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ABSTRACT Recently, the magnetic resonance imaging (MRI) images have limited and unsatisfactory
resolutions due to various constraints such as physical, technological, and economic considerations.
Super-resolution techniques can obtain high-resolution MRI images. The traditional methods obtained the
resolution enhancement of brain MRI by interpolations, affecting the accuracy of the following diagnose
process. The requirement for brain image quality is fast increasing. In this paper, we propose an image super-
resolution method based on overcomplete dictionaries and the inherent similarity of an image to recover the
high-resolution (HR) image from a single low-resolution (LR) image. We use the linear relationship among
images in the measurement domain and frequency domain to classify image blocks into smooth, texture,
and edge feature blocks in the measurement domain. The dictionaries for different blocks are trained using
different categories. Consequently, an LR image block of interest may be reconstructed using the most
appropriate dictionary. In addition, we explore the nonlocal similarity of the image to tentatively search
for similar blocks in the whole image and present a joint reconstruction method based on compressed
sensing (CS) and similarity constraints. The sparsity and self-similarity of the image blocks are taken as
the constraints. The proposed method is summarized in the following steps. First, a dictionary classification
method based on the measurement domain is presented. The image blocks are classified into smooth, texture,
and edge parts by analyzing their features in the measurement domain. Then, the corresponding dictionaries
are trained using the classified image blocks. Equally important, in the reconstruction part, we use the CS
reconstruction method to recover the HR brain MRI image, considering both nonlocal similarity and the
sparsity of an image as the constraints. This method performs better both visually and quantitatively than
some existing methods.

INDEX TERMS Brain MRI, super-resolution, dictionary, sparse representation, compressed sensing,
self-similarity.

I. INTRODUCTION
OVER the past decade, the brain Magnetic Resonance Imag-
ing (MRI) has become one of the most important methods
to diagnose the ailing brains. High-resolution (HR) images
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with sufficient details have found significant applications in
medical imaging. Therefore, the requirement for image qual-
ity is fast increasing. However, due to the limitations of the
physical resolution of the terminal devices or the bandwidth
in the transmission process, it is difficult to obtain the high-
resolution brain MRI images that satisfy the basic require-
ment for applications. Attempts to resolve this dilemma have
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resulted in the development of an emerging research topic
in image signal processing, known as super-resolution (SR)
image reconstruction, which has been extensively studied in
recent years. SR is an inverse problem that tackles the recov-
ery of a high-resolution image from a single image ormultiple
low-resolution images of the same scene based on either
specific a priori knowledge or reasonable assumptions about
the imaging model that degrades the high-resolution image to
the low-resolution ones.

SR image recovery is a terrible ill-posed problem because
there are no sufficient low-resolution images, the blurring
operators are unknown, and the solution from the recov-
ery constraint is not unique. Many regularization methods
have been presented to further improve the inversion of this
underdetermined problem, such as [1]–[3]. However, these
reconstruction-based SR algorithms often lead to poor robust-
ness and unsatisfied performance when the magnification
factor is large. Thus, the reconstructed images may be overly
smooth and absent of critical high-frequency details [4].
The interpolation-based SR approach is another type of
SR method. Takeda et al. [5] presented an interpolation
algorithm based on the controllable kernel regression, which
constructs the direction-controllable interpolation kernel
function through a covariance matrix. Li et al. applied dif-
ferent interpolation strategies for image blocks with various
features. That is, in the bilinear interpolation for smooth
regions and particular edge regions, the local covariance is
used to adjust the interpolation coefficients [6]. Recently,
some structural adaptive interpolationmethods have achieved
good results. Lee and Yeon [7] proposed an edge-oriented
local RBF interpolation algorithm. Romano et al. [8] com-
bined the interpolation with the nonlocal self-similarity and
sparse representation of images and explored a new adap-
tive interpolation method. However, high-resolution images
recovered by these interpolation-based methods are prone to
be overly smooth and have ringing and jagged artifacts.

Another category of SR methods is based on machine
learning techniques, which seeks to obtain the co-occurrence
prior between low-resolution (LR) and high-resolution (HR)
image patches. Freeman et al. first put forward using learning
techniques to improve the image resolution. The authors
used the Markov random field (MRF) to establish the cor-
responding relationship between the HR image block and
the LR image block. The initial value of the HR image was
obtained by interpolation. The lost high-frequency details
of the HR image were recovered by learning and added
with the initial value; then, the HR image was obtained [9].
Sun et al. further improved this approach by applying the
primal sketch priors to improve blurred edges, ridges, and
corners. The SR methods using the convolutional neural
network are presented in [10] and [11], which per-
formed single- and multi-contrast super-resolution recon-
structions simultaneously. Unfortunately, the aforementioned
approaches generally require databases, which contain
millions of HR and LR patch pairs and are therefore
computationally intensive. In addition, there exist untrue

high-frequency details, which are recovered by learning from
external training databases.

The emergence of compressed sensing (CS) offers a
new different perspective to address large underdetermined
problems. CS can reconstruct sparse or compressible sig-
nals using fewer measurements than conventional methods
without prior knowledge about the support of the signals.
CS claims the inaccuracy of the conventional wisdom that the
acquisition and reconstruction must follow Nyquist sampling
theory [13]–[18]. This favorable and promising tool has
proven to be applicable for various fields, including machine
learning [19], [20], wireless communication [21], [22], and
medical imaging [23], [24]. Fortunately, due to its favorable
property, CS can be applied to solve the SR problem. The
application of CS and sparse representation in the field of
SR recovery has captured the interest and attention of an
enormous number of researchers in the past decade. The
pioneer works can be traced to [25]–[29]. Sen and Darabi [25]
proposed a new algorithm to generate a super-resolution
image from a single, low-resolution input without using a
training data set. The CS theory was used to recover the
HR image in magnetic resonance imaging [27]. Then, these
methods were extended in [28], [29]. The authors presented
new approaches to the single-image SR problem based on the
sparse representation. In [30], Rueda et al. proposed a sparse-
based super-resolution method coupling up high and low
frequency information to reconstruct a high-resolution brain
MRI image. Several papers (e.g., [31]–[35]) have studied
related sensing issues. However, these previous work failed
to consider the combination of the sparse representation and
nonlocal self-similarity. Although much effort has been spent
on improving the performance of SR recovery, an efficient
and effective method has not been developed.

The purpose of this paper is to apply CS, the sparse rep-
resentation and inherent similarity of an image to recover an
HR image from a single LR image. It is of great interest and
significance to address the questions in CS for ill-posed prob-
lems such as SR. In this paper, we have extended the previous
work by paying attention to the nonlocal self-similarity of
an LR image. We propose an image SR algorithm based on
compressed sensing and self-similarity constraint. Because
the difference of image blocks is not consideredwhen training
dictionaries, a dictionary classification method based on the
measurement domain is proposed in the dictionary training
part. Specifically, we use the linear relationship between
images in the measurement domain and frequency domain
to classify the image blocks into smooth, texture and edge
feature blocks in the measurement domain. The dictionar-
ies for different blocks are trained by using different cate-
gories. Consequently, an LR image block of interest may be
reconstructed using the most appropriate dictionary. If one
merely learns the prior knowledge from the external image
database, it tends to generate false details of the reconstructed
HR image.

In our proposed method, we use the nonlocal similarity of
the image to tentatively search for similar blocks in the whole
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image and present a joint reconstruction method based on
CS and similarity constraints. The sparsity and self-similarity
of the image blocks are used as the constraints. The pro-
posed method is summarized in the following steps. First,
a dictionary classification method based on the measurement
domain is presented. The image blocks are classified into
smooth, texture and edge parts by analyzing their features
in the measurement domain. Then, the corresponding dictio-
naries are trained using the classified image blocks. Equally
important, in the reconstruction part, we use the CS recon-
struction method to recover the HR image considering both
the nonlocal similarity and sparsity of an image as constraints.
This approach results in visually and quantitatively better
performance than some existing methods.

The remainder of this paper is organized as follows.
In Sec.II, we briefly introduce the correlative theoretical
basis, including CS, followed by the discussion of image
SR using CS. Then, the proposed SRmethod based on CS and
self-similarity is described in detail in Sec. III. The explana-
tion, illustration, and analysis of the experimental results are
demonstrated in Sec. IV. Finally, the summary of this paper
is presented in Sec. V.

II. IMAGE SUPER-RESOLUTION USING CS
A. COMPRESSED SENSING
For completeness, we briefly introduce the fundamental
background of CS. CS can reconstruct sparse or compress-
ible signals using fewer measurements than the traditional
approach uses. The advent of CS has tremendously affected
signal acquisition and signal recovery [13]–[15] because the
compressibility or sparsity is of great significance. Suppose
that x is a discrete signal with size n; if it has no more than r
nonzero values, then x is called ‘‘r-sparse’’. A signal may
have no sparsity in some domains. Fortunately, we can always
find a certain domain where signal x can be considered sparse
with an appropriate basis.

Considering the natural images, it is beneficial that there
are sufficient bases and dictionaries so that the natural
images in these bases become sparse or approximately
sparse. A signal is considered ‘‘approximately sparse’’ if its
amplitude exponentially decays. A signal is referred to as
‘‘compressible’’ if it has an approximately sparse represen-
tation on a certain basis. Concerning a sparse signal, there
is much less valuable ‘‘information’’ than unimportant data.
CS can reconstruct sparse or compressible signals with much
fewer samples than traditional methods.

Let x (x ∈ RN ) be a discrete signal; θ represents its
coefficients in a certain orthonormal basis

y = 8x.

Then, x is K -sparse if only K coefficients are nonzero. The
procedure can be formulated as follows.

‖x‖0 := |{` : x` 6= 0}| = # {` : x` 6= 0} ≤ s. (1)

where ‖x‖0 represents the `0-norm of x, which denotes
the number of nonzero elements of x. The `p-norm is

defined as

‖x‖p =

(
N∑
i=1

|xi|p
)1/p

, 1 ≤ p <∞. (2)

We call a matrix 8 ∈ Cn×N the measurement matrix;
then, the recovery process is to reconstruct x ∈ CN from the
measurements

y = 8x. (3)

If n � N , this problem is underdetermined and has no
solution. Fortunately, CS theory finds that the solution can be
obtained with extra information that x is s-sparse.
The original recovery method adopts `0-minimization:

min ‖z‖0
subject to 8z = y, (4)

but this is an NP-hard problem. Then, tractable substitutions
are used, e.g., `1-minimization:

min ‖z‖1
subject to 8z = y, (5)

where

‖z‖1 = |z1| + |z2| + . . .+ |zN |

for z = (z1, z2, . . . , zN ) ∈ CN . (6)

Assuring the recovering ability of x in Eq.(4) via
`1-minimization and greedy algorithms is a sufficient con-
dition to establish the RIP (restricted isometry property) of
measurement matrix 8: Given 8 ∈ Cn×N and s < N , the
RIC (restricted isometry constant) δs is defined as the smallest
positive number such that

(1− δs) ‖x‖22 ≤ ‖8x‖
2
2 ≤ (1+ δs) ‖x‖

2
2

for all x ∈ CN

with ‖x‖0 ≤ s.

(7)

Eq. (7) demands that at most s columns of 8 are well-
conditioned. 8 is said to satisfy the RIP with order s when
δs is small.
Many recovery methods are effective if the measurement

matrix 8 satisfies the RIP. More accurately, if the measure-
ment matrix 8 follows Eq. (7) with

δκs < δ? (8)

for appropriate constants κ ≥ 1 and δ?, then several algo-
rithms can precisely reconstruct any s-sparse signals x from
y = 8x. Furthermore, if x can be approximated by an s sparse
vector, then for noisy observations,

y = 8x+ e, ‖e‖2 ≤ α, (9)

these algorithms can acquire the recovery x̃ that satisfy an
error bound as∥∥x− x̃

∥∥
2 ≤ C1

1
√
s
σs(x)1 + C2α, (10)
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where

σs(x)1 = inf
‖z‖0≤s

‖x− z‖1 (11)

represents the error of the best s-term approximation in `1,
and C1,C2 > 0 are constants.

B. SUPER-RESOLUTION BASED ON COMPRESSED
SENSING
The CS theory aims at solving the underdetermined prob-
lems and reconstructing a high-dimensional signal from
fewer measurements than the traditional approach. For the
SR problem, its goal is to recover a high-resolution image
from a low-resolution one in the same scene. These two
problems share a high similarity, so CS theory may be applied
to solve the SR reconstruction problem. An SR problem
may be viewed as the recovery process in the CS frame,
where Y can be considered the low-resolution image acquired
as a measurement of the original high-resolution image X .
Generally, matrix M , which degrades the HR image to an
LR image in the SR problem, is considered the projection
matrix in CS theory. The sparse basis is taken from the
overcomplete dictionary D. In this work we consider only
the case of a single image. Then, the process of solving the
SR problem using CS theory is as follows:

α = argmin‖α‖0
s.t. Yk = MkX = MkDα (12)

However, many factors must be considered, including the
estimation of the degradation matrix, the method of training
overcomplete dictionary D, and the specific reconstruction
algorithm. The essence of applying the CS theory to SR is to
make full use of the sparsity and fully excavate the intrinsic
structural features of an image. SR based on CS theory has
also made significant progress in recent years. The feasibility
of applying CS theory to single-image SR has been proven
in [17]. The mapping relationship between the HR dictionary
and the LR dictionary has been established in [26].

This paper mainly studies how to reconstruct the HR image
by using the sparsity of an image and the nonlocal sim-
ilarity information inside the image. The principle of the
SR algorithm based on the sparse representation is to regu-
larize the image sparsity as a priori information. LR images
are degraded, while the degradation model of HR to LR
images is uncertain. The algorithm assumes that HR and
LR images have similar geometric structures. Their sparse
representations are approximate under a certain transform
basis or redundant dictionary. We ensure the corresponding
relationship between LR dictionary Dl and HR dictionary Dh
atoms while training the dictionaries. Then, the relationship
obtained by learning is applied to the current input image so
that an HR image is reconstructed. This algorithm mainly
includes the dictionary training process and reconstruction
process, which are introduced in detail in Sec. III.

III. PROPOSED METHOD
This paper presents an image SRmethod based on the CS and
nonlocal similarity. Because the difference of image blocks
is not considered when training dictionaries, a dictionary
classification method based on the measurement domain is
proposed in the dictionary training part. Specifically, we use
the linear relationship between images in the measurement
domain and frequency domain to classify image blocks into
smooth, texture and edge feature blocks in the measurement
domain. The dictionaries for different blocks are trained using
different categories. Consequently, an LR image block of
interest may be reconstructed using the most appropriate
dictionary. If one merely learns the prior knowledge from the
external image database, it tends to generate untrue details
of the reconstructed HR image. In our proposed method,
we use the nonlocal similarity of the image itself to tentatively
search for similar blocks in the whole image and present a
joint reconstruction method based on CS and similarity con-
straints. The sparsity and self-similarity of the image blocks
are taken as the constraints.

A. CLASSIFIED DICTIONARY TRAINING
The existing SR methods based on the sparse representation
failed to consider the differences among sample blocks in
the training dictionary. Remarkable differences between the
input LR image and the sample database may lead to the
poor quality of the reconstructed HR image. To overcome this
problem, we propose a dictionary classificationmethod based
on the measurement domain. In our past work [36]–[40],
we have proposed an adaptive ADMM algorithm with sup-
port and a maximum-likelihood dictionary to improve the
ability of the dictionary to represent the signal sparsely.
First, we classify the images in the sample database in the
measurement domain; then, we use them to train different
categories of dictionaries and reconstruct the input image
block using the closest dictionary to improve the definition
of the HR image. In our previous work [41], [42], we theoret-
ically proved the approximately linear relationship between
the cross-covariance matrixes in the measurement domain
and frequency domain, which can be formulated as follows:

Cy ≈
n
m
Cq, (13)

where m and n represent the sample numbers in the measure-
ment domain and frequency domain, respectively. The images
in the frequency domain and pixel domain are also closely
related. Generally, an edge texture block is more sparse than
a smooth block. We propose a classification method in the
measurement domain using covariance matrixes to classify
the image blocks in the training set. Different types of dictio-
naries are trained using different kinds of image blocks. The
overall block diagram of the dictionary classification method
based on the measurement domain is shown in Fig. 1.

We select the brain tissue MRI image as sample for the
experiment to show the performance of classifying image
blocks in the measurements. The images are divided into
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FIGURE 1. Classified dictionary training based on the measurement domain.

FIGURE 2. Block classification result of a brain MRI image.

8 × 8 blocks using the Gaussian matrix as the measurement
matrix. Here, we use T1 = 3 × 106 and T2 = 3 × 107. The
result is shown in Fig. 2.

The experimental result shows that the proposed classi-
fication method in this paper can better classify the image
blocks into smooth blocks, texture blocks, and edge blocks.
The sampling rate determines the amount of data to be sorted
and processed. The lower the sampling rate, the fewer data
there are to calculate. However, when the sampling rate
is extraordinarily low, the measured value vector will be
reduced accordingly. This process fails to contain all informa-
tion of the original image, which leads to a large deviation in
the classification results. The experimental experience value
shows that if the sampling rate is not less than 0.4, better
results can be guaranteed.

B. NONLOCAL SIMILARITY OF AN IMAGE
Natural images should preferably be rich in content and
have certain repeatability in structural features. The repetitive
information of an image has been widely used in image
recovery, image denoising, and other issues. The fundamental
principle of a nonlocal algorithm is to give different weight
coefficients to the similar points of the current pixel using
their linear combination to represent the current pixel. There-
fore, the internal structure of the pixels can be maintained.
Of course, the value of the coefficients dramatically depends
on the similarity of the two pixels. The local phase theory

holds that the similarity points of pixels exist in their adjacent
local regions and that the neighborhood points have a high
degree of approximation with the current point. However,
the nonlocal similarity theory considers the repeatability of
the image structure and holds that two pixels may have a
higher degree of approximation even in the case of a longer
spatial distance. Inspired by the nonlocal features of the
image, this paper applies it to the SR algorithm to improve
the quality of the HR image reconstruction.

Suppose that an image I = {I (i, j)}|(i, j ∈ �) has definition
in � ⊂ N 2, we use the linear combination of other similar
pixel points with different weight coefficients to represent the
current pixel (i0, j0); its weighting value is:

NL(I )(i0, j0) =
∑
(i,j)∈I

w(i, j)I (i, j)

where the value of w(i, j)(i0,j0) is determined by the approx-
imation degree of (i, j) and (i0, j0), which obeys 0 ≤

w(i, j) ≤ 1 and 6w(i, j) = 1. Taking Fig. 3 as an example,
q1 is similar to p in terms of gray value, whereas q2 is
significantly different from p. Therefore, the value of w(q1)
is far greater than that of w(q1).
We define the pixel-centered window as the subset of �:

N = {Ni,j}(i,j)∈�. We define the similarity between two
central pixels by comparing the similarity of two window
regions. Thus, the weight coefficient is proportional to the
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FIGURE 3. The similarity of pixels within an image.

similarity of the two window areas and can be computed as:

w(i, j) =
1

Z (i, j)
exp(−

∥∥z(Ni0,j0 )− z(Ni,j)∥∥22 /h2)
where Z (i, j) =

∑
i,j

exp(−
∥∥z(Ni0,j0 )− z(Ni,j)∥∥22 /h2) is the

normalization factor, and h is the decline rate of function.

C. CS AND NONLOCAL SIMILARITY-BASED
RECONSTRUCTION
The previous work has shown that the image blocks may
frequently appear to be more similar in the interior of the
image than in the exterior training database [43].

Compared with the learning of the exterior library, more
useful information can be obtained from the relevant infor-
mation extracted from the interior of the image. However, for
some image blocks, the information learned by themselves
is limited and is not sufficient to reconstruct high-quality
HR image blocks. Therefore, it is also necessary to obtain
prior information through external learning to guide the cur-
rent image block reconstruction. In this paper, we combine
the nonlocal self-similar information of the image with the
external dictionary and propose an SR method based on CS
and self-similarity.

There are many similar blocks in the image and among
different scales. A larger search area yields more similar
blocks. To obtain more information contained within a single
image, a tentative nonlocal search strategy is proposed in this
paper. The adjacent regions of the current image block are
helically squared matching to find similar blocks; for remote
blocks, variable step-size searching is used according to the
effect of similar blocks that have been found. This approach
which may fully mine the similar information in the image
and can be quickly completed.

The reconstruction process in this paper is shown in Fig. 4.
For any image block y of an input LR image, a dictionary pair
(Dh,Dl) of the corresponding category is selected according
to its variance. All of its similar blocks S = {y1, y2, ..., yn} are
found in the whole image. We add the self-similarity as the
constraint, which requires coefficient α to be of high sparsity,
and the HR image block represented by it has high similarity

with its similar block S. The joint solution process using s and
(Dh,Dl) can be expressed as:

min
α,αi

i=1,2,..n

‖Fy− FDlα‖22 +
∑
yi∈S

∥∥∥Fyi − FDlαi∥∥∥2
2

+ λ(‖α‖1 +
n∑
i=1

∥∥∥αi∥∥∥
1
)+

n∑
i=1

γi

∥∥∥Dhα − Dhαi∥∥∥2
2

(14)

where α is the sparsity degree of current image block y, and
αi is the representation coefficient of yi on Dl . The first two
items in the equation are used to guarantee the fidelity of the
input LR image blocks, the twomiddle l1 regularization items
guarantee the sparsity of representation of the LR blocks
on Dl , and the last item ensures the degree of approximation
between the recovered HR image block and the similar block.
The degree of approximation is controlled by γi:

γi =
1
Z
exp{−

∥∥y− yi∥∥22
h2

} (15)

where Z is the normalization parameter.
The second, fourth and fifth items in Equation 14 repre-

sent the nonlocal similarity information of the image blocks.
We obtain coefficient α by solving Equation 14. Then, the
HR image block can be obtained by

x = Dhα (16)

By processing all LR blocks according to these steps,
we recover the HR image X . Then, the IBP algorithm is used
tomore consistently guideX to adjust along the directionwith
the image degradation model so that the final reconstructed
HR image is consistent with the input LR image based on the
image degradation model.

IV. EXPERIMENTAL RESULTS
The experiments are performed on both synthetic and real
brain MRI images with the magnification factors of 2 and 4.
We compare the results with the existing work [7], [10]. Their
methods are denoted as Bicubic, and BSRCNN, respectively,
for convenience.

We adopt the synthetic brain MRI images selected from
Brainweb dataset [44],1 MRT dataset,2 and the real MRI data
from MIDAS dataset3 which acquired with a 3T GE scanner
at Brigham and Women’s Hospital in Boston, MA and con-
tains 10 normal and 10 schizophrenic patients.

A. EVALUATION CRITERION
Generally, the performance of the SR algorithm is evaluated
from the following two perspectives:
• Subjective evaluation. This method is mainly based on
the visual perception of the human eyes to evaluate the
quality of the image. Because individuals have different
perceptions of the same image, this evaluation method

1http://brainweb.bic.mni.mcgill.ca/brainweb/
2https://www.mr-tip.com/
3http://insight-journal.org/midas/collection/view/190
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FIGURE 4. Diagram of the reconstruction process in the proposed method.

TABLE 1. PSNR and SSIM of the recovered HR images with upscaling
factor 2.

is more influenced by subjective factors, which leads to
the existence of individual differences.

• Objective evaluation. Since the LR test image in the
SR algorithm is usually simulated by the degrada-
tion model of the HR image, there exists an original
HR image, which is compared with the reconstructed
image. The objective evaluation method is to determine
the similarity between the recovered image and the orig-
inal image using a calculation method. In this paper,
two important criteria to evaluate the objective quality
of SRmethods are the PSNR (peak signal-to-noise ratio)
and SSIM (structural similarity image measurement).

MSE =

∑M
i=1

∑N
j=1 (Xij − Yij)

2

M × N
(17)

PSNR = 10log10
255× 255
MSE

(18)

SSIM (X ,Y ) =
(2µXµY + C1)(2δXY + C2)

(µ2
X + µ

2
Y + C1)

(
δ2X + δ

2
Y + C2

) (19)

where X is the original HR image, Y is the recov-
ered HR image, and M and N represent the size of the
image.

TABLE 2. PSNR and SSIM of the recovered HR images with upscaling
factor 3.

TABLE 3. PSNR and SSIM of the recovered HR images with upscaling
factor 4.

B. VISUAL RESULTS
Because the human eye system is sensitive to the luminance
component, we only focus on the luminance Y channel in
the SR reconstruction of color images. The values of the
chroma Cb and Rc channels are directly obtained using Bicu-
bic upsampling. In the experiments, the size of the image
block is 5 × 5, the overlap part is 4 pixels, and the number
of dictionary atoms is 512. The HR images in the test sets
are downsampled by using the fuzzy downsampling matrix,
and the corresponding LR images are generated by simulating
the image degradation model. We use the proposed method
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FIGURE 5. Comparison of visual results with upscaling factor 2 (brain MRI image from Brainweb).

FIGURE 6. Comparison of visual results with upscaling factor 2 (brain MRI image from MRT).

FIGURE 7. Comparison of visual results with upscaling factor 4 (brain MRI image from Brainweb).

and other reference algorithms to perform 2× and 4× SR
reconstructions, respectively.

The visual results obtained using Bicubic, BSRCNN and
the presented method are illustrated in Figs. 5, 6, 7, and 8.

Therefore, we conclude that the reconstructed images
using our proposed method are rich in texture areas,
have more natural outlines, and have no apparent zigzag
effect.

C. OBJECTIVE EVALUATION
In terms of objective quality, our proposal is compared with
Bicubic [7], SROD [30] and BSRCNN [10]. The performance

is measured regarding PSNR and SSIM. We average the
results of ten test images as the PSNR/SSIM value shown
in the following tables. The results in Tabs. 1, 2 and 3 show
that the proposed method has better objective quality than
other algorithms. Both PSNR and SSIM are improved: the
PSNR value is increased by approximately 0.9-5.9dB, and
the SSIM value is increased by approximately 0.02-0.14.
Compared with the result using the magnification factor
of 2, the improvement of 4 times magnification is more
remarkable. Thus, when the magnification factor increases,
we can obtain more significant improvement in HR image
quality.
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FIGURE 8. Comparison of visual results with upscaling factor 4 (brain MRI image from MIDAS).

V. CONCLUSION
In this paper, we have extended the previous work by
paying attention to the nonlocal self-similarity and the
block classification of an LR image. We propose an image
SR algorithm based on compressed sensing and self-
similarity constraint. This proposed method is applied to
solve the brain MRI super-resolution problem, and the sat-
isfactory results may be acquired. Because the difference of
image blocks are not considered when training dictionaries,
a dictionary classification method based on the measurement
domain is proposed in the dictionary training part. Specifi-
cally, we use the linear relationship between images in the
measurement domain and frequency domain to classify the
image blocks into smooth, texture and edge feature blocks
in the measurement domain. The dictionaries for different
blocks are trained using different categories. Consequently,
an LR image block of interest may be reconstructed using
the most appropriate dictionary. If one merely learns the
prior knowledge from the external image database, it tends
to generate untrue details of the reconstructed HR image.
In our proposed method, we use the nonlocal similarity of
the image to tentatively search for similar blocks in the whole
image and present a joint reconstruction method based on the
classified dictionaries and similarity constraints. The spar-
sity and self-similarity of the image blocks are taken as the
constraints.

In summary, a dictionary classification method based on
the measurement domain is presented. Then, the correspond-
ing dictionaries are trained using the classified image blocks.
Equally important, in the reconstruction part, we use the
CS reconstruction method to recover the HR image, consid-
ering both nonlocal similarity and sparsity of an image as the
constraints. This method visually and quantitatively performs
better than some existing methods. To verify the performance
of the proposedmethod, many experiments have been accom-
plished on both the synthetic and real brain MRI images.
The experimental results indicate that the proposal enhances
the quality of the recovered HR brain MRI image, and
our method results in visually and quantitatively superior
performance.
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