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ABSTRACT In recent years, unmanned aerial vehicles (UAVs) have rapidly developed, but the illegal use of
UAVs by civilians has resulted in disorder and security risks and has increasingly triggered the community
concern and worry. Therefore, the monitoring and recycling of UAVs in key regions are of great significance.
This paper presents novel panoramic UAV surveillance and autonomous recycling system that is based on the
unique structure-free fisheye camera array and has the capability of real-timeUAVdetection, 3D localization,
tracking, and recycling capacity over a very wide field of view. The main characteristics of this paper
include the following: 1) constructing a structure-free camera-array-based panoramic UAV surveillance and
recycling system; 2) designing a robust dynamic near-infrared laser-source-based self-calibration algorithm
for large-scale arbitrary layout of the camera array; and 3) presenting a set of UAV detection, 3D localization,
tracking, and autonomous recycling algorithms based on a fish-eye camera array. The system has been
tested in various challenging scenarios, including multiple UAVs with significant appearance and scale
changes and even poor weather conditions. The extensive experimental results analyzed both qualitatively
and quantitatively, and the analysis of the time performance demonstrate the robustness and effectiveness
of the proposed system. In addition, we successfully conduct a recycling and landing experiment with the
Parrot Beobop.

INDEX TERMS UAV, structure-free fisheye camera array, surveillance and recycling system.

I. INTRODUCTION
With the maturity of UAV technology, UAV manufactur-
ing and use costs are decreasing, large numbers of UAVs
are being researched and developed, and manufacturing and
application companies have boosted the popularity of civil-
ian UAVs [1]. Civilian UAVs have exhibited a worldwide
upsurge, with a large number of applications [2]–[4] but also
many problems and challenges. On the one hand, a large num-
ber of illegal uses cause security risks [5]–[7], such as stealing
private information, releasing hazardous materials and even
committing terrorist attacks, which have prompted increasing
community concern and worry. Therefore, it is necessary to
deploy and install UAV surveillance systems at airports and
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key monitoring points to maintain the safety of these areas.
On the other hand, accurate autonomous recycling of UAVs
and cooperative landing of UAV-UGVs in low-altitude and
GPS-denied areas are very urgent and important, such as
the application of UAV logistics transport and recycling on
vehicle platforms and aircraft carriers. Consequently, UAV
surveillance and autonomous recycling technology operating
over wide areas, a relatively new and largely unexplored
research topic, is of great value and significance.

In recent years, wide-area UAV surveillance has been
widely realized in anti-UAV technology and systems. From
a technical view, there are several major types of anti-UAV
surveillance and defense technologies, such as signal inter-
ference, radar detection, and integrated technology. Signal
jamming technology can affect the UAV GPS signal receiver,
where the control and navigation information is disturbed
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by strong interference. One example is the electromagnetic
gun, which disrupts the auto-driving system or the commu-
nication system of UAVs. Radar detection technology has
powerful detection ability for small and low speed targets.
In the Swedish ‘‘GIRAFFE’’ radar system [8], the cross
section is accurate to 0.001 squaremeters. Italy Finmeccanica
Selex ES company has demonstrated its ‘‘falcon shield’’ UAV
system [9], which can locate, identify and control long-range
small UAVs in a short time. Integrated technology has the
ability to be more powerful. The British anti-UAV defense
system AUDS [10] can detect, track and destroy small and
large UAVs. Although the existing UAV surveillance and
defense systems can serve as suitable inspiration for research
on UAV surveillance, there are still many issues requiring
solutions. First, UAVs are generally small in size and weight,
and they appear suddenly, which makes them hard to detect,
particularly in low-altitude areas. Second, the integration of
artificial intelligence and advanced materials into the design
of UAVs will significantly improve their capability in stealth.
Third, the majority of existing anti-UAV technologies are
designed for specific UAVs or scenarios via few technical
methods, which limits their applications and generalization.

To solve the UAV surveillance and recovery problem
in low-altitude and GPS-denied areas, many high-precision
measuring sensors and methods are used, such as laser range
scanners [11], [12], ultra-wideband-based pose estimation
and recycling methods [13]. Despite their effectiveness, these
methods have some disadvantages, such as complex struc-
tures and the challenge of deployment for specific expensive
sensors or devices. The rapid development of intelligent
vision technology and visual sensors, such asmonocular cam-
eras [14], [15], stereo cameras [16], [17], and RGB-D sensors
[18], [19], has become the core part of the UAV surveillance
and recycling system [20], [21]. Martínez et al. [22] design
a trinocular system, which is composed of three FireWire
cameras fixed on the ground, to estimate the vehicle posi-
tion and orientation by tracking the markers on the UAV.
Pebrianti et al. [23] propose a ground-based stereo
vision system to estimate the three-dimensional position of
a quadrotor. Although those systems achieve satisfactory
results, they can be used only in an indoor environment due to
the limited distance measurement. To enlarge the surveillance
range and improve the recycling capacity, various systems
and solutions have been proposed in recent years [24]–[29].
Kim et al. [30] present an autonomous vision-based net
recovery system for small fixed-wing unmanned aerial vehi-
cles. Kong et al. [31], [32] construct a system that mounts
two separate sets of pan-tilt units integrated with visible light
cameras on both sides of the runway, which can detect a fixed-
wing UAV at approximately 600 meters. Yang et al. [33]
present a high-accuracy large-scale outdoor camera array
calibration method in their work from 2015. By integrating
an infrared camera and laser lights, their system can robustly
detect UAVs and safely guide their landing within a range
of 800 meters. Although those systems [31]–[33] achieve
satisfactory performance on cooperative targets, they cannot

be applied to non-cooperative UAV surveillance. Moreover,
those system are designed mainly for fixed-wing UAV recy-
cling using long-focus lenses; due to the small field of view,
they cannot be used for large-area UAV surveillance and
recycling tasks directly.

For the UAV surveillance and recycling system, wide-area
monitoring capacity and high-precision localization capacity
are the two most important aspects. To solve these key tech-
nical problems, this paper propose a novel panoramic UAV
surveillance and autonomous recycling system based on a
fisheye camera array; the architecture of the system is shown
in Fig. 1. The overall structure and algorithm flow of the pro-
posed system is shown in Fig. 2, whichmainly consists of two
main parts. One is the offline part (Section II), including the
structure-free fisheye camera array imaging module and the
camera array self-calibration module. Another is the online
part (Section III), including the camera array collaborative
multi-UAV detection, 3D localization, and tracking and UAV
autonomous recyclingmodule. The contributions of this work
are as follows:

FIGURE 1. Architecture of the panoramic UAV surveillance and
autonomous recycling system based on structure-free fisheye camera
array.

• We construct a novel real-time panoramic UAV surveil-
lance and autonomous recycling system based on a
structure-free fisheye camera array for the first time,
to the best of our knowledge. The fisheye camera array
ensures a large monitoring FOV, and the unstructured
camera array architecture is convenient for rapid deploy-
ment and flexible configuration.

• To address the large-scale unstructured camera array fast
calibration problem, we design a robust dynamic near-
infrared laser-source-based fast self-calibration algo-
rithm. In this algorithm, an airborne laser source is used
as a collaboration marker. First, many light correspon-
dence points between cameras are generated by UAV
flight, and then the camera pose is defined by these
correspondence points. Extensive experiments prove its
effectiveness and high efficiency for different camera
array structures, particularly in environments with a
weak texture or solid color background.
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• We present an intelligent synergetic UAV detection,
3D localization, tracking and autonomous recycling
algorithm based on a fisheye camera array. This
algorithm can be used effectively for low-speed and low-
strength UAVs, particularly in low-altitude and GPS-
denied environments. Thewhole algorithm uses the ROS
platform for parallel processing, which can run on a
laptop and on an embedded computing platform in real
time.

• We conduct extensive real experiments in complex
and challenging scenarios using four different types of
UAVs with discrepant appearance and size. Our algo-
rithm exhibits strong performance under many chal-
lenging conditions, including the large-scale changes,
the interleaving of UAVs and even low-speed flights,
thus demonstrating the effectiveness and robustness of
the proposed system.

This remainder of this paper is organized as follows.
The structure-free fisheye camera array imaging system is
presented in Section II.A, and the dynamic laser source
based camera array self-calibration method is described in
Section II.B. Section III.A-C describes the detailed algorithm
of the proposed system. Section IV verifies the proposed
system through several experiments. Finally, the conclusions
are given in Section V.

II. PANORAMIC CAMERA ARRAY IMAGING SYSTEM AND
SELF-CALIBRATION METHOD
This paper focuses on a panoramic UAV surveillance and
recycling mission based on a structure-free fisheye cam-
era array. This section mainly introduces our ground-based
unstructured fisheye camera array imaging system and the
dynamic laser-source-based self-calibration method.

A. STRUCTURE-FREE FISHEYE CAMERA ARRAY
IMAGING SYSTEM
1) FISHEYE OPTICAL IMAGING MODULE
To cover the larger monitoring area, we construct a novel
panoramic UAV surveillance and autonomous recycling sys-
tem based on a structure-free fisheye camera array. The
system consists mainly of several fisheye cameras, which
are fixed on the pan-tilt units. These units are mounted on
tripods or the vehicle platform, and the entire device can
be rotated, allowing quick adjustment of the camera angle.
We select two kinds of cameras in the experiment, which
are shown in Table 1. The first imaging module combines
a PointGrey GS3-U3-41C6NIR-C near infrared camera and
Kowa LM4NCL fisheye lens. The camera has a powerful
frame rate acquisition capability of 1024 × 1024 pixels at
90 fps with a large FOV of 150◦. The second imaging module
is the integrated USB module camera, of which focal length
is 3.8 mm with a wide FOV of up to 170◦. The cameras use
the USB3.0 data interface to satisfy the requirements of high-
speed image synchronization acquisition, which captures the
images at 30 fps with a resolution of 1280× 720 pixels. The
detailed camera and lens parameters are shown in Table 1.

2) STRUCTURE-FREE CAMERA ARRAY ARCHITECTURE
We design diversified camera array structures ranging from
two to four cameras with random positions, which is shown
in the lower left corner of Fig. 2. Each camera is coupled
to the entire camera array network as an independent node,
and the images of all cameras are transmitted to the ground
processor by data synchronization. The camera array ensures
a large FOV and the stability and robustness of the system,
and the free structure is convenient for rapid deployment and
configuration flexibility.

FIGURE 2. Overall structure and algorithm flow of proposed panoramic UAV surveillance and recycling system. This system contains two main parts:
one is the offline part (Section II), including the structure-free fisheye camera array imaging module (Section II.A) and the camera array self-calibration
module (Section II.B). The other is the online part (Section III), including camera array collaborative multi-UAV detection (Section III.A), 3D localization
and tracking (Section III.B) and UAV autonomous recycling (Section III.C).
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TABLE 1. Camera and fisheye lens parameters.

B. DYNAMIC LASER-SOURCE-BASED SELF-CALIBRATION
METHOD
Camera array calibration methods have been widely studied,
including visible-light and IR cameras. For example, Ellmau-
thaler et al. [34] propose a novel iterative calibration approach
for thermal infrared cameras using a calibration device con-
sisting of 81 light bulbs, arranged in a 9×9matrix. These pre-
vious works are mostly based on calibration plates, designed
markers or the structural information in the scene, which are
aimed at small-scale camera array calibration. Considering
that the proposed panoramic structure-free fisheye camera
array imaging system focuses mainly on a wide airspace, it is
challenging to place any available markers in the airspace.
Therefore, the conventional methods are not valid for our
proposed camera array imaging system.

In this paper, we propose a robust dynamic laser-source-
based camera array fast self-calibration algorithm, which
effectively solves the large-scale unstructured camera array
calibration problem. The dynamic laser source is generated
by the UAV flying in the air with a laser lamp. In this
method, on the one hand, the near-infrared laser lamp has
favorable illumination characteristics, large brightness, sat-
isfactory parallelism, small divergence and a more concen-
trated imaging spot, which can effectively image over a long
distance and wide angular range. On the other hand, a UAV
with a laser lamp can generate dynamic laser sources in
large airspace through free flight, which is suitable for large-
scale monitoring of camera arrays. Moreover, this method
is simple to use and can be quickly re-calibrated when the
structure of the camera array changes. This calibration pro-
cess is divided into three parts, including the fisheye lens
double distortion correction, extraction of laser lamp from the
image and extrinsic parameter calibration. These three parts
are described in detail.

1) FISHEYE LENS AND DOUBLE DISTORTION CORRECTION
The fisheye lens is an ultra-wide lens that can provide a wide
field of view both horizontally and vertically; the imaging
model is shown in Fig. 3. The image captured by the lens is
highly distorted. Themost widely used lens is the equiangular
fisheye lens, which features a constant angular resolution.
These parameters are characterized by the equality

r = f θ (1)

where f is the focal length of the lens, θ is the incoming
ray angle and r is the projection of the ray on the image
plane. This relationship is a theoretical one. In reality, there is
deviation from this equality due to imperfections in the lens
production and assembly.

FIGURE 3. Fisheye camera model. The P(x, y, z) is imaged at p(u, v ) by
the fisheye camera, and p′(u′, v ′) and p′′(u′′, v ′′) are the first and second
correction results, respectively.

To accurately calibrate the intrinsic parameters of the fish-
eye camera and remove the distortion, the double distortion
correction process is carried out. For the first calibration, we
use the fisheye camera model, which derives a projection
function that can accommodate any type of ultra-wide lens.
Briefly,

θd = θ (1+ k1θ2 + k2θ4 + k3θ6 + k4θ8) (2)

We can easily obtain the intrinsic parametersKi and distortion
coefficient Di(k1, k2, k3, k4)(i = 1, 2, 3...) of each camera.
The first correction result

p′(u′, v′) = K · θd

[
cosϕ
sinϕ

]
(3)

where p′(u′, v′) are the first corrected image coordinates, θd is
defined in (2), ϕ is the angle between the radial direction and
the x-axis, and K represents the camera intrinsic parameters.
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FIGURE 4. Distortion correction of the fisheye camera. (a) Original
distorted image. (b) First undistorted result. (c) Second undistorted result.
(d) Corner reprojection result. (e) First and second reprojection pixel error.

As shown in Fig. 4(b), there are still some local residuals,
so we carry out the second fine calibration. In the second
calibration, we calibrate the images after the first correction
using a pinhole camera model. p′′(u′′, v′′) can be defined as{

u′′ = u′ + (u′ − cx) · k · r2

v′′ = v′ + (v′ − cy) · k · r2
(4)

where p′′(u′′, v′′) defines the second correction image coor-
dinate, k is the radial distortion coefficient by the second
calibration, (cx , cy) is the optical center, and r is the distance
to the optical center. The original image and double correction
results are shown in Fig. 4; the final calibration accuracy is
better than 0.015 pixel.

2) EXTRACTION OF LASER LAMP FROM IMAGE
After obtaining the intrinsic parameters and distortion coef-
ficients of the fisheye lens, we need to calibrate the camera
array with extrinsic parameters. This paper proposes a novel
camera array self-calibration method based on a near-infrared
laser lamp mounted on a UAV. In this method, the matching
point pairs are obtained by extracting the laser lamp from
the image to determine its position, and then the extrinsic
parameters are calculated. To accurately extract the laser lamp
on the image, we first eliminate the interference of other light
sources in the scene by adjusting the exposure settings of the
camera. The imaging result of the near-infrared laser lamp
is shown in Fig. 5. Fig. 5(a) shows the imaging result under
auto-exposure settings, where the red solid box represents the
laser lamp and some interfering light sources are shown by
the yellow dashed circles. Fig. 5(b) shows the imaging result
under manual exposure settings; the interfering light sources
are well filtered out.

The extraction of the light point is crucial, and its accu-
racy directly affects the accuracy of the calibration param-
eters. The imaging result of the near-infrared lamp is shown

FIGURE 5. Imaging result of the near-infrared laser lamp under the
near-infrared camera. (a) Imaging result under the auto-exposure
settings; the red solid box represents the laser lamp, and some
interfering light source are shown by the yellow dashed circles.
(b) Imaging result under the manual exposure settings; the interfering
light sources are well filtered out.

FIGURE 6. Energy distribution of the light point and the extraction
method of the light point center. (a) Imaging result of the near-infrared
laser lamp. (b) Light point energy distribution. (c) Different energy
threshold planes. (d) Multi-layer ellipse fitting results and the final center
of the light point.

in Fig. 6(a), which is more concentrated and more completely
represented. The gray energy distribution of the light point
in 3D is similar to a cone shape (shown in Fig. 6(b)) whose
cross section is an approximate ellipse. Considering the char-
acteristics of the laser point and the real-time requirements of
the algorithm, we do not use surface fitting methods because
of their complex computations, instead using a multi-layer
ellipse fitting method to locate the light point center accu-
rately. The idea of this method is to use a set of threshold
planes to intercept the gray energy distribution of the light
point, to then fit the contour points of each level to obtain
the ellipse center, and finally to calculate the mean value to
obtain the final light point center. The complete extraction
process consists of several steps. First, we segment the light
point regions by pixel level on the original image using a gray-
scale threshold. Second, we choose a set of threshold planes
Li(i = 1, 2, · · ·, n) to intercept the gray energy distribution
of the light point shown in Fig. 6(c). A group of contour
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points Pj(xj, yj), j = 1, 2, · · ·,m, is satisfied by the elliptic
function:

f (xi, yi) = ax2i + bxiyi + cy
2
i + dxi + eyi + 1 (5)

and the elliptic parameters(a, b, c, d, e) are obtained by the
least squares method. The ellipses fitted by different thresh-
old planes are Ei(i = 1, 2, · · ·, n) as shown in Fig. 6(d). Third,
we calculate the center E(xe, ye) of each ellipse layer by the
elliptic equation

xe =
be− 2cd
4ac− b2

, ye =
bd − 2ae
4ac− b2

(6)

and take its mean as the final center of the light point. In the
experiment, we take five different energy planes (n = 5) for
ellipse fitting.

3) CAMERA ARRAY EXTRINSIC PARAMETER
SELF-CALIBRATION
The self-calibration process does not depend on any device
and information, using only a near-infrared laser lamp
mounted on a UAV. The detailed algorithm flow is shown
in Algorithm 1, which includes several steps. First, we can
obtain the center position of the light points in each camera
on the basis of the extraction of the light point, and then
we correct the image coordinates of the light points using
the distortion parameters synchronously, which ensures that
the light points between cameras are a pair of corresponding
points. Second, we obtain a number of pairs of light points
between cameras through the UAV flight, which is shown
in Fig. 7. T1,T2, ...,Tn (Fig. 7) represent the different imag-
ing results of the laser lamp at different times, and the lower
half of the Fig. 7 shows the matching results, where the red
points are the central positions of light points and the blue

FIGURE 7. Light point pair generation process and the matching results
between cameras 1 and camera 2. T 1, T 2, . . . , Tn represent the different
imaging results of the laser lamp at different times. The red points are the
central position of light points, and the blue lines are the matching
relationship among cameras.

Algorithm 1 Camera Array Self-calibration Algorithm.
Require: n cameras of the structure-free fisheye camera

array; We define camera 1 as the reference camera;
Offline measurements of the camera baseline between
the camera i(2 ≤ i ≤ n) and the reference camera, Di;
Number of corresponding light points between cameras,
Npoints;

Ensure: Extrinsic parameters of all cameras, Tn[R|t];
1: Synchronized original image of each camera at time tj,
I ji ;

2: while (j ≤ Npoints) do
3: while (i ≤ n) do
4: Extract the image coordinate of the light point

center in camera i;
5: Correct the image coordinate of the light point

center by the double distortion correction, x ji ;
6: end while
7: end while
8: Obtain the 2D-2D corresponding point sets between cam-

era i(2 ≤ i ≤ n) and the reference camera;
9: Estimate the essential matrix Ei between camera i(2 ≤
i ≤ n) and the reference camera by 2D-2D corresponding
points using the RANSAC method;

10: Calculate the relative transform Ti of camera i(2 ≤ i ≤ n)
from Ei by SVD, and recover the scale by the Di;

11: Triangulate the Ninner 3D coordinates of the light points
Xvision;

12: Optimizing the reprojection error between all cameras by
bundle adjustment using the LM algorithm, as described
in formula 7;

13: return Tn;

lines are the matching relationship between cameras. Finally,
we estimate the extrinsic parameters between cameras by
2D-2D corresponding point sets using the RANSACmethod,
and the 3D coordinates of the light points are triangulated.
We further optimize the final extrinsic parameters by mini-
mizing the following function using bundle adjustment:

min
n∑
i=1

Ninner∑
j=1

d(x ji ,PiX
j
vision)

2 (7)

where the projection matrix of each camera is calculated by
Pi = Ki ·Ti and where Ki and Ti are the intrinsic and extrinsic
parameters of each camera, respectively.

III. PANORAMIC UAV SURVEILLANCE AND
AUTONOMOUS RECYCLING SYSTEM
This section elaborates the detailed algorithm of our proposed
system for UAV surveillance and autonomous recycling
based on a structure-free fisheye camera array. The algorithm
mainly consists of several modules. First, we realize the
camera array collaborative multi-UAV detection and obtain
the UAV correspondence between cameras using epipolar
geometry constraints. Next, we measure the 3D coordinates
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of UAVs using the projectionmatrices of cameras and achieve
the data association by the historical tracking data. Finally,
we convert the 3D measurement data of the UAV to control
commands and conduct feedback autonomous recycling con-
trol using the wireless data link.

A. CAMERA ARRAY COLLABORATIVE MULTI-UAV
DETECTION
This sectionmainly introduces multi-UAV detection based on
fisheye camera array. As we mentioned above, the fisheye
camera array are installed on the tripod with a static and
upward camera view. To obtain suitable foreground targets
(UAV), we use the ViBe [35] foreground extraction method
in this paper, which performs robustly and produces com-
plete segmentation results as shown in Fig. 8. The algorithm
can extract multiple UAVs completely under different sizes,
particularly if those are weak and small targets. We cluster
the foreground areas and regard the clustering centers as the
image coordinate of the candidate targets in the image. The
pixel distance between clustering centers is defined as

fpd (pi, pj) =
√
(pxi − p

x
j )

2 + (pyi − p
y
j )
2 (8)

where pi and pj are image pixels and where (pxi , p
y
i ) and

(pxj , p
y
j ) are the image coordinates of pi and pj respectively.

FIGURE 8. Camera array collaborative multi-UAV detection results based
on the Vibe [35] foreground segmentation algorithm and epipolar
constrain.

On the basis of obtaining the candidate targets in each
camera, to determine the corresponding relationship of the
candidate targets between the cameras, epipolar geometry
constraints between the cameras are used. Epipolar geometry
refers to the inherent projective geometry between the camera
views; it depends only on the camera intrinsic parameters
and the relative pose of the cameras. Thus, epipolar geometry
constraints can be used to obtain data association in candidate
targets between the cameras. In this way, the corresponding
relationships of the candidate targets are confirmed, and por-
tions of false targets are effectively removed.

We use two cameras as an example. Define I1 =

{x11 , x
1
2 , ..., x

1
m} and I2 = {x21 , x

2
2 , . . . , x

2
n } as the detection

results of the first and second camera, respectively. The goal
of data association is to find the corresponding relationship
between x1i and x

2
j . The distance measurement is obtained by

the symmetric transfer error between x1i (i = 1, 2, ...,m) and
x2j (j = 1, 2, ..., n), which can be defined as

d(x1i , x
2
j ) = d(x1i ,F

T x2j )+ d(x
2
j ,Fx

1
i ) (9)

where F is the fundamental matrix between the two cameras.
The matching matrix between two images is

D =


d(x11 , x

2
1 ) d(x

1
1 , x

2
2 ) · · · d(x

1
1 , x

2
n )

d(x12 , x
2
1 ) d(x

1
2 , x

2
2 ) · · · d(x

1
2 , x

2
n )

...
...

. . .
...

d(x1m, x
2
1 ) d(x

1
m, x

2
2 ) · · · d(x

1
m, x

2
n )

 (10)

The global optimal matching result is obtained by solving the
matching matrix D using the Hungarian algorithm, which is
taken as the final detection results.

B. 3D LOCALIZATION AND TRACKING
In Section II.B, we obtain the fisheye camera parameters,
including the intrinsic parameters, distortion coefficient and
extrinsic parameters of each camera, which are used to correct
the image pixels and calculate the camera projection matrix.
In this section, we explain the principles of the 3D localiza-
tion and tracking methods.

1) 3D LOCALIZATION
The UAV 3D localization method based on a fisheye camera
array is shown in Fig. 9. Let the number of the cameras
and the UAV of the proposed system be N (N ≥ 2) and M ,
respectively. The process of the UAV3D localization includes
several steps. First, we correct the image coordinates of the
UAV in all cameras. Second, we calculate the initial value
of the 3D coordinates of the UAV by the projection matri-
ces and the corrected 2D corresponding image coordinates
of the UAV. Finally, we conduct further optimization using

FIGURE 9. Architecture of the proposed fisheye camera array imaging
system and 3D localization method.
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all cameras by bundle adjustment. For clear explanation,
we introduce the detailed 3D localization principle with two
camera models (N = 2) and a UAV (M = 1) as an example,
with a designated camera 1 and camera 2; the computing
process for multiple targets is the same.We define the camera
coordinate system of camera 1 as the world coordinate sys-
tem, and the projection matrices of the two cameras are P1
and P2. The world coordinates of the UAV is (X ,Y ,Z ), and
its homogeneous form are defined as Xuav = (X ,Y ,Z , 1); the
original image coordinates of the UAV in this two cameras are
(u′1, v

′

1) and (u
′

2, v
′

2), and the corrected values are (u1, v1) and
(u2, v2) with homogeneous form defined as x1 = (u1, v1, 1)
and x1 = (u1, v1, 1), respectively. Due to the measurement
error, the projection function and epipolar geometry con-
straint cannot be fully satisfied. To obtain the precise initial
values of x1 and x2, the projective invariant binocular location
method is used to minimize the reprojection error by finding
the minimum epipolar geometry constraint and reprojection
error.

After obtaining the initial value of x1 and x2, we assume
values for x1 ∼= P1Xuav and x2 ∼= P2Xuav with the cor-
responding homogeneous relations x1 × P1Xuav = 0 and
x2 × P2Xuav = 0. These are linear equations with respect
to Xuav, which can be written as AXuav = 0. Each set of
points corresponds to the three equations, of which only two
are linearly independent; therefore, each point gives only
two equations correspondingly with respect to Xuav, and the
matrix A can be described as

A =



u1p3T1 − p
1T
1

v1p3T1 − p
2T
1

u2p3T2 − p
1T
2

v2p3T2 − p
2T
2

 (11)

where piT1 and piT2 are the i-th row of matrix P1 and P2,
respectively.
Xuav is the homogeneous coordinates, of which only three

degrees of freedom are scale independent. The linear equation
set AXuav = 0 contains four equations; thus, this system
is over-determined. To find the approximate solution of the
equation AXuav = 0, we can transform the problem into the
following optimization problem:

min
X
||AXuav|| (12)

subject to ‖ Xuav ‖= 1. Then, we calculate the initial value
of Xuav using the DLT algorithm.

Primarily, we obtain the initial value of Xuav and then
optimize the value of Xuav using the method of minimizing
the reprojection error between multiple cameras by bundle
adjustment. We obtain the final Xuav by minimizing the fol-
lowing function using the LM iterative optimization algo-
rithm.

min
n∑
i=1

vid(xi,P(Xuav, Ii))2 (13)

where Ii is the i camera frame. If there are imaging points
on the Ii image, we set vi = 1; otherwise, we set vi =
0. P(Xuav, Ii) is the projection on the i camera frame, and
d(xi,P(Xuav, Ii))2 is the reprojection errors computed using
the corresponding projection matrices.

2) MULTIPLE UAV TRACKING
Suppose that T t = {T t1,T

t
2, ...,T

t
p} is the UAV tracking

result at time t and Ot+1 = {X t+11 ,X t+12 , ...,X t+1q } is the
3D localization result at time t + 1. To track the targets on
consecutive frames between times t and t + 1, we measure
the similarity of targets by associating the history tracking
result T ti (i = 1, 2, ..., p) and the current 3D localization result
X t+1j (j = 1, 2, ..., q). First, the Euclidean distance is used
as the distance measurement in the 3D space between the
tracking result T ti and current localization result X

t+1
j , which

defines d(T ti ,X
t+1
j ). Furthermore, the matching matrix Dt+1t

between the historical tracking results and current observa-
tions is computed as follows:

Dt+1t =


d(T t1,X

t+1
1 ) d(T t1,X

t+1
2 ) · · · d(T t1,X

t+1
q )

d(T t2,X
t+1
1 ) d(T t2,X

t+1
2 ) · · · d(T t2,X

t+1
q )

...
...

. . .
...

d(T tp,X
t+1
1 ) d(T tp,X

t+1
2 ) · · · d(T tp,X

t+1
q )

 (14)

In the last expression, the Hungarian algorithm is used to
obtain the UAV tracking results from Dt+1t . The Hungarian
algorithm, a maximum matching algorithm based on the
graph model, is widely used in data association problems.

The detailed multiple UAV detection, 3D localization and
tracking algorithm flow is shown in Algorithm 2.

C. UAV AUTONOMOUS RECYCLING METHOD
In this section, we mainly discuss UAV recycling meth-
ods, including the transformation between the world frame
(Xw,Yw,Zw) and the UAV body frame (Xb,Yb,Zb) and the
UAV control strategy. Note that the whole control is based
on the ground processing computer unit by sending control
signals to the UAV to achieve the recycling task. The Fig. 10
shows the whole recycling process.

It is necessary to obtain the direction of motion of the UAV
in the process of controlling a UAV landing, while our local-
ization system can obtain only the real-time location. To solve
the UAV direction problem, we determine the transformation
between the world frame and the UAV body frame by refer-
ring to the geomagnetic north direction. As shown in Fig. 10,
we set the world frame as (O − Xw,Yw,Zw) and the UAV
body frame as (O−Xb,Yb,Zb). First, we record the northward
angle θYwNorth of the Y -axis for the world coordinate system.
Second, we obtain the northward angle θXbNorth of the X -axis
for the UAV body coordinate system by the magnetometer of
the UAV itself. Third, to simplify the recycling, we control
the UAV to rotate θYaw so that the X -axis of the UAV body
coordinate system is parallel to the negative direction of the Y
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Algorithm 2 Multiple UAV Detection, 3D Localization and
Tracking Algorithm.
Require: Synchronized camera image data and the projec-

tion matrices of all cameras
Ensure: Real-time 3D coordinates of the UAV and its con-

secutive tracking results
1: Extract the regions of the UAV from the background of

each camera using the ViBe algorithm;
2: Cluster the regions in each camera, and regard the clus-

tering centers as the candidate targets;
3: Associate the targets between cameras using the epipo-

lar geometry constraint, and eliminate the false targets
simultaneously, as described in formula 10;

4: Correct the image coordinates of the targets in each
camera by the fisheye distortion model;

5: Calculate the initial 3D coordinates of the UAV by the
DLT algorithm, as described in formula 11 and formula
12;

6: Optimize the 3D coordinates of the UAV by BA using
the LM iterative optimization algorithm, as described in
formula 13;

7: Track the multiple UAVs in the current frame using the
Hungarian algorithm, as described in formula 14;

8: return 3D coordinates of the UAV and tracking results.

FIGURE 10. UAV recycling method. The whole recycling process includes
the transformation from the world frame (Xw , Yw , Zw ) to the UAV body
frame (Xb, Yb, Zb) and a two-stage UAV control strategy. In the system,
we set the reference camera frame as the world frame.

axis of the world coordinate system, where θYaw is calculated:

θYaw = 180◦ − θXbNorth − θ
Xw
North (15)

and the new body frame is (O− X ′b,Y
′
b,Z
′
b) after rotation.

For the control strategy, we adopt a two-stage oper-
ation based on proportional velocity control, and we

set the landing point as L(xw, yw, zw), the initial UAV
position as Iuav(xw, yw, zw) and current UAV position as
Cuav(xw, yw, zw),. In the first stage (T1 ∼ T2), keeping the
altitude unchanged, the UAV is controlled to reach the upper
part of the landing point. The velocity vuav is calculated by
the proportion of the position:

vuav = (1− D2/D1) ∗ V (16)

where D1 and D2 are

D1 =

√
(Cuav(xw)− Iuav(xw))2 ∗ (Cuav(yw)− Iuav(yw))2

D2 =

√
(Iuav(xw)− L(xw))2 ∗ (Iuav(yw)− L(yw))2 (17)

and V is the artificial setting value determined by the UAV
type and scene size. We use the calculated vuav to orthog-
onally decompose the velocity into X and Y directions of
the UAV body frame, which are vxuav and v

y
uav, respectively.

In the second stage (T2 ∼ T3), a uniform speed control model
is used to control the UAV to descend smoothly. When the
UAV reaches the boundary of the camera monitoring blind
area, we start the landing command directly to complete the
recycling task.

IV. EXPERIMENTAL RESULTS
To evaluate the performance of the proposed panoramic
UAV surveillance and recycling system, we conducted a
series of field experiments. There are three main parts of
the experiments, including the camera array self-calibration
(Section IV.A); multi-UAV detection, 3D localization and
tracking (Section IV.B); and UAV autonomous recycling
(Section IV.C). There are four different experimental scenar-
ios, including indoor and outdoor scenes. Moreover, the UAV
used in the test has a variety of sizes and appearances. For
example, DJI Matrix 100 is used in the self-calibration exper-
iment. In multi-UAV detection, 3D localization and tracking
experiment, four kinds of UAVs, such as the DJI Matrix
100 andDJI Phantom 2, are used. UAV autonomous recycling
has security risks, so we choose the small UAVParrot Beobop
for the recycling experiment. In addition, to test the time
performance of the system, we use two different comput-
ing platforms laptop OMEN (HP Laptop 15-dc0124TX) and
NVIDIA Jetson TX2 to implement our system; the computa-
tion analysis of each module is shown in Section IV.D.

A. CAMERA ARRAY SELF-CALIBRATION
1) DYNAMIC LASER SOURCE FOR SELF-CALIBRATION
In our system, we propose a dynamic laser-source-based
self-calibration method to obtain the extrinsic parameters
of the camera array. The self-calibration algorithm details
are explained in the Section II.B. To prove the validity and
accuracy of this self-calibration method, we choose the DJI
Matrix 100 to carry the laser lamp as a dynamic light source,
as shown in Fig. 11. Note that the manifold and wireless data-
link module carried by UAVs are used to acquire and transmit
GPS information. These GPS data do not participate in the
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FIGURE 11. Complete UAV configuration for fisheye camera array
self-calibration, including DJI Matrix 100, the near-infrared laser lamp,
the on-board computer DJI Manifold and the wireless data-link module.

self-calibration process but provides only the true value for
the experiment, which is used to compare with the system
measurement data.

In the experiment, all the flight experiment data collection
is performed via manual flight or remote control with the aid
of our GPS waypoint navigation system. To determine the
effective range of the dynamic light source in the calibration
process, we test the imaging effect of the near-infrared laser
lamp at different distances and angles. Because there may
be other light sources in the scene, we use filters with the
same band, while reducing the exposure time and brightness
of the cameras to avoid interference from other light sources

in the scene. In testing, we find that the fisheye camera
can effectively extract the light spots within 200 meters and
150 degrees FOV, as shown in Fig. 12. Therefore, to ensure
the robustness of light spots detection, the UAV flying alti-
tudes are less than 50 meters in the whole calibration process.

2) CAMERA ARRAY SELF-CALIBRATION RESULTS
We conducted a large number of real experiments to verify the
proposed self-calibration method for the different structures
of the fisheye camera array. In the experiment, most of the
misclassified and outlier points are removed by the epipolar
constraint, and to obtain a better calibration result, the UAV
flies at different heights and distances to cover the whole
camera FOV as much as possible. Fig. 13(a) shows the layout
of the ground camera array and the matching result of the
laser light points between cameras; the red points represent
the imaging position of the laser lights, and the green lines are
the matching result among cameras. The camera array self-
calibration result of relative poses between two independent
cameras is shown in Fig. 13(b). The calibration error analysis
of 3D coordinates of light points between vision and GPS
data is shown in Fig. 13(c), which reveals that the error is
within 1 meter. The whole calibration accuracy meets our
localization requirements.

B. MULTIPLE-UAV DETECTION, 3D LOCALIZATION
AND TRACKING
This section mainly studies the performance of the multi-
UAV detection, 3D localization and tracking algorithm in
our system. To verify the stability and validity of these

FIGURE 12. Laser light imaging. (a) and (b) compare the imaging at different distances and different angles, respectively.

FIGURE 13. Camera array self-calibration result. (a) Layout of the ground camera array. (b) Camera array self-calibration result. (c) Calibration accuracy
comparison of vision and GPS data.
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TABLE 2. Four types of multiple-rotor aircraft.

FIGURE 14. Experimental UAVs with different appearances and sizes,
including DJI Phantom 2, DJI Phantom 3, DJI Matrix 100 and
eight-rotor UAV.

algorithms, we selected a number of UAVs with significant
differences in appearance and size as targets and carried out
experiments with a variety of camera array structures and in
five different environments (such as a sunny or cloudy day
and an indoor environment).

The experimental UAVs and their detailed parameter con-
figurations are shown in Fig. 14 and Table 2, respectively.
There are four different UAVs. One is an eight-rotor drone,
the wheelbase of which is approximately 1133 mm with
a 5.30 kg weight with two standard batteries. The max-
imum speed is 65 km/h, achieved with the DUAL SKY
XM5015TE-5 motor. There are also three quad-rotor vehi-
cles: a DJI Matrix 100, the wheelbase of which is approx-
imately 650 mm with a 2.30 kg weight with one standard

battery, a DJI Phantom professional 3 with a 350 mm wheel-
base and 1.28 kg weight, and a DJI Phantom 2 with a 350 mm
wheelbase and 1.00 kg weight.

1) MULTIPLE UAV DETECTION
The motor propeller movement is greater than the movement
of the body when the vehicles are undergoing hover or low-
speed flight in the experiments. The original ViBe algo-
rithm causes over-segmentation and produces too many
small pieces for an independent target. To solve the over-
segmentation problem, we perform morphological process-
ing and carry out further regional merging, which produces
satisfactory detection performance. Selected detection results
of UAVs are shown in Fig. 15. The first three columns
are photographed using the USB camera and contains three
scenes: a sunny, cloudy and rainy day. The last two columns
are photographed by the PointGrey camera and include
snowy and indoor scenes. The experimental results show that
the target can be effectively detected, particularly for small,
low-speed and scale-changing targets under some challeng-
ing conditions, such as Frame 1_#1897 and 2_#2214. Incor-
rect detection events may also occur. For example, in Frame
1_#305 and 2_#303 in Fig. 15, there are some false detection
results in the lower left corner of the image. To improve detec-
tion performance, we mainly remove false targets from three
aspects. In the process of multi-camera collaborative detec-
tion based on the epipolar constraint, the false targets can be

FIGURE 15. Detection results of the multiple UAVs. The first three columns are photographed using a USB camera, which contains three scenes, including
a sunny, cloudy and rainy day. The last two columns are photographed by the PointGrey camera and show a snowy day and an indoor scene.
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removed by the symmetric transfer error. In the process of the
camera array vision 3D localization, the false targets can be
removed by the space motion constraints of the UAVs. In the
process of target tracking, the false targets can be removed by
analyzing the motion directions and velocities of the candi-
date targets. In this way, the targets can be detected correctly.
In addition, intermittently detected targets can also be identi-
fied by the following tracking algorithm. As shown in Fig. 15,
the results of the detection bounding boxes are complete and
accurate in various challenging scenarios, which effectively
illustrates the robustness of the proposed method.

2) 3D LOCALIZATION AND TRACKING
On the basis of accurate UAV detection and correlation
between cameras, we further accomplish UAV synergetic 3D
localization and tracking based on a camera array. In the
experiment, we take a UAV (DJI Matrix 100) as an example
to analyze the accuracy of 3D localization results. We know

that the aircraft supports secondary development and can
transmit real-time GPS data to the ground computer through
the wireless data link, which helps us use the GPS data as
ground truth to make a comparison with the calculated 3D
localization. When making comparisons, the integration of
coordinate systems between the GPS data and vision local-
ization data is crucial, which includes several steps. First,
we set the take-off point of the UAV as the origin of the GPS
coordinate system and record the GPS data as G0. Second,
we calculate the position of UAV in GPS coordinates at each
time by Pjgps = F(Gj,G0) simultaneously, where Gj is the
GPS data of the UAV and the function F is based mainly on
the Earth’s radius. Then, we obtain all the position of the UAV
flight trajectory. Finally, we estimate the transformation by
the 3D points of the vision and GPS data and integrate them
by the transformation.

Fig. 16(a) shows a real experimental environment of a
snowy day; we synchronously save the visual 3D localization

FIGURE 16. UAV 3D vision localization results and the accuracy analysis. (a) Real experimental environment. (b) Comparison of the vision localization
data and GPS data of the UAV trajectory. (c) Comparison of vision localization results in the X, Y and Z directions with GPS data. (d) Vision localization
errors in the X, Y and Z directions.
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FIGURE 17. Tracking results of multiple UAVs, showing the experimental results of different scenarios using different sensors. The first two rows
correspond to the USB fisheye camera and several UAVs, including several complete trajectories. The last two rows correspond to the PointGrey camera
and include the outdoor and indoor experiment.

data and the real-time GPS data in the experiments. Fig. 16(b)
shows the UAV fight 3D trajectory; clearly, the trajectory
results of the visual localization coincide well with the GPS
data. In addition, the accuracy comparison and error analy-
sis on the X-, Y- and Z-axes are shown in Fig. 16(c) and
Fig. 16(d), respectively. The maximum errors in the X-,
Y- and Z-axes are less than 3 meters, and the vision local-
ization errors gradually decrease as the UAV approaches.
For the structure of the fisheye lens, the experimental results
indicate that the 3D localization accuracy near the center
of the camera is clearly higher than that of the surrounding
area and that the localization error decreases gradually from
far to near for the constraints of the baseline between the
cameras. The multiple-UAV tracking experimental results are
shown in Fig. 17, which includes various scenarios using
different UAVs. Some false targets are effectively excluded
by the tracking module. The experimental results show that
our method can effectively track multiple UAVs in various
scenarios, even in the challenging case of targets crossing.

C. BEOBOP AUTONOMOUS RECYCLING EXPERIMENTS
In this section, we conduct a real indoor UAV autonomous
recycling experiment to further verify the performance of the
proposed system. The indoor experimental environment is

a 10.0 m × 8.0 m × 3.2 m space, surrounded by a safety
net, as shown in Fig. 18(a). The system settings are shown
in Fig. 18(b), which mainly includes the Parrot Beobop as
the UAV, a ground static vehicle as the recycling platform, a
double fisheye camera array and NNIDIA Jetson TX2 as the
computing platform. The Beobop has the characteristics of
small size and light weight, so its flight safety is quite high.
In addition, it communicates throughWiFi, and themaximum
communication distance is as high as 100 m. The recycling
platform is based a ground static vehicle (height 0.31 m),
which includes a 1.0 m × 1.0 m PVC landing pad. In the
experiment, the algorithm runs with the NVIDIA Jetson TX2,
which sends the control instructions to the UAV throughWiFi
in real time.

In the experiment, we set the initial height of the UAV
to 3.0 m above the ground, and then the autonomous recy-
cling system is implemented. There are two landing stages,
Tstage1 and Tstage2, in the whole recycling process as shown
in Fig. 19(a). The Tstage1 is mainly based on a proportional
velocity control model to fly above the landing point. When
the first stage is completed, the second stage is started, and the
UAV is controlled by a uniform velocity model to land. The
landing trajectory and the flying states at different times are
shown in Fig. 19(a). Fig. 19(b) shows the velocity changes in
the X, Y and Z directions of the UAV. In Tstage1 (before t1),
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FIGURE 18. Indoor UAV autonomous recycling experiment used the proposed system. (a) Indoor experimental environment. (b) Complete UAV recycling
experiment settings, including the Parrot Beobop, a double fisheye camera array, NVIDIA Jetson TX2 and static vehicle recycling platform.

FIGURE 19. Results of the UAV recycling experiment built with Parrot Beobop, including (a) the landing trajectory and the flying states at different times.
(b) Velocity changes in the X, Y and Z directions of the UAV.

TABLE 3. Computational analysis of the system with HP OMEN and NVIDIA Jetson TX2.

the velocity of Y direction decreases continuously until it
reaches zero as the UAV approaches, and the height of UAV
is constant, so the velocity in the Z direction is almost zero.

In Tstage2 (after t1), the velocity is only in the Z direction
and is maintained at approximately 0.1 m/s. Since the initial
UAV is positioned directly in front of the recycling platform,
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the velocity in the X direction is always zero. Note that the
recycling system is GPS-denied and cannot obtain the ground
truth for performance comparison.

D. COMPUTATIONAL ANALYSIS OF THE SYSTEM
In this part, we test and analyze the time performance of each
module in our system. The system includes the offline camera
array self-calibration module and online processing module.
In the experiments, the resolution of the processed image is
1024× 1024, and we use a high-performance laptop OMEN
(HP Laptop 15-dc0124TX) and NVIDIA Jetson TX2 to con-
duct experiments. The running time of the system is shown
in Table 3.

For the offline calibration module, the running time is less
than 10 minutes, including the data acquisition process. The
online processingmodule includes synchronous image acqui-
sition, multi-UAV detection, 3D localization and tracking,
and autonomous recycling, which is implemented on the ROS
platform for parallel processing. We measure the runtime of
each ROS node of the system on the laptop and Jetson TX2.
As shown in the table, the UAV detection module is time
consuming, and other modules are very fast. On average,
the system takes approximately 55.35ms and 115.65ms in the
HP OMEN and NVIDIA Jetson TX2, respectively. In prac-
tice, we find that the processing speed is sufficient to achieve
effective UAV surveillance and recycling performance.

V. CONCLUSIONS
This article first constructs a novel real-time panoramic UAV
surveillance and recycling system based on a structure-free
fisheye camera array. Relative to the existing UAV surveil-
lance technologies, the fisheye camera array ensures a large
monitoring FOV, and the free system structure is convenient
for rapid deployment and flexible configuration. In addition,
we design a robust dynamic laser source based camera array
self-calibration algorithm for large-scale arbitrary layout of
a camera array without any other markers, particularly in
environments with a weak texture or solid color background.
Finally, we design an intelligent multi-UAV fast detection,
3D localization, tracking and recycling algorithm, which
effectively addresses the issues of the scale changes and the
interleaving of UAVs during the flight. The system has been
tested in various challenging scenarios, including multiple
UAVswith significant appearance and scale changes and even
poor weather conditions. Extensive experimental results, both
qualitative and quantitative, in addition to the time perfor-
mance, demonstrate the robustness and effectiveness of the
proposed system. Furthermore, we successfully conduct the
recycling and landing experiment with Parrot Beobop, and the
experimental results show that the proposed panoramic UAV
surveillance and recycling system can effectively recycle the
UAV autonomously.

In the future, we plan to continue studying the UAV
autonomous recycling technology on a vehicle platform to
achieve collaborative control and recovery tasks. In addi-
tion, on the basis of the proposed system, combined with

simultaneous localization and mapping (SLAM) technology
based on the UAV platform, we will build a fully autonomous
UAV-UGV cooperative recycling system.
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