
Received January 9, 2019, accepted February 1, 2019, date of publication February 18, 2019, date of current version March 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2899265

A Hierarchical Navigation Strategy of EV Fast
Charging Based on Dynamic Scene
FANGZHOU XIA , HONGKUN CHEN, LEI CHEN , (Senior Member, IEEE), AND XINYU QIN
School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China

Corresponding author: Hongkun Chen (chkinsz@163.com)

This work was supported by the National Key R&D Program of China under Grant 2018YFB0904700.

ABSTRACT With the development of the EV industry, the growing demand for EV fast charging load has
brought enormous impact on the power system. Due to the unbalance of charging time distribution and the
high power of EV fast charging, the difference between peak and valley of the load curve will widen. In this
paper, a hierarchical navigation strategy (HNS) based on dynamic traffic/temperature data is proposed to
decrease the EV fast charging load at peak hours and the time and energy cost during the charging process.
The upper layer of the HNS is charging time selection. The optimal selections of charging time, which is
based on the habits of EV users, is proposed in this layer. It aims at providing efficient time slots for charging,
which can decentralize the fast charging demand and decrease the EV users’ time cost. The underlayer is
the route selection layer, which is based on the priority coding genetic algorithm. It proposes the optimal
charging routes to decrease EV users’ energy cost and time cost. At the same time, the peak charging load
can also be shaved due to the decline in energy cost. The case study under the scene with realistic traffic,
temperature, and power grid information shows that the proposed HNS can shave the peak load of the power
grid and decrease the energy/time cost during the EV fast charging process. Therefore, the effectiveness of
the HNS is proved.

INDEX TERMS EV fast charging, peak shaving, hierarchical navigation strategy, dynamic data, priority
coding genetic algorithm.

NOMENCLATURE
ABBREVIATIONS
EV Electric vehicle
PCGA Priority coding genetic algorithm
SOC State of charge
DC Data center
CC Control center
EVFCS EV fast charging station
SPA Shortest path algorithm
HNS Hierarchical navigation strategy

SYMBOLS
CA Energy cost of air conditioners
CE Energy cost of EV engines
v Average speed of EVs
l Travel distance of EVs
Tr Travel time of EVs
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Tts Waiting time of traffic signals
Tcs Queuing time in charging stations
RH Humidity level
t Temperature
1CT Extra energy cost of charging process
CTC Energy cost of the charging route
CTO Energy cost of the original route
lT Endurance mileage of EVs
WB Battery capacity
Qcar The power which is transferred into EV
Qn The power which is brought by fresh air
Qh The power which maintains the

stable of humidity in EVs
t0 The starting time
tn The ending time
Qcar The power transferred through glasses
lo Fresh air volume
np Number of passengers
ρa Air density
1H Enthalpy difference between in and out of EVs
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L Fresh air volume of air conditioners
Va Specific volume of air
X Absolute humidity
kglass Heat transfer coefficient of glasses
k Heat transfer coefficient of EV bodies
Sglass Area of glasses
Scr Area of roofs
Scs Area of sides
Scub Area of underbodies
Tout Temperature outside EVs
Tin Temperature in the EVs
s Number of charging poles
K Number of parking spaces for EVs to wait in line
λ(t) Real-time arrival rate
µ Service rate
ρ(t) Service intensity of the system
p0(t) System idle probability
pK (t) Costumer loss rates
Wq(t) Average queuing time of EVs
L(t) Real-time number of EVs in the EVFCS

I. INTRODUCTION
In recent years, electric vehicles (EV) have become a center
of attention because of its potential to be an alternative to
conventional vehicles. The advantages of EVs’ development
include reduction of greenhouse gases emission and fossil
energy consumption. Penetration of EV in some major cities
in the world is growing typically in a decade [1]–[5]. At the
same time, development of fast charging and ultra-fast charg-
ing skills brings convenience to EV owners [6]. However,
fast charging load will increase dramatically with the rapid
growth of EVs, thus will result in a huge influence on the
power grid. In extremeweathers, the charging demand of EVs
and base load of the power system can be enormous due to the
using of air conditioners, so in these scenes, the charging load
of EVs can even bring greater impact on the power system.

Various of researches about charging load of electric vehi-
cles have been done. At the aspect of influences to the power
grid, the charging behavior and impacts of fast charging load
of EV were analyzed. Power and current of fast charging,
especially ultra-fast charging is much higher than conven-
tional charging. At the same time, according to EV users’
charging behavior, the peak of fast charging load and the peak
of the base load of the power system can appear at same
time segments. So large-scale electric vehicle fast charging
load will increase the peak load of power grid [7]–[13].
To solve this problem, many previous researches focused
on ordered fast charging strategies which always consider
the traffic process and the queuing process of fast charg-
ing. In some former studies, the randomized algorithm was
used to simulate the traffic character [14]–[16], while queue
algorithm was widely used to estimate the queuing time
[17], [18]. Many researches aimed to decrease the charg-
ing cost and peak load through optimal control or time-of-
use power prices. In [19], two charging strategies aimed

to minimize the total daily cost and the peak-to-average
ratio were proposed respectively, and a study compared two
charging strategies was conducted from the perspectives of
economic and technical. Four charging strategies focus on
decreasing charging cost and peak demand were compared
in [20], which considered three different charging scenarios.
In [21], a real-time distributed control approach based on
EV users’ travel behaviors was built, which can smooth the
daily grid load profile and ensure EV users’ charging demand.
A multi-objective optimization strategy was proposed which
considered economic charging, minimizing battery degrada-
tion and maintaining system load profile in [22]. However,
these researches always ignore the influence of fast charging
navigation which can help EV users to choose reasonable
routes and time to charge. At the aspect of decreasing peak
load and smoothing load curve, EV charging navigation sys-
tems were mentioned in many previous researches [23]–[31].
Researches of the EV navigation system are an extension
of classical routing. [32] presented a fast charging naviga-
tion system which took both traffic conditions and status of
the power grid into consideration, this system can satisfy
drivers’ demands and ensure the security of the power grid
at the same time. A scene of products delivering process of
battery electric vehicles fleets was proposed in [33], under
this scene, a mixed integer linear programming model was
built to optimize the costs of maintenance and extra hours
of fleets. Previous researches of EV navigation always use
static traffic and weather models which unable to reflect the
dynamic characteristics of scenes. At the same time, most of
these researches just consider the load transferring function
of EV navigation but ignore the possible peak load reduction
can be brought by navigation strategy, especially in extreme
weathers.

A hierarchical navigation strategywhich based on dynamic
traffic/weather model is proposed to make the most of pos-
sible peak shaving ability of the navigation system itself.
The proposed navigation strategy is composed of two major
layers: the layer of charging time selection and the layer
of route selection. The upper layer can help EV users to
choose efficiency time to charge according to EV users’ using
habit. The under layer can help EV users to choose charging
stations and routes to save time and cost of fast charging with
the support of real-time traffic/weather information, at the
same time peak shaving in rush hours can also be achieved.
The proposed strategy considers the common interests of the
power system and EV users, it can achieve peak shaving of
load curve and save the EV users’ charging cost at the same
time, so it can motivate EV users to follow the navigation
strategy. This strategy can decrease the power cost that wasted
on extra mileage of charging and in the charging stations,
and it can also decrease the possibility of choosing inefficient
charging time. The power demand of charging at rush hours
will be decreased with this strategy, so that the peak load can
be shaved. The effectiveness of the proposed navigation strat-
egy will be more significantly in extreme weathers because of
the load of air conditioners.
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The following aspects are the main contributions of this
paper:

1) A charging time selecting method based on EV users’
using habit and historical traffic data is proposed to help EV
users to choose efficient charging time.

2) A route selecting method for dynamic scenes is pro-
posed based on priority coding genetic algorithm (PCGA),
which considered the dynamic information of traffic, weather,
EV terminals and queuing time in charging stations.

3) A detailed comparison between traditional shortest path
algorithm and proposed hierarchical navigation strategy is
carried out in the case study which can verify the effective-
ness of hierarchical navigation strategy, especially in extreme
weathers.

The remainder of this paper is organized as follows: In
section II, the system architecture is introduced and the traf-
fic/weather model, the energy cost model, the queuing model
are presented. In Section III, charging time selection layer and
route selection layer of hierarchical navigation strategy is pre-
sented. The case study is presented to verify the effectiveness
of the proposed hierarchical navigation strategy in section IV.
Finally, the conclusion is drawn in section V.

II. SYSTEM MODELING
A. PROBLEM ANALYSIS AND HYPOTHESIS
As illustrated in the introduction, the problem of EV fast
charging navigation in this paper can be described as: pro-
viding an EV fast charging navigation strategy which can
select charging time and charging routes for EV users to
achieve peak shaving of charging load curve. At the same
time, EV users’ profits should also be considered to motivate
them to follow the charging plans which are provided by
navigation strategy. So, charging time cost and energy cost
for EV charging should be decreased when following the
navigation strategy.

There are two steps to achieve these goals:
1) Selecting more efficiency charging time for EV users.

For power system, optimized selection of charging time can
help to transfer charging load from peak period to the off-
peak period so that peak shaving can be achieved. For EV
users, time on roads and waiting in charging stations can also
be decreased.

2) Selecting more efficient routes for EV users. Route
selection can decrease charging time cost and time cost. In the
peak period of charging the reduction brought by navigation
strategy will decrease the real-time charging demand, so the
peak of charging load will be shaved.

EV information, traffic information and weather infor-
mation is necessary to solve this problem. EV information
contains start point and destination of route, SOC of bat-
teries. When EV users decide to go to EV fast charging
stations, the charging process can bring extra distance to
the original route so that it will increase the energy cost
on the roads. Traffic information contains congestion levels
of each road segments, queuing time in EV fast charging

FIGURE 1. Structure of EV fast charging navigation system.

stations and traffic signals, and the information will change
over time because the scenes in this paper are dynamic.
So the variation of traffic information can influence the time
cost of charging and the service time of air conditioners
in EVs. Weather will influence the energy cost of air con-
ditioners in EVs due to the variation of temperature and
humidity.

Some hypotheses in this paper are proposed as follows:
(1) All the charging stations have certain locations.
(2) All the charging stations have obligation to help the

power grid shaving peak load in rush hours.
(3) EV users will choose the most energy saving routes that

proposed to them
(4) EV users and conventional car users have similar travel

habits.
(5) For convenience, EV users tend to charge their EVs

during daily trips, rather than making special trips to go to
the EV fast charging stations.

B. SYSTEM ARCHITECTURE
The structure of the proposed EV fast charging navigation
system in this paper is shown in figure 1. It contains data
center (DC), control center (CC), EV fast charging stations
(EVFCSs) and EV terminals. The function of DC is collecting
the information about traffic, weather (temperature, humid-
ity), load, EV terminals, EVFCSs (queuing), and providing
them to CC. CC is the core of this system, it is responsible
for processing data from DC, analyzing the real-time load
status of gird, estimating queuing time of EVFCSs, assess-
ing priorities of each navigation plans and sending results
to EV terminals. EV terminals should offer their terminal
data which include average mileage, real-time SOC, time
distribution of using EVs. As for EVFCSs, they should send
real-time queuing data to CC to help to estimate the possible
waiting time in EVFCSs.
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FIGURE 2. Daily load curve and curve of congestion level.

FIGURE 3. Annual temperature and humidity of Wuhan.

C. TRAFFIC AND WEATHER INFORMATION
Daily load curve and curve of the congestion level is shown
in figure 2. The peak period of load curve occurs from 9:00 to
22:00, when the traffic rush hours continues from 7:00 to
11:00 and 16:00 to 18:00 [34]. During traffic rush hours, EV
users are more likely to use their EVs, so the fast charging
load will also increase along with the increasing charging
demand. Furthermore, the load of the power grid is also at
a high level (peak load) during this period so that the fast
charging demand will increase the peak load even further.

The temperature of a district will have a huge difference
in different weather. Fig 3 shows the annul temperature and
humidity ofWuhan. Themost comfortable in-car temperature
is between 19 degrees centigrade to 23 degrees centigrade.
But the temperature of Wuhan can reach 40 degrees centi-
grade in summer when it can be as low as minus 10 degrees
centigrade in winter. So, the energy cost of the air conditioner
will be extremely high in summer and winter. Maintain-
ing stable environment humidity is another basic function
of air conditioners, research showed that it would be more
comfortable if humidity is controlled under 60% [35]. So,
controlling in-car humidity will also increase the energy cost
of air conditioners.

Air conditioner is a basic part of EV, it is the second energy
consuming component of EV, so the energy cost of it ( CA) is
enormous, especially in extreme weather.

D. ENERGY COST MODEL
The energy cost can be divided into two parts as shown
in figure 4: energy cost of EV engine (CE ) and EV air
conditioner (CA).CE will be influenced by average speed (v)

FIGURE 4. The energy cost of EV.

FIGURE 5. Original route and charging route.

and distance (l), v is related to congestion levels of each
road segments. CA depends on the travel time of EV (Tr ),
waiting time of traffic signals (Tts), queuing time in charging
station (Tcs), humidity level (RH ) and temperature (t).
So the total energy cost can be expressed as:

CT = CE (v,Tts)+ CA(t,RH ,TR,Tcs,Tts) (1)

Route sketches are shown in figure 5. Route 1 is the
original route, it goes through nodes S and D. Route 2 is the
charging route, it goes through charging stationCS. The extra
energy cost of charging process (1CT ) is expressed as :

1CT = CTC − CTO (2)

where CTC and CTO are the energy cost of charging route and
original route respectively.

In cities, travel velocity will be limited on urban roads.
Velocity’s influence on energy cost is not significantly when
EVs travel in low speed, so in this paper, velocity’s influence
is ignored, travel distance is the only element whose influence
on CE is considered. CE can be express as:

CE =
l
lT
·WB (3)

where lT is the endurance mileage of EVs,WB (kW ·h) is the
battery capacity, l is the mileage of charging process.

As for the energy cost of the air conditioner CA, the main
influence factors are temperature and humidity In this paper
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CA is expressed as:

CA =
∫ tn

t0
1.1 · [Qcar (t)+ Qn(t)+ Qh(t)]dt (4)

whereQcar represents the power which is transferred into EV,
Qn represents the power which is brought by fresh air, Qh
represents the power to maintain the stable of humidity in the
EVs. The margin index of this formula is 1.1. t0, tn represent
the starting time and ending time respectively.

Qcar (t) = Qg(t)+ Qcr (t)+ Qcs(t)+ Qcub(t)

+Qce(t)+ Qp(t) (5)

Qn(t) =
lo · np · ρa ·1H (t)

3.6
(6)

Qh(t) =
L ·1H (t)
Va · (1+ X )

(7)

where Qcar represent the power transferred through glasses,
roofs, sides, underbodies of EVs and passengers respectively,
lo is fresh air volume, np is number of passengers, ρa is air
density,1H is enthalpy difference between in and out of EVs,
L is fresh air volume of air conditioners,Va is specific volume
of air, X is absolute humidity.

Qg(t) = kglass · Sglass · [Tout (t)− Tin(t)] (8)

Qcr (t) = k · Scr · [Tout (t)− Tin(t)] (9)

Qcs(t) = k · Scs · [Tout (t)− Tin(t)] (10)

Qcub(t) = k · Scub · [Tout (t)− Tin(t)] (11)

where kglass represents heat transfer coefficient of glasses and
k represents heat transfer coefficient of car bodies. Sglass, Scr ,
Scs, Scub represent the area of glasses, roofs, sides, underbod-
ies of EVs, respectively. Tout is the temperature outside EVs
and Tin is the temperature in the EVs.

E. QUEUE MODEL
The number of charging poles in each EVFCSs are limited,
if EV users choose to charge at rush hours, they may well
need to wait in lines. Queuing time in EVFCSs can affect the
using time of air conditioners significantly. Therefore it will
also affect CA. So it is necessary to evaluate the queuing time.
In this paper, we regard the queue model as a M/M/s/K

model. That means arrival time and charging time of EV users
subject to Poisson distribution, number of charging poles is s
and the number of parking spaces for EVs to wait in line is
K . In this paper, we express real-time arrival rate and service
rate as λ(t) and µ respectively. So the service intensity of the
system can be expressed as:

ρ(t) =
λ(t)
µ

(12)

The system idle probability is expressed as:

p0(t) =
1

1+
K∑
n=1

ρ(t)n
(13)

The costumer loss rate is expressed as:

pK (t) =
ρ(t)K

s!sK−s
· p0(t) (14)

According to formulas (12) to (14), the average queuing
time of EVs can be worked out as:

Wq(t) =
L(t)

λ(t)[1− pK (t)]
−

1
µ

(15)

where L(t) is the real-time number of EVs in the EVFCS.

III. NAVIGATION STRATEGY
A. OBJECTIVE
The target of the HNS is to achieve the peak shaving of the
load curve. So the objective is minimizing the extra energy
cost of charging process, which can decrease the charging
demand during peak periods:

min CE (v,Tts)+ CA(t,RH ,TR,Tcs,Tts) (16)

The charging time selection layer and route selection layer
of the proposed navigation strategy are formulated as follows.
First, before the EV user starts the first trip of the day,
charging time selection layer should recommend EV user an
approximated time to charge according to the information of
the EV user’s using habit and battery’s state of charge. This
step can help to avoid charging in case that SOC is still at high
a level. Then the optimal selection layer based on PCGA will
propose the charging time slot and route to EV users, which
can help to decrease the charging energy cost and extra time
for charging.

B. CHARGING TIME SELECTION
EV users always not just use their EVs once a day, for exam-
ple, the daily trip frequency of Wuhan citizens is 2.4 [36].
That’s to say, EV users will have more than one chance
to charge their EVs in a day. So they can choose to avoid
charging their EVs in rush hours, thus can shave the peak load
and decrease the time cost of EV users, at the same time it will
not change EV users’ daily travel habits, save their charging
time cost and charging cost.

In this section, we proposed an optimal selection method
to select charging time for EV users. The flow chart of the
proposed strategy is shown in figure 6.

The first step is inputting the data of EV’s daily average
mileage and state of charge (SOC). Then, the system should
judgewhether the SOC of EV’s battery ismuch than 30%. If it
is much than 30% and can meet the demand of 2 days at the
same time, EV users will be suggested to charge in another
day, or the system should step to the next criteria. Then, if the
SOC can meet the demand of 1day, the next step will be the
optimal selection of charging time slot, or the EV user will be
proposed to charge in the first charging time slot of the day.
The rate of adoption is also considered to take EV users’ extra
demand into consideration.
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FIGURE 6. Flow chart of time selection.

A figure of the time slot W is provided according to EV
users’ using habit to describe possible charging time slots.

W (t) =

{
1 able to charge
0 unable to charge

(17)

If W (tk) = 1, the EV user will be able to charge in tk,
otherwise the EV user will be unable to charge.

The constrains of charging time are as follows:
(1) The whole charging process should start and end at

the time when the EV user can charge. At the same time,
the charging process should be continuous, that is to say, any
time between start time to end time should be able to charge
for EV user.

W (ts) = 1 (18)

W (te) = 1 (19)

W (t) = 1, ∀t ∈ [ts, te] (20)

(2) The duration between the start time and the end time
can be defined as 1t .

1t = te − ts (21)

And there should at least exist one 1t to hold following
inequation which is to maintain that the duration is enough

for the whole charging process.

1t ≥ toriginal + tch arg ing, ∃1t = te − ts (22)

where toriginal is the time cost of original routes and tch arg ing
is the time cost of charging process.

As for constrains of EVs’ batteries, its SOC should be
less than 30% according to the flow chart. At the same time,
the SOC should be higher than 10%, because deep discharge
can be harmful to EVs’ batteries.

10% ≤ SOC ≤ 30% (23)

C. ROUTE SELECTION
Route selection layer should start at the same time as the start
of the charging time selection layer. The constraint about the
route is that each node cannot be passed twice in a route of
charging R[n1 n2 . . . nk ].

ni 6= nj, ∀i, j ∈ [1, n] (24)

On the aspect of energy constraint, the energy cost during
the charging process cannot be higher than the remaining
capacity of batteries.

Qt (t) = Qcar (t)+ Qn(t)+ Qh(t) (25)

CBn = CB0 · SOC (26)
l
lT
·WB +

∫ te

ts
1.1 · Qt (t)dt ≤ CBn (27)

where Qt (t) is the total power of air conditioners and CBn is
the remaining capacity of batteries.

To select charging time and routes, a model based on
PCGA is provided in this paper. The flow chart of this model
is shown in figure 7.

The PCGA is consist of the following four steps:

1) PRODUCE THE INITIAL POPULATION
The encoding style of routes is to assign priority values to
all nodes. According to proposed traffic/weather information,
we assign priority value 1∼18 to the 18 nodes randomly.
The arrays of priority value are regarded as individuals in
the population. Then work out the routes of each individual
and exclude the illegal individuals (unable to find out the
routes through priority value) until the number of individuals
reaches the presupposed population size (np). The procedure
of this step is shown in figure 7. The information of start time
is also coded in the gene of individuals.

2) CALCULATE THE FITNESS VALUE
The fitness in this paper is the energy cost of charging
C , contains energy cost of engine CE and energy cost of
air conditioner CA. The calculation method is proposed in
section II.

3) SELECT AND DUPLICATE
The target of the method is minimizing the energy cost of
charging, so we should select the individuals whose fitness
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FIGURE 7. Flow chart of PCGA.

FIGURE 8. The procedure of crossover.

FIGURE 9. The procedure of mutation.

value are minimum. According to the fitness value, roulette
wheel selection strategy is used to select and duplicate indi-
viduals who can let selection probability of individuals follow
the distribution of fitness value.

4) CROSSOVER AND MUTATION
The procedure to get offspring is shown in figure 8. Crossover
according to the crossover rate can produce new gene com-
binations and hope to combine the beneficial genes together.
The basic content of mutation is to change the gene value
of individual strings in a population. At first, select half of
the genes from parent 1 randomly, put them into the same
positions of offspring 1. Then find out other genes from par-
ent 2, and put them into the rest positions of offspring 1 and
3 in order. At last, allocate the information about parents’ start
time to offspring 1 and 3 respectively. Offspring 2 and 4 can
also be got through this way. The procedure of mutation is
choosing two genes and change their position which is also
shown in figure 9.

The integral process is shown in figure 10.

FIGURE 10. The integral process of crossover and mutation.

Then, put all the offspring created by duplication,
crossover, mutation together, calculate their fitness value and
find out np individuals with best fitness values.

IV. CASE STUDY
A. MODEL DESCRIPTION AND SETTINGS
In this paper, all the models are carried out through the
Matlab platform. To verify the effectiveness of the proposed
hierarchical navigation strategy (HNS), a model of shortest
path algorithm (SPA) is built to compare with the HNS.

Simulation studies are performed based on the city map of
Wuhan, Hubei, it is simulated based on the part of the map of
Wuhan, Hubei. The traffic model is shown in figure 11 and
model parameters are shown in table 1. It contains road
segments, intersections and EVFCSs. Each road segments of
it are main roads (two-way roads), so EVs can pass these
roads from two directions. The congestion level of each road
segments can change over time, and it will influence the travel
time of EVs on the roads. Traffic signal lamps which can also
influence time cost of EVs are located at nodes 3, 4, 7, 9, 13,
15, 16, 17, and three EVFCSs are located nearby nodes 8,
12, 14. According to the congestion levels and real velocity
data [34], we set four velocities: 49km/h, 42km/h, 35km/h,
28km/h corresponding to four congestion levels. The average
waiting time for signal lamps is 75 seconds. As for weather
information, we choose the weathers of Wuhan for the case
study. EV model of this paper is built according to BAIC
MOTORC50EB, whose battery capacity and driving mileage
is 41.4kW·h and 220km respectively.

B. RESULTS AND ANALYSIS
In this paper, the results of the case study are worked out and
analyzed at the following three aspects.

1) IMPACT ON CHARGING LOAD CURVE
Figures 12-13 show the fast charging load curves in summer
and winter respectively. In summer, the charging load of
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FIGURE 11. The traffic model based on Wuhan, Hubei.

TABLE 1. Model parameters.

FIGURE 12. Fast charging load curves in summer.

the SPA reaches the highest point in about 5 pm, which is
903.33 kW. The line chart also shows that the bottom of
the load curve of the SPA is 21.54 kW, which appears at
midnight. So the difference between peak charging load and
vale charging load is 881.79 kW when EV users following
the SPA. On the other hand, the maximum and minimum

FIGURE 13. Fast charging load curves in winter.

FIGURE 14. Load curves in summer.

FIGURE 15. Load curves in winter.

values are 617.48 kW and 128.09 kW respectively when
EV users following the HNS. The difference between them
is 489.39 kW, which is about half of the case of the SPA.
The charging load is lower than in summer as a whole in
winter. In this scenario, the difference between the SPA and
the HNS is still obvious. During 8 am to 11 am and 1 pm to
4 pm, the load curve of the SPA rises dramatically between
315.17 kW to 673.01 kWand 481.29 kW to 803.41 kW.At the
same time, the load curve of the HNS keeps relatively stable
from 8 am to 4 pm.

Comparing with the SPA, charging load curves of the HNS
are smoother, fast charging load is lower in rush hours when
it is higher in some hours of off-peak periods. Two possible
causes can be concluded to explain the results: (1) charging
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FIGURE 16. Load curves in other times.

TABLE 2. Load reduction under the HNS compares to the SPA.

FIGURE 17. Distribution of charging energy cost.

time selecting step of the HNS can help EV users choosing
better time, thus reduce the possibility of charging at rush
hours or charging in the case that SOC is still at high level
(>25%); (2) route selecting step of the proposed HNS can
offer better charging routes for EV users to reduce charging
energy cost, thus will decrease the total charging demand
especially in rush hours. So the results can demonstrate the
validity of the HNS’s peak-shaving function.

Figures 14-16 are worked out based on simulation results
of fast charging load. They show the load curve of Wuhan
power gird in case of different EV penetration. The basic
load curves of Wuhan in summer and winter are obtained
through the value of July/August and December/January in
2017. And the total amount of motor vehicles in Wuhan was
about 2.7 million in 2017 [37]. Table 2 gives the information
about the load reductions which are brought by the HNS
to basic load in different scenes. If EV penetration is 10%,
the peak loads of the SPA are 9199.25 and 6649.82 MW in
summer and winter respectively when they are 9013.99 and
6444.21 MW in case of using the HNS. The reduction of
peak load brought by the HNS is about 2.01% (summer) and

FIGURE 18. Distribution of charging time cost.

FIGURE 19. Charging energy cost in summer.

3.09% (winter). It can be seen that the difference of peak
load between the SPA and the HNS is not significantly in
occasion of low penetration. It is because the total load of
fast charging demand in this occasion is far less than the
base load, the proportion of reduction brought by the HNS
is also low. In case of 30% penetration, the influence of EV
fast charging to the power grid is far more obvious than in
case of 10% penetration, the reduction of peak load brought
by the HNS will increase to 5.65% (summer) and 6.17%
(winter). Figure 16 shows the load curves in other time,
whose temperature is not so extreme as in summer andwinter.
In this scene, the HNS can still bring improvements on load
curve compare to the SPA, but the improvements are not as
significant as in figure 14 and figure 15 due to the less energy
cost of air conditioners in EVs.

2) IMPACT ON EV USERS’ CHARGING COST
Figures 17-18 show the distribution of charging energy cost
and extra time cost of all the samples (EVs). These fig-
ures illustrate that the HNS can reduce the EV charging cost.
Figures 19-20 provide the statistics of the charging energy
cost and time cost under two navigation strategies. The dif-
ferences between the two strategies are most obvious in the
intervals of more than 5 kW·h (energy cost) and more than
50 minutes (time cost). In figures 19-20, compared with the
SPA, the charging energy cost of the HNS is distributed at the
lower range. The average charging energy cost of the HNS is
2.61 kW·h and 2.84 kW·h in summer and winter respectively
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FIGURE 20. Charging energy cost in winter.

FIGURE 21. Charging time cost in summer.

FIGURE 22. Charging time cost in winter.

when the value of the SPA is 4.06 kW·h and 4.17 kW·h. At the
aspect of charging extra time cost, the distribution features
are shown in figures 21-22, the charging extra time cost of
the HNS is also distributed lower than the SPA. The average
charging extra time cost of the HNS is 38.76 minutes and
36.33 minutes in summer and winter respectively when the
values of the SPA are 52.78 minutes and 51.93 minutes. The
results indicate that theHNS can help to decrease the charging
energy cost and extra time cost significantly.

Table 3 shows some basic simulation results of the SPA
and the HNS. Compared with the SPA, average start SOC of
the HNS decreases by 20% due to the charging time selection
step.

TABLE 3. Basic simulation results of the SPA and the HNS.

FIGURE 23. Distribution of initial SOC.

FIGURE 24. Distribution of the starting time.

FIGURE 25. EV users’ preferences (SPA, in summer).

3) IMPACT ON EV USERS’ CHARGING CHOICES
At the aspect of EV users’ charging choices, a statistical
analysis comparing charging start time and initial SOC of two
different strategies are carried out based on simulation results.
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FIGURE 26. EV users’ preferences (HNS, in summer).

FIGURE 27. EV users’ preferences (SPA, in winter).

FIGURE 28. EV users’ preferences (HNS, in winter).

Figures 23-28 give the information about the distribution of
starting time and initial SOC in two different scenes: summer
and winter. According to figure 23, the figures for the HNS
are higher than figures for the SPA in the condition that
SOC is lower than 25%. However, when it comes to the
condition that SOC is higher than 25%, the result turns out
to be the opposite. In figure 24, with the SPA, the number
of EVs charge at rush hours (9:00∼11:00, 16:00∼18:00) is
significantly higher than the figure for the HNS.

Figures 25-28 show the EV users’ preferences of starting
time and initial SOC under two strategies. When following
the SPA, the starting time distribution concentrate at rush
hours and initial SOC is normally distributed on a wide range.
That means the majority of EV users tend to charge at rush
hours, at the same time, many of them choose to charge when

the SOC of their EVs is higher than 25%, which is still in
high level. When following the HNS, more EV users choose
to charge at off-peak hours and there are also many EV users
decrease the initial SOC of charging.

V. CONCLUSION
This paper proposes a hierarchical navigation strategy (HNS)
of EV fast charging. During the navigation process, dynamic
traffic/temperature data and EV users using habits are consid-
ered. The proposed HNS first offers some efficient charging
time slots according to EV users using habits, which can
avoid charging at inefficient time slots. Then the HNS should
select charging time from the candidate time slots to provide
the optimal charging plan, at the same time, routes of the
charging process should also be selected. A priority coding
genetic algorithm (PCGA) is developed to solve the optimiza-
tion problem. In this algorithm, priority codes are assigned to
the nodes of the traffic system so that the routes can beworked
out through the codes.

The case study of this paper is based on the traffic, tem-
perature and power grid information of Wuhan, Hubei. Com-
pares to the traditional shortest path algorithm, the proposed
hierarchical navigation strategy can shave the peak load sig-
nificantly, especially in the scenarios of high EV penetration
and extreme weathers. At the same time, the energy and time
cost of EV users can also decrease dramatically.
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