε > 0,∀x ∈ �} (1)

where ‖ · ‖ indicates any p-norm distance measure and ε is a
minimum. (1) gives the idea of solving most of the optimiza-
tion problems including the feature combination optimization
problem. The difference is to redesign the new individual
representation and evaluation function in the feature
combination.

Differential algorithm is a popular algorithm for finding
the minimum objective value. The core idea of DE algorithm
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is that it uses the difference strategy to randomly obtain the
difference individual, then it extends the search region by
mutation operation. Finally, the optimal individual (solution)
is obtained according to the evaluation function after a cer-
tain number of iterations [16], [17]. Differential evolution
algorithm can be divided into continuous DE and discrete
DE according to the task requirements. At present, many
variations of the difference algorithm have been proposed.
It can be found that the existing algorithms mainly focus on
parameter setting and mutation strategy.

In the DE algorithm, there are three important control
parameter named population size N , scaling factor F and
crossover rate p respectively. In the process of optimization,
the selection of parameter may influences the optimization
performance of the DE. Based on the parameter setting
mechanism, the selection of parameter can be divided into
constant parameter and adaptive parameter. In classical DE
algorithm [10], the range of N is [5D, 10D], where D is the
dimension of the individual. F and p are set to 0.5 and 0.1
respectively. According to the different dimensions of the
problem, we need to choose a reasonable range of parameters.
Therefore, some scholars quantify the relationship between
dimensions and parameters to determine reasonable constant
parameter values [18]–[21]. Another method is the adap-
tive parameter, which automatically adjusts the size of the
parameter based on the feedback information of the evolution
process. This type of methodes [22]–[25] can effectively
select the appropriate parameters to control the performance
of the algorithm in the search space. In this paper, we tend
to construct reasonable strategies to adaptively select more
appropriate parameters. In addition, the diversity of the pop-
ulation is one of the key factors to find the optimal individual.
Thus, the relationship between parameter and population
diversity should been considered during the evolutionary
process. Let X = {X1,X2, · · · ,XN } be current population,
Y = {Y1,Y2, · · · ,YN } the population aftermutation operator,
and Z = {Z1,Z2, · · · ,ZN } the population obtained by the
crossover operator. The relationship between population and
parameters can be expressed as follows

E(Var(Y )) = (2F2
+

(N − 1)
N

)Var(X ) (2)

E(Var(Z )) = (2F2p+
2p
N
+
p2

N
+ 1)Var(X ) (3)

where the E() and the Var() represent the mean and variance
of the population respectively. The detailed proof of the pro-
cess can refer to [26]. It can provide the basis for the selection
of parameters and control the diversity of the population.
However, only the relationship between population diversity
and parameters is described qualitatively, but the variation of
individual diversity and its quantitative measurement method
are not further studied.

Mutation strategy is an important operator in DE
algorithm. It not only affects the quality of the generated
individuals, but also correlates the convergence rate of the
algorithm. DE usually contains three types of mutation

strategies: DE/rand, DE/best, DE/current [13], [27], [28].
DE/best strategy can accelerate the convergence speed of the
algorithm, but it is easy to fall into local optimum because
it has been searching around the best individual. DE/current
strategy can keep the diversity of the algorithm well, but the
convergence speed of the algorithm is reduced due to the
lack of guidance from the best individual. However, DE/rand
can be seen as a compromise between DE/current strategy
and DE/best strategy. Hence, we propose a new mutation
strategy called DE/current&best. In this way, the diversity of
the algorithm can be guaranteed and the convergence speed
of the algorithm can be accelerated.

III. PROPOSED INDIVIDUAL ENTROPY
In order to study the diversity of DE, the difference of individ-
ual is analyzed in the paper. The difference is considered from
the following two aspects. One is the internal difference of
individuals, the other is the external difference of individuals.
For feature selection problem, there is complex interaction
among features. Because an individually redundant (relevant)
feature may become relevant (redundant or irrelevant) feature
when it combines with other features. Hence, the internal
difference of individuals is used to measure the relationship
among features. For evolution of DE, we expect to obtain
global optimal solution with stable and fast convergence
property. If the diversity of the population is better, it means
that the population has broad search space and slow down
the convergence rate. On the contrary, if the population has
a poor diversity, it speeds the convergence of the algorithm,
but there may exist search stagnation or even can not find the
global optimal solution. So we utilize external difference of
individuals to measure the diversity of the population. Based
on this, the individual entropy is presented.
Definition 1: Suppose individual X = (x1, x2, · · · , xm),

X = seq1 ∪ seq2∪, · · · ,∪seqn, where seqj is the sub-
sequence of X and it satisfies ∀seqa ∩ ∀seqb = �, where
a 6= b. kj is the number of element in the seqj, so k1+k2+· · ·+
kn = m. For sub-sequence seqj = (xi, xi+1, · · · , xi+kj−1),
if xi = xi+1 = · · · = xi+kj−1, 0 < j < n + 1, 1 < i <
m− kj + 1, then the individual entropy of X is defined as

IE(X ) = −
n∑
j=1

|seqj|
kj

log2
|seqj|
kj

(4)

Inference 1: An individual X = (x1, x2, · · · , xm), if x1 =
x2 =, · · · ,= xm, then the individual entropy of X reaches
to the minimum 0. If x1 6= x2 6=, · · · , 6= xm, the individual
entropy of X reaches to the maximum log2 m.
Definition 2: Suppose population P = (X1,X2, · · · ,X|P|),

the average entropy E(P) =

|P|∑
i=1

IE(Xi)

|P| , so the population
entropy of P is defined as

PE(P) =
|P|∑
i=1

(IE(Xi)− E(P))2 (5)
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In order to describe the calculation process of individual
entropy more clearly, a case is given in this section. Suppose
a randomly generated population P = {X1,X2,X3,X4,X5},
which contains five individuals and each individual con-
tains ten binary value. Obviously, the value 1 represents the
selected feature and the value 0 represents the non-selected
feature. Thus, each individual represents a candidate features
subset.

P =


X1 : 1110000111
X2 : 0010101100
X3 : 1001001111
X4 : 1111100000
X5 : 0011111000

 (6)

Firstly, the entropy values of the X1,X2,X3,X4,X5 are
calculated by (4), and the process is shown as follows

IE(X1) = − (
3
6
log2

3
6
+

4
4
log2

4
4
+

3
6
log2

3
6
) = 1 (7)

IE(X2) = − (
2
6
log2

2
6
+

1
4
log2

1
4
+

1
6
log2

1
6
+

1
4
log20

1
4

+
1
6
log2

1
6
+

2
4
log2

2
4
+

2
6
log2

2
6
) = 3.4183 (8)

IE(X3) = −(
1
5
log2

1
5
+

2
4
log2

2
4
+

1
5
log2

1
5

+
2
4
log2

2
4
+

3
5
log2

3
5
) = 2.3710 (9)

IE(X4) = −(
5
5
log2

5
5
+

5
5
log2

5
5
) = 0 (10)

IE(X5) = −(
2
5
log2

2
5
+

5
5
log2

5
5
+

3
5
log2

3
5
) = 0.9710

(11)

Then, the individuals are arranged in descending order
according to the entropy value, so we can obtain X2,X3,
X1,X5,X4. From the distribution of the individual, it is obvi-
ous that the randomicity of X2 is the best and the randomicity
of X4 is the worst. The result of observation is consistent with
our calculation results. In other words, the proposed individ-
ual entropy can measure individual diversity effectively.

Further, the average value of the individual entropy is
calculated as E(P) = 1.5521. So the entropy of the whole
population is calculated asPE(P) = 7.2048. It is clear that (4)
depicts the differences within an individual. The larger the
value of individual entropy means that we consider more
the combination of features, which helps to explore local
optimal solutions. While (5) reflects the differences among
individuals. The larger the value of population entropy means
that we consider a broader feature subset space, which helps
to exploit global optimal solutions. Therefore, the diversity
measurement method proposed in this paper can effectively
monitor the evolution process of evolutionary algorithm.

IV. PROPOSED BINARY DIFFERENTIAL EVOLUTION
BASED ON INDIVIDUAL ENTROPY
In this section, the design process of each operator in the
proposed algorithm is described in detail. It mainly contains

the following basic operations: population initialization strat-
egy, individual evaluation function, new mutation operator,
adaptive crossover operator and individual selection strategy.

A. POPULATION INITIALIZATION STRATEGY
Opposition-based Learning (OL) [29] is an efficient way for
obtaining the better solution for the next generation iteration.
During the process of OL, it not only evaluates the optimal
solution, but also evaluates the solution in the opposite direc-
tion. Inspired by the idea of OL, we proposed an improved
strategy called local opposition-based Learning (LOL).
Definition 3: Suppose an individual I = (x1, x2, · · · , xn),

where xi ∈ {0, 1}, i = 1, 2, · · · , n. The I1 and I2 are the local
opposition individual of individual I . Then the I1 and I2 are
defined as I1 = (x1, x2, · · · , xb nk c, xb nk c+1, xb nk c+2, · · · , xn)
and I2 = (x1, x2, · · · , xb nk c, xb nk c+1, xb nk c+2, · · · , xn).
Where k is the factor that control the size of opposition and

the k is set to n/2 in the paper. Base on definition 3, we can
infer that a randomly generated population P can produce two
new initial populations P1 and P2. A candidate solution I =
(x1, x2, · · · , xn), I ∈ P, I is the local opposition of I . For
∀I ∈ {P1,P2}, if f (I ) < f (I ), then we select I instead of I ,
else, we still select the I as the candidate solution. The f () is
evaluation function of candidate solution. As a result, we get
the new initial population P̄.

B. INDIVIDUAL EVALUATION FUNCTION
It is clear that samples belonging to the same class
have stronger similarity, while samples belonging to differ-
ent classes are more discriminating. For feature selection,
we should select the feature subset that make sure the distance
of samples within-class is smaller and distance of samples
between-class is larger. Traditional evaluation criteria often
ignores the influence of individual diversity on searching for
optimal solution. In order to fully develop individual poten-
tial, the individual entropy is utilized as one of the evaluation
indicators. Hence, the new individual evaluation function is
presented.

IEF(X ) = α ∗
DS
DL
+ (1− α) ∗

1
IE(X )

(12)

where the between-class distance DL =
c∑
i=1

pi( 1ni

ni∑
j=1

x ij −

m)( 1ni

ni∑
j=1

x ij − m)T , and the within-class distance DS =

c∑
i=1

pi
ni

ni∑
j=1

( 1ni

ni∑
j=1

x ij − x ij )(
1
ni

ni∑
j=1

x ij − x ij )
T . Beside, the x ij is

the jth feature vector value in the ith class, and the average

feature vector value m =
c∑
i=1

pi
ni

ni∑
k=1

x ik . While the IE(X ) is the

individual entropy of X and the weight coefficient α is set
to 0.8 in the paper. So our proposed fitness function can not
only effectively measure the classification ability of feature
subset, but also balance the exploration and exploitation of
the algorithm.
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C. NEW MUTATION OPERATOR
Because feature selection is a discrete problem, and the new
individual generated by traditional binary mutation opera-
tor usually do not satisfy the closeness. In order to tackle
the issue, a new non-parameter binary mutation operator is
designed in this paper. For the gth iteration initial individual
Xi = {xi,1,g, xi,2,g, · · · , xi,j,g}, and the mutation individual
Vi = {vi,1,g, vi,2,g, · · · , vi,j,g}, then the vi,j,g is calculated by

vi,j,g=
{
xr0,j,g + (−1)xr0,j,g ∗ |xr1,j,g − xr2,j,g|, if θ < 0.5
xrb,j,g + (−1)xrb,j,g ∗ |xr1,j,g − xr2,j,g|, otherwise

(13)

where r0, r1, r2 ∈ 1, 2, · · · , n, and r0 6= r1 6= r2, the rb
is the index of the best individual in the current population.
While the j is the dimension of feature variables. We expect
to increase individual diversity as much as possible in the
early stage of evolution and reduce diversity as much as
possible in the later stage of evolution so that the algorithm
converges gradually to the optimal solution. So, the evo-
lution process is divided into two stages according to the
iterative process. If θ = g

gmax
< 0.5, then three individuals

are selected randomly to implement mutation operations to
explore more individuals that may become optimal solu-
tions. If θ = g

gmax
≥ 0.5, then the individual with best fitness

value should be inherited to ensure the algorithm can finally
converges to the optimal solution.

D. ADAPTIVE CROSSOVER OPERATOR
Adaptive crossover factor is important for evolutionary pro-
cess. When the performance of parent individuals is better,
the smaller value of crossover factor should be selected to
obtain more information by offspring individuals from parent
individuals. If the fitness value of parent individual is worse,
more new offspring individuals should be produced by the
lager crossover factor. Hence, we present an adaptive mecha-
nism based on individual fitness for obtaining the reasonable
factor. The adaptive crossover factor CF(Xi) is shown as

CF(Xi) =
IEF(Xi)− IEFl(X )+ µ
IEFu(X )− IEFl(X )+ µ

(14)

where the maximum and minimum fitness value of all indi-
viduals are expressed by IEFu(X ) and IEFl(X ) respectively.
In order to prevent the crossover factor to be 0, the parame-
terµ is introduced and it is the absolute value of the difference
between theminimumfitness value and the secondminimum.
Note that we select a random number from a normal dis-
tribution by η = randn(CF(Xi), 0.1) [20]. So the crossover
operator is presented as follows

ui,j,g =
{
vi,j,g, if (randj[0, 1) ≤ η or (j = jrand )
xi,j,g, otherwise

(15)

where jrand is the dimension selected randomly from an indi-
vidual. Hence, we can infer that the selection of crossover
factor is associate with the fitness value of individual. In other
words, the number of inherit element depends on the fitness
difference of individuals.

E. INDIVIDUAL SELECTION STRATEGY
For generate the new population, we should compare the
offspring individual with the corresponding parent individual,
and the individual with better fitness value should inherited to
the next generation. So, the individual selection strategy can
be presented as

xi,j,g+1 =
{
ui,j,g, if IEF(ui,j,g) < IEF(xi,j,g)
xi,j,g, otherwise

(16)

where ui,j,g is the ith offspring individual in the gth iteration.
If the fitness value of new individual yield the corresponding
parent individual, then ui,j,g is set to xi,j,g+1. Otherwise the
current individual will be inherited in the next generation.

F. COMPLETE PROCEDURE OF THE PROPOSED BDIE
Based on the above analysis, a new approach for feature
selection using binary differential evolution based on indi-
vidual entropy is proposed. The main ideas of BDIE are as
follows:

1) The initialize population is generated by local
opposition-based learning, and it can improve the
quality of individual population and avoid the unpre-
dictable convergence rate caused by pure random
initialization.

2) Consider the effect of individual diversity on popula-
tion evolution process, the individual entropy is inte-
grated into the fitness function. By (12), it can be learn
that the proposed individual evaluation function can
measure the classification quality of feature subset and
also can monitor individual evolution process.

3) A two stage binary mutation operator is presented. The
purpose of adopting this approach is to ensure that the
more potential individuals are discovered in the early
stage of evolution and the individuals converge to the
optimal individual gradually in the later stage.

4) Adaptive crossover operator is adopted to generate the
new individual. The crossover factor is selected accord-
ing to the fitness value.

5) The fitness function is utilized to select the candidate
individual (feature subsets), and make sure the supe-
rior individuals can be retained to the next genera-
tion. Repeat the process until the number of iterations
reaches the required value.

Hence, the pseudo-code of binary differential evolution
based on individual entropy for feature subset optimization
is illustrated in Algorithm 1.

The time complexity of the proposed algorithm is analyzed
in this paper and it contains five basic operations process.
In the first stage (lines 2-4), we initialize the population
based on local opposition-based learning. The process needs
to compare the fitness values of three different populations,
so the time complexity of the process is O(3 × Psize).
In the second stage (lines 7-11), we calculate individual
fitness values and sort them in descending order, so the the
time complexity is O(Psize). In the third stage (lines 12-20),
the mutation operation is executed and the corresponding
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Algorithm 1 Binary Differential Evolution Based on
Individual Entropy(BDIE)
Input: Data set DS = (x1, x2, · · · , xn, y), population

size Psize, individual length Hsize, iterations number g.
Output: Optimized feature subset S
1: Sn = DS( (v−vmin)

(vmax−vmin)
) // Normalizing the data set.

2: P = randerr(Psize,Hsize)
3: Generate P1 and P2 by the LOL.
4: P̄ is the initial population. // Generate the initial popula-

tion by local opposition-based learning.
5: g = 0 // Initialize iteration number.
6: While maximum number of iterations is not meet g
7: for i =1 to Psize do
8: Fset = Sn(:,find(X (i, :) == 1))
9: Fit(i) = IEF(X (i)) // Calculate fitness of individual.
10: Rank(Fit(i))
11: end for
12: for i =1 to Psize do
13: for j =1 to Hsize do
14: if θ < 0.5 then
15: vi,j,g = xr0,j,g + (−1)xr0,j,g ∗ |xr1,j,g − xr2,j,g|
16: else
17: vi,j,g = xrb,j,g + (−1)xr0,j,g ∗ |xr1,j,g − xr2,j,g|
18: end if
19: end for
20: end for
21: for i =1 to Psize do
22: for j =1 to Hsize do
23: if (randj[0, 1) ≤ η or (j = jrand ) then
24: ui,j,g = vi,j,g
25: else
26: ui,j,g = xi,j,g
27: end if
28: end for
29: end for
30: for i =1 to Psize do
31: if IEF(ui,j,g) ≤ IEF(xi,j,g) then
32: xi,j,g+1 = ui,j,g
33: else
34: xi,j,g+1 = xi,j,g
35: end if
36: end for
37: fitbest = IEF(xb,j,g)
38: g = g+ 1
39: end While

time complexity is O(Psize × Hsize). In the fourth stage
(lines 21-29), the adaptive crossover operator to generate
offspring individual and the time complexity is O(Psize ×
Hsize). In the fifth stage (lines 30-36), selecting the best
individual (feature subset) according to the selection strategy
and the time complexity isO(Psize). Because of the number of
iteration is g, so the total time complexity isO(3×Psize+2×
g×Psize+2×g×Psize×Hsize), and the final time complexity
is expressed as O(Psize(3+ 2g+ 2gHsize)).

V. EXPERIMENTAL DESIGN AND RESULT ANALYSIS
A. DATASET AND PARAMETER SETUP
In order to test the performance of the proposed algorithm,
we carried out the BDIE and the compared algorithm using
matlab R2014b andWEKA 3.8.0. All the simulations are per-
formed on a computer with the Intel Core i5-3470, 3.20 GHz
CPU and 2 GB RAM. The low-dimensional data and high-
dimensional data two types of data sets are adopted to verify
the effectiveness of the algorithm. Among them, the low-
dimensional data contains Wine, Lymph, WDBC, Ionophere,
SPECTF and Sonar six data sets. The high-dimensional data
set includes Musk, GLRC, Colon, SRBCT, Leukemia-2 and
Leukemia-3 six data sets. The number of samples (min= 62,
max = 569) and the number of features (min = 13, max =
7129) are different depending on the size of the data sets.
In addition, these data sets are mainly collected from diverse
fields such as chemistry, medical, biological information,
sound and atmosphere. More information of the benchmark
data sets are available from the UCI repository. The details of
the data sets are shown in Table 1.
TABLE 1. Description of used data sets.

In the BDIE, the population size is set to 20, and the
individual size is adaptively adjusted according to the size
of the data set dimension. In other words, the length of the
individual is consistent with the dimension of the data set,
which allows each feature have the same probability of being
selected. For more clearly show the evolution process of
individual and population in the search process, the number
of iterations of the algorithms is set to 500. Additionally,
in order to make the results of the experiment more sta-
tistically significant, the algorithms are executed 10 times
independently. More importantly, the filter-based methods
and the population-based methods are introduced to compare
with the proposed algorithm in the paper. Their basic ideas
and parameter settings are described below.

1) The importance of feature is measured by its rele-
vance to the class label in the ReliefF [30]. Gener-
ally, the greater the importance value of the feature,
the stronger the classification ability of the feature. The
algorithm is efficient, but it does not consider the redun-
dancy between features, which makes the classification
accuracy unsatisfactory.

2) Minimum Redundancy Maximum Correlation
(mRMR) [31] is a filtered feature selection method.
The core idea of mRMR is to maximize the correlation
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between feature and categorical variable, and to min-
imize the redundancy between features. Mutual infor-
mation is used in the algorithm to calculate correlation
and redundancy.

3) Sparse Multinomial Logistic Regression via Bayesian
L1 Regularization (SBMLR) [32] is the multinomial
logistic regression method incorporating bayesian reg-
ularization using a Laplace prior to select the most
discriminative features. The algorithm mainly achieves
feature sparsity through L1 regular terms to reduce the
computational expense.

4) MoDEFS [33] is the unsupervised feature selection
algorithm using an improved differential evolution
technique. The average standard deviation of the
selected feature subset, the average dissimilarity of
the selected features, and the average similarity of
non-selected features with respect to their first nearest
neighbor selected features are considered to optimize
the feature subset.

5) Genetic algorithm (GA) [34] is the binary version
for feature selection. For individual coding, we use
a binary vector to represent a chromosome. Where
0 means the feature is not selected and 1 represents
the feature is selected. The crossover factor and the
variation factor are set to 0.9 and 0.1, respectively.
In addition, the elitist selection strategy is used in the
algorithm.

6) Ant colony optimization (ACO) [35] can be modified
for feature selection. The search space of the method
can be regarded as a complete graph. The nodes in
the graph represent the original feature set, and the
reciprocal of the similarity value between the features is
used as heuristic information to guide the ants to search
for the optimal feature subset. Where the number of
ants is set to 10 and the pheromone evaporation rate
of ants is set to 0.05.

7) Particle swarm algorithm (PSO) [36]. Its core idea is
to use each particle as a subset of candidate features,
calculate and update the particle position information
through distance, and finally obtained the approximate
the optimal feature subset by iterative. The inertia
weight coefficient is set to 0.5, and the acceleration
factors both c1 and c2 are set to 2.

8) Difference algorithm (DE) [17] is also a population-
based optimization algorithm. For the feature selection
problem, the initial vector is used as a candidate feature
subset, and the feature subset is updated by the muta-
tion operation and the cross operation. The distance
between samples within and between classes is calcu-
lated as the objective function to evaluate the quality
of feature subsets. The mutation rate and crossover rate
are 0.9 and 0.1, respectively.

For the fairness of comparison, the number of features
selected by the filter-based algorithms is consistent with
the results obtained by the BDIE. Their classification per-
formance is compared with the same feature subset size.

Moreover, the population size of the evolution algorithms
mentioned is set to 20.

In order to verify the classification ability of the optimized
feature subset, eight different classifiers including Naïve
Bayes (NB), Logistic Regress (LR), Support Vector Machine
(SVM), K-Nearest Neighbor (KNN), AdaBoost (AB), Deci-
sion Table (DT), C4.5 and Random Forest (RF) have been
applied to evaluate the feature selection methods. These clas-
sifiers are available from WEKA software package [37].

B. PERFORMANCE OF BDIE
1) FITNESS CONVERGENCE CURVE OF THE BDIE
Figure 1 shows the fitness value convergence curve of the
algorithm after 500 iterations on 12 data sets. BDIE_FA,
BDIE_FB, and BDIE_FW respectively represent the average
fitness value, the best fitness value and the worst fitness value
of the proposed algorithm in 10 runs. It can be observed
that the BDIE can converge smoothly to the optimal value
in basically all cases. It seems that the appropriate fitness
function can alleviate the local optimization shortcoming of
algorithm. According to the distribution characteristics of the
sample, the minimum internal distance and the maximum
distance between classes are taken into account, which is to
ensure that the feature subset has better classification ability.
On the other hand, in order to speed up the convergence of
proposed algorithm and obtain the superior candidate indi-
viduals, we introduce individual diversity metrics to find the
potential candidate individuals in the search space as much as
possible, and guide the population to the optimal individuals
direction to ensure the global optimal.

2) CONVERGENCE AND DIVERSITY OF THE BDIE
In order to analyze the population diversity in the process
of feature selection, we characterize individual diversity as
the difference of the distribution of features in this paper.
Here a new convergence calculationmethod [38] is adopted to
quantify the convergence process of the algorithm. As men-
tioned earlier, there are complex interrelationships between
features, where correlation and redundancy are important fac-
tors influencing the effect of feature selection.When a related
feature (redundant feature) is combined with other features,
the feature may become a redundant feature (related feature).
Searching for feature combinations as much as possible is
useful for searching for the optimal feature subset. Therefore,
quantifying individual diversity is important for searching for
feasible solutions.

Figure 2 exposes the trend of diversity and convergence
curve of the algorithm in the process of iteration. It can be
seen that the diversity value of the BDIE on the 11 data
sets (excluding the GLRC data set) has larger fluctuations
in the first half, but it gradually stabilizes in the latter half.
It can be explained by the new mutation strategy in the paper.
In the first half, the DE/current mutation strategy is adopted
that can exploit fully the potential excellent feature subsets.
While in the latter half, we use the DE/best mutation strategy,
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FIGURE 1. The fitness value and convergence curve obtained by IDBE for
12 datasets: (a) Wine, (b) Lymph, (c) WDBC, (d) Ionosphere, (e) SPECTF,
(f) Sonar, (g) MUSK, (h) GLRC, (i) Colon, (j) SRBCT, (k) leukemia-2,
(l) leukemia-3.

so that the outstanding individuals in the parent population
are inherited into the offspring. Therefore, the population
can converge to the optimal individual quickly. The final
convergence value of the algorithm on nine data sets is less
than 0.5, such as Lymph, SPECTF, Sonar, MUSK, GLRC,
Colon, SRBCT, Leukemia-2 and Lemkemia-3. While the
convergence values on the other three data sets are also less
than 1. It means that the proposed algorithm can find an
optimal (approximate) feature subset. In addition, diversity
and convergence usually correspond to the global exploration

FIGURE 2. The diversity and convergence curve of BDIE for 12 datasets:
(a) Wine, (b) Lymph, (c) WDBC, (d) Ionosphere, (e) SPECTF, (f) Sonar,
(g) MUSK, (h) GLRC, (i) Colon, (j) SRBCT, (k) leukemia-2, (l) leukemia-3.

ability and local development ability. And we can also infer
that the mutation strategy of the proposed algorithm can well
balance the diversity and convergence of the algorithm.

3) CLASSIFICATION PERFORMANCE OF THE BDIE
Table 2 and Table 3 report the classification accuracy of dif-
ferent algorithms on the corresponding classifier for each data
set. The AVG and STD represent the average classification
accuracy and standard deviation of the algorithm on different
classifiers respectively. The RANK is the ranking of differ-
ent feature selection algorithms according to the value of
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TABLE 2. The classification (%) performance comparison between BDIE and filter-based algorithms.

the AVG. If the AVG values of the two algorithms are equal,
then the algorithmwith a smaller STDvalue is better. Besides,
the bold values in the table represent the best classification
accuracy.

Table 2 shows the comparison of the classification per-
formance of the proposed algorithm with three filtering
algorithms and an improved differential algorithm. It can
be seen from Table 2 that the proposed algorithm achieves
the best average classification accuracy on nine data sets.
At the same time, the performance on the remaining three
data sets is not the worst. The proposed algorithm has an
average classification accuracy of more than 90% on the

wine, WDBC, SRBCT, Leukemia-2 and Leukemia-3 data
sets, and it is also significantly higher than other methods.
The main purpose of Table 2 is to verify the robustness of
the proposed algorithm on different classifiers. Obviously,
we can see that BDIE algorithm can select feature subset
with stable classification ability. In other words, the features
selected by the proposed algorithm contain the key classi-
fication information. This is because the population-based
heuristic search strategy is adopted in this paper, and it is
different from other traditional filter-based algorithms such
as ReliefF, mRMR and SBMLR. Each individual represents
a subset of candidate features, and the individual is updated
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TABLE 3. The classification (%) performance comparison between BDIE and population-based algorithms.

by the designed evaluation function to guide the population to
search for the optimal solution direction. A great advantage of
the algorithm is that it considers more feature combinations
to get the global optimal solution. Therefore, the population-
based BDIE can obtain better classification results.

Table 3 shows the classification results of the proposed
algorithm and the four population-based approaches for fea-
ture selection. FromTable 3, it is observed that BDIE achieves
the best average classification accuracy on the Wine, Lymph,
WDBC, Sonar, Musk, Colon, SRBCT, Leukemia-2 and
Leukemia-3 data sets. For example, on the Leukemia-2 and
Leukemia-3 data sets, the average classification accuracy of

the proposed algorithm is 95.83% and 96.18%, respectively.
For Leukemia-2 data set, the BDIE provides superior classi-
fication accuracy compared to GA, ACO, PSO and DE, and
they are 10.59%, 10.46%, 18.58% and 11.59% higher than
them respectively. Subsequently, the classification accuracy
of the BDIE on the KNN classifier is as high as 100%. For
the leukemia-3 data set, the average classification accuracy
of the BDIE is 8.25%, 8.20%, 8.52% and 9.71% higher than
the average classification accuracy of GA, ACO, PSO and
DE algorithms, especially on the SVM classifier. The clas-
sification accuracy of the algorithm is 98.61%. The reason
for this phenomenon is that the above four population-based
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optimization algorithms only utilize the classification results
to evaluate the feature subset, and they do not analyze the
complex relationship between features deeply. While the dis-
tance between the sample within the class and the distance
between the samples is considered in the paper, which helps to
distinguish the differences of the samples. More importantly,
more feature combinations are measured by the individual
diversity indicators. It can expand the search range of the
algorithm and increase the probability of finding the optimal
combination of features.

FIGURE 3. The average classification accuracy of BDIE and filter-based
algorithms on 12 data sets.

FIGURE 4. The average classification accuracy of BDIE and
population-based algorithms on 12 data sets.

Figure 3 and Figure 4 show the average classification
results of the algorithm over all 12 data sets. It can be
seen that the average classification accuracy of BDIE on
NB, LR, SVM, KNN, AB, DT, C4.5 and RF classifiers are
81.85%, 85.03%, 88.13%, 87.96%, 79.11%, 80.60%, 81.83%
and 88.91%. From Figure 3, it can be detected that the
SBMLR algorithm has a classification accuracy of 81.97%
on the NB classifier, which is higher than the proposed
algorithm. As shown in Figure 4, the GA algorithm has a
classification accuracy of 79.18% on the AB classifier, which
is slightly higher than the BDIE. However, for the remain-
ing classifiers, the BDIE can achieve the best classification
accuracy over all data sets. In addition, we can also find
that all algorithms are better classified on the RF classifier
than other classifiers. Besides, compared with the other eight
algorithms, the proposed algorithm has the best classification
result on the RF classifier. Therefore, the improvements are

meaningful and the classification accuracy obtained by the
BDIE is superior to those of other competitors.

4) DIMENSIONAL REDUCTION RATE OF BDIE
In terms of feature subset size, the feature reduction perfor-
mance of the proposed algorithm is presented in the paper.
The dimension reduction rate is calculated by R = 1− f /F ,
where f is the number of the selected feature and F is the
number of initial data set dimension. Figure 5 shows the
reduction values of the BDIE over all 12 data sets. From
Figure 5, it can be seen that the higher the dimension of
the data set, the higher the reduction rate. For example,
the reduction rates for Sonar, Musk, GLRC, Colon, SRBCT,
Leukemia-2 and Leukemia-3 data sets are 81.67%, 89.76%,
96.42%, 99.05%, 99.65%, 99.70% and 99.72%, respectively.
We can infer that the proposed algorithm can effectively
remove irrelevant features and redundant features especially
for high dimensional data sets, and it significantly reduces the
size of the feature subset.

Fig. 5. The feature reduction rate of BDIE on 12 data sets.

5) COMPUTING TIME OF BDIE
For test the performance of the algorithm in terms of time
cost, the average time cost of the competitors is calculated in
this paper. As shown in Table 4, the filter-based algorithms
usually need to choose the appropriate threshold (the feature
importance value or the number of features to be selected)
before determining the feature subset. In order to ensure the
fairness of the comparison, we consider that the selected
features number in filter-based algorithms is consistent with
the number of features selected by the proposed algorithm.
Therefore, the time cost on different data sets with the same
feature subset size is analyzed. As can be seen from Table 4,
the average time overhead of the ReliefF, mRMR, SBMLR,
IMoDEFS and BDIE algorithms on all data sets are 4.76s,
1480.97s, 22.16s, 493.53s, and 193.27s, respectively. Based
on the ranks, we can see that the RANK value of BDIE
is 3. It means that the time expenses of the algorithm is not
outstanding. This is mainly because the ReliefF and SBMLR
algorithms only calculate the correlation between features
and class labels without calculating the result between fea-
tures, so they run faster. While the time usage of mRMR will
increase rapidly with the size of the data set, because it needs
to calculate the correlation between features. In addition,
although IMoDEFS is an improved version of DE, its time
cost is still not superior to that of BDIE.
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TABLE 4. The time cost comparison between BDIE and filter-based algorithms.

TABLE 5. The time cost comparison between BDIE and population-based algorithms.

In order to further verify the advantages of the algorithm
in terms of time cost. The efficiency of population-based
optimization algorithm is calculated. Then, the four algo-
rithms including GA, ACO, PSO and DE algorithms are
compared with the proposed algorithm. As shown in Table 5,
the average time overhead of the BDIE algorithm is 159.90s,
which is less than that of the other four algorithms. In terms of
feature subset size, the average number of features obtained
in this paper is 17.17, which is obviously superior to other
algorithms. In other words, our algorithm can achieve better
experimental results in terms of feature subset size and time
cost.

VI. CONCLUSION
In this paper, a novel binary differential evolution based on
individual entropy for feature subset optimization is pro-
posed. The individual entropy method is constructed to eval-
uate the diversity of the individual. And it can measure the
complex relationship between features. Then, the influence of
individual entropy on feature subset selection is considered in
the design of objective function, which helps to select better
combination of features. More importantly, two-stage muta-
tion operator is designed according to different search stages,
and a new adaptive crossover factor is presented. It is not only
beneficial to discover the features with stronger correlation,
but also to speed up the operation of the algorithm. Finally,
experiments show that the proposed algorithm is superior to

other algorithms. It can effectively improve the classification
accuracy, reduce the size of feature subset and shorten the
running time.

However, the proposed algorithm in this paper has limita-
tions. For example, how to measure the stability of feature
selection based on evolutionary algorithm and whether there
is correlation between classifier and optimization objective.
In the future, we will continue to explore feature selection
algorithms based on evolutionary computing, especially the
efficient search strategies and the reasonable evaluation cri-
teria. At the same time, we will study the factors that affect
the stability of feature selection.
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