
Received January 18, 2019, accepted February 6, 2019, date of publication February 18, 2019, date of current version August 14, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2899926

Off-Line Time Aware Scheduling of Bag-of-Tasks
on Heterogeneous Distributed System
HEJUN XUAN 1, SHIWEI WEI2, YANLING LI1,3, (Member, IEEE), AND HUAPING GUO1,3
1School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China
2School of Computer and Technology, Guilin University of Aerospace Technology, Guilin 541000, China
3Henan Key Laboratory of Analysis and Application of Education Big Data, Xinyang Normal University, Xinyang 464000, China

Corresponding author: Hejun Xuan (xuanhejun0896@126.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61572417, in part by the Science and
Technology Department of Henan Province under Grant 182102210132 and Grant 182102210537, in part by the Innovation Team Support
Plan of University Science and Technology of Henan Province under Grant 19IRTSTHN014, in part by the Guangxi Natural Science
Foundation of China under Grant 2016GXNSFAA380226, in part by the Guangxi Young and Middle-aged Teachers’ Basic Ability
Improvement Foundation of China under Grant 2017KY0866, in part by the Internet of Things and Big Data Application Research
Foundation of Guilin University of Aerospace Technology under Grant KJPT201809, and in part by the Nanhu Scholars Program for
Young Scholars of XYNU.

ABSTRACT The resource allocation for bag-of-tasks in the heterogeneous distributed system is to distribute
the tasks to proper processors such that the makespan is minimized. It is a well-known NP-hard problem,
and is even more complex and challenging when the processors have off-line time. To tackle this challenging
problem, first, we set up amathematical model for this problemwhichminimizes themakespan of the bag-of-
tasks with the off-line time segment of the processors. Second, to solve the model efficiently, we propose two
new algorithms: a new scheduling algorithm referred to as sorting-allocation-pulling scheduling algorithm
which first allocate the tasks to available time segment on proper processors and then pulls them to the
formerly available time segment for the sake of minimizing the makespan, and an effective genetic algorithm
with a novel local search operator and a well-designed modify operator. Finally, the numerical simulation
experiments are conducted, and the two proposed algorithms are compared. The experimental results indicate
the effectiveness of the proposed model and algorithms.

INDEX TERMS Distributed computing, task scheduling, bag-of-tasks, generic algorithm.

I. INTRODUCTION
Heterogeneous distributed system has emerged as a
commonly system for handling large scale scientific and
commercial problems in various fields, such as image pro-
cessing, signal processing, pattern matching in text, and
so on [2], [9], [12]–[14]. For the sake of improving the
performance of the system, many task scheduling algorithms
for heterogeneous or homogeneous distributed system have
been proposed in the past decades, e.g., [30], [33], [41], [44].
In order to obtain high performance and fast scheduling,
Wang et al. [41] proposed a multi-objective bi-level program-
ming model for energy and locality aware multi-job schedul-
ing in heterogeneous system. Sajid et al. developed two
scheduling algorithms to schedule a BoT (bag-of-tasks, BoT)
on heterogeneous system so as to minimize the makespan and
the energy consumption [33]. A representative algorithm is

The associate editor coordinating the review of this manuscript and
approving it for publication was Aniruddha Datta.

proposed to ensure timing correctness and minimize energy
consumption on processors with variable speeds [25]. A
reliability cost, which is defined as the product of failure
rate of processors and task processing time, is incorporated
into scheduling algorithm for the tasks with precedence con-
straints on heterogeneous system [37]. Lee and Zomaya [23]
classified the tasks into computation-intensive and data-
intensive BoT and presented two task scheduling algorithms
in Grid computing system respectively. Anglano et al. [3]
proposed a scheduling algorithmwith fault-aware strategy for
BoT scheduling on desktop Grids. Legrand and Touati [24]
analyzed the behavior of multiple noncooperative controllers
for handling BoT scheduling problem. Anglano et al. [4] eval-
uated the performance of five knowledge-free task scheduling
algorithms for scheduling multiple BoT in a desktop Grids
computing system. In addition, the performance of several
BoT scheduling solutions in large-scale distributed systems
also has been studied [18]. For BoT, there are some other
studies that aim to maximize throughput by establishing

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

104777

https://orcid.org/0000-0002-3062-1591


H. Xuan et al.: Off-Line Time Aware Scheduling of BoT on Heterogeneous Distributed System

linear programming or nonlinear programming [5], [6], and
the works were focused on steady-state optimization prob-
lems and concentrated on numerous tasks including inde-
pendent and similar tasks. Legrand et al. [5] researched a
centralized and decentralized scheduling algorithm for task
scheduling in heterogeneous system. To schedule concurrent
BoT, Benoit et al. [6] developed the online and off-line
scheduling algorithms. Celaya and Arronategui [7] designed
a decentralized scheduling algorithm to minimize the max-
imum stretch among user-submitted tasks. Yang et al. [45]
took the constraints of time, cost, and security into consider-
ation, and designed a scheduling algorithm for data-intensive
tasks. Oxley et al. [29] investigated both two problems:
optimizing the makespan of the tasks under the constraints
of energy, or minimizing energy consumption subject to
makespan. However, it only studied the static resource alloca-
tion problem to optimize makespan and energy robustness for
bag-of-tasks (BoT) on a heterogeneous computing system.
Zhang et al. [47] established a multi-objective optimiza-
tion model which minimizes makespan and resource cost.
To solve the optimization model, a scheduling algorithm
based on the ordinal optimization method is designed. How-
ever, the scheduling algorithm is inefficient when the task
number or processing node number is large. For task schedul-
ing models and algorithms, in order to make the problem
simple, a fundamental assumption is that all processors which
take participate in processing tasks are always available for
processing tasks [10]. However, it might be unreasonable.
For example, processor maintenance and breakdowns are
often required or other constraints exits, which may result
in the processers off-line for some time. In literature [16],
the processor availability is defined as the ratio of the total
available time to the total time during a given interval.
In the existing works, Some researchers have investigated
task scheduling algorithms with processor availability con-
straints [12], [19], [31], [32], [34]. Adiri et al. [1]. investigated
the scheduling problem with availability constraints in a
single machine system. For minimizing maximum lateness
of the n jobs, Sheen et al. [36] studied the problem on
homogeneous machines under machine availability and eli-
gibility constraints. Kacem et al. [20] proposed a branch-
and-bound method to solve the single-machine scheduling
problem with machine availability constraints, and this work
is extended to two-machine permutation flowshop schedul-
ing problem with an availability constraint [42]. However,
the basic assumption of this work is that the availability
constraint is imposed only on the first machine. Vahedi-
Nouri et al. [40] investigated the non-permutation flow-shop
scheduling problem with the learning effects and machine
availability constraints. To increase the availability and min-
imize the makespan of tasks, Zhao et al. [38] established
an availability-aware scheduling model in heterogeneous
systems and designed an optimization algorithm.As an exten-
sion work, Zhao et al. [39] developed a Hybrid Heuristic-Ant
Colony Optimization (H2ACO) for multiclass tasks on het-
erogeneous distributed systems with availability constraint.

H2ACO can make a good trade-off between availability and
makespans of the tasks. Yuan et al. [46] proposed a quantum-
behaved particle swarm optimization algorithm to optimize
the availability-aware task Scheduling on heterogeneous sys-
tems. In heterogeneous wireless networks, Zhou et al. [49]
designed a novel distributed availability-aware adaptive rate-
allocation scheduling algorithm for multimedia tasks.

In this paper, we investigate an off-line time aware schedul-
ing problem of bag-of-tasks (BoT) on heterogeneous dis-
tributed system. Different from the previous works, we does
not define the availability as value. Since shutdown or main-
tenance often exits, there is off-line time in which processors
cannot process the tasks, and the off-line time is known in
advance. So, the time of a processor can be divided into off-
line time segment and available time segment. The tasks can
only be allocated to the available time segment and cannot be
divided into several parts. In addition, the requirement for a
task similar to that in literature [17] is taken into considera-
tion. That is to say, for a specific task, it can only be processed
in some specific processors. In our work, we investigate
a resource allocation problem for bag-of-tasks in heteroge-
neous distributed system when the processors have off-line
time. The major contributions of this study are summarized
as follows:

• To minimize makespan of the tasks, we establish an
optimization model which takes off-line time constraint
of processors into consideration.

• A new scheduling algorithm referred to as sorting-
allocation-pulling (SAP) scheduling algorithm is pro-
posed, which first allocates the tasks in available time
segment on proper processors and then pulls them to a
suitable available time segment for the sake of minimiz-
ing the makespan.

• To solve the optimization model effectively, we design
an effective generic algorithm with a novel local search
and tailor-made operators.

• An analysis on the effectiveness of the two proposed
algorithms on two different sized systems with different
numbers of processors and tasks.

The rest of this paper is organized as follows. Section II
gives the system and task description, and establishes the
optimization model. The new scheduling algorithm of SAP
is described in section III. To solve the optimization model
effectively, we propose a generic algorithm with a novel local
search and tailor-made operators in section IV. Section V
presents simulation results to evaluate the algorithms. The
paper is concluded with a summary and future work in
Section VI.

II. PROBLEM FORMULATION
A. SYSTEM AND TASK DESCRIPTION
For the problem considered, the heterogeneous distributed
system has N + 1 processors including a master processor
and N slave processors. P0 denotes the master processor, and
the slave processors are denoted by P = {P1,P2, · · · ,PN }.

104778 VOLUME 7, 2019



H. Xuan et al.: Off-Line Time Aware Scheduling of BoT on Heterogeneous Distributed System

FIGURE 1. Available and off-line time of the processors in the
heterogeneous distributed system.

Each slave processor Pi(i = 1, 2, . . . ,N ) is associated with
a speed index wi, which is the time taken to process a unit
workload on processor Pi. Slave processor is the most basic
processing unit in our research. Since some reasons, such
as shutdown or termly maintenance requirements, slave pro-
cessors have some off-line time. [aji, b

j
i](i = 1, 2, . . . ,N ;

j = 1, 2, . . . , ni) denotes the jth(j = 1, 2, . . . , ni) off-
line time segment of processor Pi(i = 1, 2, . . . ,N ), and
ni is the number of off-line time segment for processor
Pi(i = 1, 2, . . . ,N ). For the convenience of modeling, we use
[cji, d

j
i ](i = 1, 2, . . . ,N ; j = 1, 2, . . . ,mi) to denote jth(j =

1, 2, . . . , ni) available time segment of processor Pi(i =
1, 2, . . . ,N ), and mi is the number of available time segment
for processor Pi(i = 1, 2, . . . ,N ). To understand easily,
the processors’ time diagram is shown in Fig.1. As shown
in Fig.1, there are some off-line time on each processor. That
is to say, we cannot allocate some tasks on the off-line time.

In our study, the bag-of-tasks are investigated. That is to
say, all the tasks are independent. The task set includes Nτ
independent tasks and the ith(1 ≤ i ≤ Nτ ) task is denoted
by τi. As in the previous work [17], these bag-of-tasks have
different computing requirements, and we assume that each
task can only be processed by some specific processors. �i
is a set of the processors that τi can allocated to, and τσi is
the workload of the task. Following the previous studies [11],
[22], we assume that the workload of task τσi is known after
a task arrives according to the prediction mechanisms such
as code profiling and statistical prediction. Following prior
works [27], [32], [43], we assume that the bag-of-tasks are
computation-intensive. That is to say, the time consuming
of task data transmission does not influence much on the
completion time and hence it can be negligible.

B. MATHEMATICAL MODELING
The task scheduling problem investigated in this paper is to
schedule all theNτ tasks to the proper available time segments
of N processors in the heterogeneous distributed system with
the purpose of minimizing the makespan of the tasks. Then,
we will give the optimization modeling of the problem.

FIGURE 2. The processing time diagram of processor Pi .

2 = (θkij )Nτ×N×mj is a binary matrix, where θkij = 1
if and only if task τi is assigned to the k th available time
segment of processor Pj, otherwise θkij = 0. Makespan is the
latest processing finish time of processor of all the processors.
If Ti denotes the processing finish time of processor Pi,
the makespan T of the tasks can be denoted by

T = max
1≤i≤N

{Ti} (1)

From formula (1), we can see that the processing finish
time of each processor should be calculated. For a specific
processor Pi, its processing time diagram is shown in Fig.2.

In the processing time diagram of processor Pi, it shows
that the processing finish time of processor Pi is determined
by the last available time segment which has tasks assigned
to. If li denote the last available time segment which has tasks
assigned of processor Pi, and δ

li
i is a set of tasks assigned to

l thi available time segment respectively, the processing finish
time of processor Pi can be calculated by

Ti = clii + wi
∑
q∈δli

τσq (2)

Then, we can rewrite formula (1), as

T = max
1≤i≤N

{Ti}

= max
1≤i≤N

clii + wi
∑
q∈δ

li
i

τσq

 (3)

Since each processor Pi(1 ≤ i ≤ N ) has off-line time, the
processing time of tasks that assigned to s-th segment should
not be greater than the available time. If the task set assigned
to s-th (1 ≤ s ≤ mi) available time segment on processor
Pi(1 ≤ i ≤ N ) is denoted by δsi , the following constraint
should be satisfied

wi
∑
q∈δsi

τσq ≤ d
s
i − c

s
i (4)

The objective of scheduling bag-of-tasks in heterogeneous
systems is to minimize the makespan T . It can be seen from
Eq.(3) that the processing finish time of processor Pi only
depends on the processing time of the last available time
segment which has tasks assigned to. Thus the bag-of-tasks
scheduling problem in heterogeneous distributed systems can

VOLUME 7, 2019 104779



H. Xuan et al.: Off-Line Time Aware Scheduling of BoT on Heterogeneous Distributed System

be modeled as determining the tasks distributed to processors
so that the makespan is minimized, i.e. an optimization model
for scheduling bag-of-tasks with the processors have off-line
time considered in heterogeneous distributed systems can be
set up as

minT = min

 max
1≤i≤N

clii + wi ∑
q∈δ

li
i

τσq




s.t. (a)
Nτ∑
i=1

N∑
j=1

mj∑
k=1

θkij = Nτ ;

(b)
N∑
j=1

mj∑
k=1

θkij = 1;

(c)wi
∑
q∈δsi

τσq ≤ d
s
i − c

s
i ;

(d)
∑
Pj∈�i

θkij ×

(
1−

∑
Pj∈P\�i

θkij

)
= 1;

(5)

Constraint (a) expresses that all the tasks should be dis-
tributed to the processors and completed. Constraint (b)
presents that a task can only assigned to one processor. Con-
straint (c) demonstrates that the processing time of the tasks
assigned to the available time segment should be less or equal
to the available time. Constraint (d) ensures that the task
should be assigned to the processor which can process the
task. To solve this global optimization model, an algorithm
referred to as sorting-allocation-pulling (SAP) scheduling
algorithm and generic algorithmwith a local research strategy
are proposed. The algorithm referred to as sorting-allocation-
pulling (SAP) scheduling algorithm will be described in
section III, and the generic algorithm proposed will be given
in section IV.

III. PROPOSED SAP ALGORITHM
A. THE ALGORITHM FRAMEWORK
In this section, we consider the task scheduling problem
with off-line time of the processors and propose the SAP
algorithm. For the sake of understanding the algorithm
macroscopically, the framework of the scheduling algorithm
is presented before presenting the detailed steps of the algo-
rithm. The sorting-allocation-pulling (SAP) scheduling algo-
rithm is shown in Algorithm 1. Step 1 is to sort all the tasks
τi(i = 1, · · · ,Nτ ) in an descending order according to the
workload τσi (i = 1, · · · ,Nτ ) of tasks; Step 3 to step 8 allo-
cate the tasks to available time segments on processors. For
minimizing the makespan, step 10 to step 25 are used to pull
the task to a available time segment before the segment which
allocated to.

B. DESCENDING ORDER
In the algorithm of SAP, we first sort the tasks in descending
order according to the workloads of tasks. We will explain
why we choose descending order as follows:
Case 1: As shown in Fig.3, suppose two tasks τi and

τj are all allocated to processor Pk , and the workloads of
tasks τi and τj satisfy τσi < τσj . In addition, both tasks τi

Algorithm 1 The algorithm framework of SAP
Input: Tasks τi(i = 1, · · · ,Nτ ), speed index wi and

available time segment [cji, d
j
i ](j = 1, · · · ,mi) of

processor Pi(i = 1, · · · ,N );
Output: a schedule scheme;

1 Put all the tasks into a task queue TQ, and sort them in
an descending order according to the workload τσi of
tasks τi(i = 1, · · · ,Nτ );

2 Allocation:
3 while TQ is not empty do
4 Take out the first task in TQ, and denote it as τhead ;
5 Select a processor Phead in �head to make the

current processing finish time is minimum;
6 Select an available time segment [cshead , d

s
head ] on

processor Phead and assign task τhead to it.
7 Update available time, cshead = cshead + τ

σ
headwhead ;

8 end
9 Pull:

10 for i = 1 to N do
11 while l > 1 do
12 %l is the last segment of available time segment

which has tasks allocated to.
13 Put all the tasks which allocate to l th segment

into a task queue subTQl , and sort them in an
descending order according to the workloads;

14 while subTQi is not empty do
15 Take out the first task and denote it as

τsubhead , flag = 0, k = 1;
16 while k < l and flag = 0 do
17 if τσsubheadwi ≤ d

k
i − c

k
i then

18 cki = cki + τ
σ
subheadwi;

19 flag = 1;
20 end
21 k = k + 1;
22 end
23 end
24 l = l − 1;
25 end
26 end

and τj can executed in the first available time segment on
processor Pk respectively, but τi and τj cannot executed in
the first available time segment simultaneously. As shown
in Fig.3(b), if τi executed before τj, we should allocate τi
to the first available time segment and allocate the τj to
the second segment. So, the makespan of the two tasks is
T 1
k = c2k+τ

σ
j wk . However, if τj is executed before τi as shown

in Fig3(c), the makespan of the two tasks is T 2
k = c2k + τ

σ
i wk .

We have τσi < τσj , so T
1
k > T 2

k .
Case 2: As shown in Fig.3(d) and Fig.3(e), tasks τi

and τj can be executed in the first available time seg-
ment on processor Pk simultaneous. If τi executed before
τj as shown in Fig.3(d), the makespan of the two tasks is

104780 VOLUME 7, 2019



H. Xuan et al.: Off-Line Time Aware Scheduling of BoT on Heterogeneous Distributed System

FIGURE 3. Influence of execute order on Makespan. (a) Time diagram of
Pk . (b) τi executed before τj . (c) τj executed before τi . (d) τi executed
before τj . (e) τj executed before τi .

T ak = c1k + (τσi + τ
σ
j )wk . Similarly, the makespan of the two

tasks is T bk = c1k + (τσi + τ
σ
j )wk when τj executed before τi

as shown in Fig.3(e). So, we can obtain T ak = T bk .
From the above discussion, we can know that allocation

order will effect the makespan of the tasks. If the larger task
is allocated first, themakespan of tasks will equal to or shorter
than that obtained by smaller workload task being allocated
first.

C. PROCESSOR SELECTION IN ALLOCATION
When the task queue TQ is not empty, the first task in TQ is
taken out and allocated to the processor. Since the objective
is to minimize the makespan of the tasks, so we must allocate
the task to a processor that can make the processing finish
time is minimum. In our work, the processor that task τi
should be allocated to is determine by

8i =

{
Pj|Pj ∈ �i, dkj − c

k
j ≥ τ

σ
i wj, 1 ≤ k ≤ mj

}
(6)

npproper = argmin
np

{
max
np∈8i

{
Tnp
}}

(7)

where Pnp is the candidate processor in processors set 8i
that the task τi can be allocated to, and Pnpproper is the proper
processor determined. Eq.(6) is to find the set 8i that the
task τi can be allocated to in �i. The processors in8i should
satisfy two conditions: (1) the processors should be in the set
�i. (2) At least a available time segment, which can execute
the task τi punctually, exists.

D. SEGMENT SELECTION IN ALLOCATION
After a proper processor determined, we should allocate task
τi to an optimal available time segment on processor Pnp.
An excellent strategy that allocates task to an available time
segment will help to minimize makespan of the tasks. We use
Eq.(8) and Eq.(9) to determine which segment task τi should

FIGURE 4. Segment determined. (a) Time diagram of Pk . (b) Allocate τ1 to
segment 1. (c) Allocate τ2 to segment 3.

be allocated to.

NS =
{
ns|1 ≤ ns ≤ mnp, dnsnp − c

ns
np ≥ τ

σ
i wnp

}
(8)

nsproper = argmin
ns

{(
dnsnp − c

ns
np

)
|ns ∈ NS

}
(9)

Eq.(8) is used to find some available time segments that can
complete task τi in time on processor Pnp. For the sake of
decreasing time debris which cannot complete any task in
time, the shortest time segment in NS is selected. There are
two tasks τ1 and τ2 allocated on processor Pk , and τσ1 > τσ2 .
τ1 can completed in segment 1 and 2, and τ2 can completed
in segment 2 and 3. Because the tasks in task queue TQ
are sorted in descending order according to workloads, τ1
is allocated before τ2. For τ1, since d1k − c1k < d2k − c2k ,
so τ1 is allocated to segment 1 according to Eq.(9) as shown
in Fig.4(b). Though segment 2 can complete τ2 in time and
segment 2 is before segment 3, we can see that τ2 is allocated
to segment 3 from Fig.4(c). This strategy can help to decrease
time debris and increase the utilization of the available time
segment.

E. THE STRATEGY OF PULLING
After the process of allocation, all the tasks are allocated to
the available time segments on processors. However, some
available time segments are exit because the strategy that
described in section III-D. As shown in Fig.5(a), τi is allo-
cated to (j + 1)th available time segment of processor Pk ,
so the processing finish time of Pk is Tk = cj+1k + τσi wk .
Since the jth available time segment can complete task τi in
time, we can pull task τi from (j+1)th available time segment
to jth available time segment as shown in Fig.5(b). So the
processing finish time of Pk can be denoted as T ′k = cjk +
τσi wk . T

′
k < Tk can be obtained intuitively. So, the strategy of

pulling tasks to another available time segment can decrease
the processing finish time of processors. For the sake of
decreasing the processing time of the processors as much as
possible, we should solve following two problems:(1)which
task should be pulled to the objective segment? (2) which
segment should be selected as the objective segment?
These two issues will be tackled in section III-E1 and
section III-E2.

VOLUME 7, 2019 104781



H. Xuan et al.: Off-Line Time Aware Scheduling of BoT on Heterogeneous Distributed System

FIGURE 5. Pull tasks to another available time segment. (a) Time diagram
of Pk after tasks are allocated. (b) Pull τi to j th available time segment.

1) SELECTION OF OBJECTIVE TASK
In this paper, we investigate the bag-of-tasks scheduling prob-
lem, and the objective of scheduling algorithm is to minimize
makespan of the tasks. The makepan of the tasks is deter-
mined by the processing finish time of all processors in the
heterogeneous computing system. From Eq.(2), we can see
that the processing finish time Ti(1 ≤ i ≤ N ) depends on the
tasks completed time in last available time segment li which
has tasks allocated to. Suppose SubQli is the tasks set which
allocate to the last available time segment l. Eq.(10) is used
to determine which task should be pulled to another available
time segment.

ntpro = argmax
nt

{
τσi |τi ∈ SubQli

}
(10)

2) SELECTION OF OBJECTIVE SEGMENT
To decrease the processing finish time of processors, in this
section, we will determine which segment should be selected
as the objective segment. For the sake of guaranting the task
τnt completed in time, the segment nspro is selected according
to Eq.(11).

nspro = argmin
ns

{
ns|dnsk − c

ns
k > τntprowk

}
(11)

The strategy of pulling task to another segment can
decrease processing finish time as much as possible. First,
the task τntpro with the largest workload is selected according
to Eq.(10), and an available time segment nspro is selected
according to Eq.(11). If nspro = ∅, let SubQli = SubQli \{
τntpro

}
, and then another task τntpro is selected according to

Eq.(10). If nspro 6= ∅, We pull the task τntpro from segment l
to the segment nsprop.

An example is presented in Fig.6. Task τa and τb are
allocated to the l thi available time segment, and τσa > τσb .
First, τa and τb are put into subQli . According to Eq.(10),
task τa is selected as the objective task. The ith segment is
selected as the objective segment according to Eq.(11). Then,
we pull τa to ith segment and update cik = cik + τ

σ
a wk . Since

nspro 6= ∅, we can select task τb and jth segment as the
objective task and objective segment respectively. Then, task
τb is pulled to jth segment and update cjk = cjk + τ

σ
b wk . Let

li = li − 1, a new round of pulling is conducted until the
objective segment cannot be found.

IV. GA FOR BOT SCHEDULING
Task scheduling is an NP hard problem in the well-known
hardest combinatorial optimization problems. GAs(Generic

FIGURE 6. An example of pulling tasks to another available time
segment. (a) Time diagram of Pk after tasks are allocated. (b) Pull τa and
τb to i th, j th available time segment respectively.

Algorithm 2 Encoding and Population Initialization
Input: N ,Nτ , population size Popsize;
Output: Initial population Pop;

1 for i = 1 to Popsize do
2 for j = 1 to Nτ do
3 flag_allocated = 0;
4 while flag_allocated == 0 do
5 p�j is a permutation of the elements in �j;
6 A random integer is generated in

[1, size(�j)], denoted as k1;
7 Pop(1, j, i) = p�j(k1);
8 flag_segment = 0;
9 while flag_segment == 0 do

10 Let np = Pop(1, j, i); pM be a
permutation of elements

{
1, 2, · · · , np

}
;

11 A random integer is generated in
[1,mnp ], denoted as k2;

12 if ck2np + τ
σ
j wnp ≤ d

k2
np then

13 flag_segment = 1;
14 Pop(2, j, i) = pM (k2);
15 end
16 end
17 if flag_segment == 1 then
18 flag_allocated = 1;
19 ck2np = ck2np + τ

σ
j wnp;

20 end
21 end
22 end
23 end

algorithms, GAs), which were invented by John Holland [15],
have demonstrated their potential in solving many NP hard
realistic application problems such as Control and Decision,
image processing, and machine learning, etc [8], [21], [26],
[35], [48]. In this paper, a GA is designed to solve the task
scheduling optimization model proposed in section II.

A. ENCODING AND POPULATION INITIALIZATION
Based on the characteristics of this optimization model for
bag-of-tasks scheduling problem, the integer array encoding
scheme is adopted. An array C2×Nτ = (cij)2×Nτ is used to
represent a list of 2 × Nτ elements, called chromosome. For
a specific task τj(1 ≤ j ≤ Nτ ), we have c1i = j, c2i = k ⇔
θkij = 1. We can obtain the initial population Pop of generic

104782 VOLUME 7, 2019



H. Xuan et al.: Off-Line Time Aware Scheduling of BoT on Heterogeneous Distributed System

Algorithm 3 Mutation Operator
Input: Individual C = (cij)2×Nτ ;
Output: Offspring C ′ = (c′ij)2×Nτ ;

1 C ′ = C;
2 Two random integers i, j(i < j) are generated;
3 for k = i to j do
4 Let np = i+ j− k;
5 if C(1, np) ∈ �i and C(2, np) ≤ mC(1,np) then
6 C ′(1, k) = C(1, np);
7 C ′(2, k) = C(2, np);
8 else
9 Calculate npbest and nsbest by Eq.(12);

10 C ′(1, k) = npbest ;
11 C ′(2, k) = nsbest ;
12 end
13 end

allocation according to the algorithm 2. It has an advantage
that the individuals in initial population are all the feasible
solutions.

B. MUTATION OPERATOR
Suppose that the chromosomeC = (cij)2×Nτ is chosen to take
part in mutation, and the offspring C ′ = (c′ij)2×Nτ is obtained
by the mutation as shown in algorithm 3.

{npbest , nsbest } = argmin
np,ns

{
max

1≤ns≤mnp

{
Tnp
}}

(12)

where Pnp(np ∈ �i) are the processors which have tasks
allocated to and ns is the available time segment on processor
Pnp. Eq.(12) is used to search the best processor Pnpbest and
available time segment nsbetter on processorPnpbest for tasks τi
to make themaximum processing finish time of all processors
in �i is minimized.

C. LOCAL SEARCH
In this paper, a local search operator, which can accelerate
the convergence and enhance the searching ability of the
proposed algorithm, is designed. If the local search operator
is applied to the chromosome C = (cij)2×Nτ , the offspring
C ′ = (c′ij)2×Nτ is obtained by local search operator as shown
in algorithm 4.

nsbetter = argmin
ns

{
max

1≤ns≤mnp

{
Tnp
}}

(13)

where Pnp is the processor that the tasks are allocated to.
Eq.(13) is used to search a better available time segment
nsbetter in processor Pnp.

D. MODIFIED OPERATOR
For the sake of accelerating the convergence of genetic algo-
rithm andminimizingmakespan of the tasks, amodified oper-
ator is designed. The pseudocode of the modified operator

Algorithm 4 Local Search Operator
Input: Individual C = (cij)2×Nτ ;
Output: Offsprings C ′ = (c′ij)2×Nτ ;

1 C ′ = C;
2 for i = 1 to Nτ do
3 Calculate nsbetter by Eq.(13);
4 if nsbetter 6= C(2, i) then
5 C(2, i) = nsbetter ;
6 end
7 end

Algorithm 5 Modified Operator
Input: Individual C = (cij)2×Nτ ;
Output: Offsprings C ′ = (c′ij)2×Nτ ;

1 C ′ = C;
2 for i = 1 to N do
3 for j = mi to 2 do
4 9

j
i is the set of tasks allocated to jth available

time segment of processor Pi, and the tasks are
sorted in descending order according to
workloads;

5 for k = size(9i) to 1 do
6 if ∃p < j satisfy τσ

9
j
i (k)

wi < dp − cp then

7 C ′(2, 9i(k)) = p;
8 end
9 end

10 end
11 end

is shown in algorithm5. A chromosome C = (cij)2×Nτ will
modified as C ′ = (c′ij)2×Nτ .

V. EXPERIMENTS AND ANALYSIS
As there is no algorithm available in the literature for schedul-
ing bag of tasks in heterogeneous system with off-line time
segment constraints. To demonstrate the effectiveness and
efficiency of the proposed algorithms, we compare the pro-
posed two algorithms with other two algorithms, which are
proposed in literature [6] (briefly CBS3M_EDF_ROFF)and
literature [39](briefly H2ACO). The two compared algo-
rithms can be modified to suit for the problem of this work
investigated. Several experiments on these two algorithms
are conducted and the results are presented in this section.
In section V-A, the parameters used in the algorithms will be
given. Experimental results are presented in section V-B and
section V-C. Finally, the experimental results are analyzed in
section V-D.

A. PARAMETERS VALUE
1) TASKS PARAMETERS
In this paper, we investigate the bag-of-tasks(BoT) schedul-
ing problem in heterogeneous distributed system. In small

VOLUME 7, 2019 104783



H. Xuan et al.: Off-Line Time Aware Scheduling of BoT on Heterogeneous Distributed System

simulation system, the workload ranges from 500 to 6000,
and the tasks number Nτ varies between 50 and 500. Simi-
larly, in large simulation system, Nτ varies between 1000 and
10000, and the workload ranges from 1000 to 12000. Six
groups experiments are conducted in small and large systems,
respectively. In addition, for each task τi(1 ≤ i ≤ Nτ ), a set
�i of the processors, which process task τi, is generated as
follow: a random number nr is generated in (0, 1], and set the
cardinality of �i as npro = bnrNc. Then, npro processors are
selected in P randomly and they form the set �i, where P is
the set of all processors.

2) SYSTEM PARAMETERS
For the heterogeneous simulation system, we adopt 20 and
200 heterogeneous slave processors in small simulation sys-
tem and large simulation system respectively. The time
consuming for unit workload wi(1 ≤ i ≤ N ) of pro-
cessor Pi(1 ≤ i ≤ N ) in the heterogeneous dis-
tributed system is referred to Shang [28]. The available
time segment mi on processor Pi is generated randomly
in [5] and [20]. The length of k th(1 ≤ k < mi)
available time segment on Pi is generated randomly in[
wi × mean1≤i≤Nτ {τ

σ
i }, 3× wi × mean1≤i≤Nτ {τ

σ
i }
]
. If k =

mi, dki can equal to +∞, that is to say, the processor Pi can
process tasks all the time in mthi available time segment.

3) GENETIC ALGORITHM PARAMETERS
In this paper, GA denotes the algorithm of genetic algorithm
without local search operator and modified operator, and
genetic algorithm with local search and modified operator
denoted as GALM. Similarly, GAL and GAM are indicated
as the genetic algorithm with local search and modified oper-
ator respectively. In the algorithm of GA, GAL, GAM and
GALM, the following parameters are chosen: population size
Popsize = 100, crossover probability pc = 0.8, mutation
probability pm = 0.05, elitist number E = 5 and maximum
iterations Gmax = Nτ . Since the concept of neighborhoods
of a individual is employed, neighbor size T = 10 in our
experiments.

B. EXPERIMENTAL RESULTS IN SMALL
SIMULATION SYSTEM
To evaluate the effectiveness of the proposed schedul-
ing algorithm, in this sub-section, we present a perfor-
mance evaluation study in small simulation system. First,
we evaluate the makespans of the five algorithms (SAP,
GA, GAL, GAM, GALM) and two compared algorithms
(CBS3M_EDF_ROFF andH2ACO) for various task numbers
(Nτ ) and workloads in Fig.7(a) to Fig.7(f).

To evaluate the efficiency of GA, GAL, GAM and GALM,
convergence results of the four algorithms are shown in
Fig.8(a) to Fig.8(d). In these experiments, a specific number
of task Nτ = 50 is selected, and the maximum iterations are
set to Gmax = 1000 in every group of experiments.

FIGURE 7. Makespans in small simulation system. (a) 500 ≤ τσ
i ≤ 1000.

(b) 500 ≤ τσ
i ≤ 2000. (c) 500 ≤ τσ

i ≤ 3000. (d) 500 ≤ τσ
i ≤ 4000. (e)

500 ≤ τσ
i ≤ 5000. (f) 500 ≤ τσ

i ≤ 6000.

FIGURE 8. Convergence of the four algorithms in small simulation
system. (a) 1000 ≤ τσ

i ≤ 2000. (b) 1000 ≤ τσ
i ≤ 3000.

(c) 1000 ≤ τσ
i ≤ 4000. (d) 1000 ≤ τσ

i ≤ 5000.

To evaluate the robustness of the four algorithms (GA,
GAL, GAM and GALM), every algorithm is executed

104784 VOLUME 7, 2019



H. Xuan et al.: Off-Line Time Aware Scheduling of BoT on Heterogeneous Distributed System

FIGURE 9. Robustness of the four algorithms in small simulation system.
(a) The robustness of GA. (b) The robustness of GAL. (c) The robustness of
GAM. (d) The robustness of GALM.

30 times independently. In these experiments, the workload
is uniformly distributed in [1000 5000], and the number of
tasks ranges from 50 to 500. The statistics results of the four
algorithms are shown in Fig.12(a) to Fig.12(d) respectively
using Box-whisker Plot.

C. EXPERIMENTAL RESULTS IN LARGE
SIMULATION SYSTEM
Similar to the small simulation system, makespan, conver-
gence and robustness of the proposed algorithms and two
compared algorithms are evaluated with various task numbers
(Nτ ) and workload. The makespans obtained by the five
algorithms in large simulation system are shown in Fig.10(a)
to Fig.10(f).

To evaluate the efficiency of GA, GAL, GAM and GALM
in large simulation system, convergence results of the four
algorithms are shown in Fig.8(a) to Fig.8(d). In these exper-
iments, a specific number of tasks Nτ = 1000 is selected,
and the maximum iterationsGmax = 10000 in every group of
experiments.

Similar to the small simulation system, robustness of the
four algorithms (GA, GAL, GAM and GALM) in large
simulation system is evaluated, every algorithm is executed
30 times independently. In these experiments, the workload
is uniformly distributed in [1000 10000], and the number
of tasks ranges from 1000 to 10000. The statistics results
of the four algorithms are shown in Fig.12(a) to Fig.12(d)
respectively using Box-whisker Plot.

D. EXPERIMENTAL ANALYSIS
The experiments are conducted in two simulation systems,
i.e, the small simulation system and the large simula-
tion system, with various numbers of tasks and workloads.

FIGURE 10. Makespans in large simulation system. (a) 1000 ≤ τσ
i ≤ 2000.

(b) 1000 ≤ τσ
i ≤ 4000. (c) 1000 ≤ τσ

i ≤ 6000. (d) 1000 ≤ τσ
i ≤ 8000.

(e) 1000 ≤ τσ
i ≤ 10000. (f) 1000 ≤ τσ

i ≤ 12000.

The makespans obtained by the proposed algorithms
(SAP, GA, GAL, GAM, GALM) and compared algorithms
(CBS3M_EDF_ROFF and H2ACO) are shown in Fig.7 and
Fig.10. From Fig.7 and Fig.10, we can see that makespan
obtained by proposed algorithms are smaller than that
obtained by the compared algorithms. In addition, we can
see that makespan obtained by SAP is shorter than those by
GA, GAL, GAM and GALM when task number is small,
and that makespan obtained by SAP is longer than those by
other four algorithms when task number is large. Since the
information of un-scheduled tasks has not been considered,
the procedure of processor determination will result in a bad
scheduling strategy in SAP algorithm. What is more, SAP
algorithm first the tasks according to their workloads, and
the task with a large workload will be scheduled preferen-
tially, which also makes the scheduling algorithm with a low
efficiency and easily trapping in a local optimal solution
when task number is large. However, GA, GAL, GAM and
GALM can obtain a better scheduling strategy according to
all the information and the state of the processors. Since local
search operator and modified operator are tailor-made, both
of them are conducive to increasing the diversity of solutions
and searching a local optimal solution in search space. So,
GAL and GAM can convergent to a better solution than GA.

VOLUME 7, 2019 104785



H. Xuan et al.: Off-Line Time Aware Scheduling of BoT on Heterogeneous Distributed System

FIGURE 11. Convergence of the four algorithms in large simulation
system. (a) 1000 ≤ τσ

i ≤ 3000. (b) 1000 ≤ τσ
i ≤ 6000. (c)

1000 ≤ τσ
i ≤ 9000. (d) 1000 ≤ τσ

i ≤ 12000.

That is to say, makespan obtained by GAL and GAM both are
shorter than that obtained by GA. GALM is a algorithm that
local search and modified operator are added into GA. So,
makespan obtained by GALM is shortest. However, GAL is
hard to tell from GAM. Because local search operator and
modified operator both are search a local optimal solution
by changing scheduling scheme of a task. As shown in the
Fig.7 and Fig.10, we can see that makespan obtained by
GALM is shortest, and makespan obtained by GA is largest
among the four algorithms(GA, GAL, GAM and GALM).
Makespan obtained by GAL is shorter than that obtained
by GAM in some cases. However, the opposite results can
be obtained in other cases. In addition, we can see that the
different between makespan obtained by SAP and GA are
gradual increased with the num of task increased. Similarly,
the same conclusion can be obtained in large similar system.

In addition, convergence of proposed four algorithms
including GA, GAL, GAM and GALM are investigated in
small simulation system and large simulation system. In this
paper, we design a local search operator and a modify oper-
ator, and the two optimization algorithms referred as GAL
and GAM. Local search operator and modified operator are
conducive to increasing the diversity of the solutions and
searching a local optimal solution in search space. On the one
hand, local search operator can generate a better offspring
than its parent individual by changing the value of a gene.
On the other hand, modified operator can also decrease the
processing finish time of a processor as much as possible. For
a specific generation, the offsprings obtained by local search
operator and modified operator will have better fitness than
their parents. So, GAL and GAM can convergent to global
optimal solution quickly. That is to say, GAL and GAM have
a higher convergent speed than GA. However, we cannot

FIGURE 12. Robustness of the four algorithms in large simulation system.
(a) The robustness of GA. (b) The robustness of GAL. (c) The robustness of
GAM. (d) The robustness of GALM.

tell good or bad for GAL and GAM. As we can see in the
experimental results, GAL is better than GAM in some cases,
and GAM is better than GAL in others case. Because local
search operator and modified operator are both searching a
local optimal solution by changing scheduling scheme of a
task. GALM is a algorithm that comprise of GA, local search
operator and modified operator. So, it can convergent to a
global optimal solution as fast as possible. As shown in the
Fig.7 and Fig.10, GALM has a highest convergent speed
among the four algorithms (GA, GAL, GAM and GALM),
and the convergent speed of GA is lowest.

What is more, the robustness of the four algorithms are
investigated in small simulation system and large simulation
system. Fig.9(a) to Fig.9(d) give the robustness of GA, GAL,
GAM and GALM in small simulation system for various task
number. The robustness of the four algorithms in large sim-
ulation system for various task number is shown in Fig.12(a)
to Fig.12(d). From the figures, we can see that the four
algorithms have a high robustness for various task number.
With increasing of the tasks and processors, much more
local optimal solutions exit. So, in small simulation system,
the robustness of the algorithms are higher when the number
of task is smaller, and the robustness will be decreased with
the number of task increased. Similarly conclusion can be
obtained in large simulation system.

VI. CONCLUSION
In this paper, we investigate a bag-of-tasks(BoT) scheduling
problem with off-line time considered in heterogeneous dis-
tributed system. For the sake of minimizing the makespan of
the tasks, we establish a mathematical optimization model
with the off-line time constrained. we propose two new algo-
rithms: a new scheduling algorithm referred to as sorting-
allocation-pulling(SAP) scheduling algorithm and a genetic

104786 VOLUME 7, 2019



H. Xuan et al.: Off-Line Time Aware Scheduling of BoT on Heterogeneous Distributed System

algorithm. In the algorithm of SAP, we first allocate the
bag-of-tasks to the available time segment. To reduce the
makespan of the tasks, we design a strategy that pulls the tasks
to another available time segment. In the genetic, local search
operator and modified operator are tailor-made. In the exper-
iments, two simulation systems are employed. Makespan
obtained by the five algorithms with various number of tasks
and workload are evaluated. In addition, convergence and
robustness of GA, GAL, GAM and GALM are evaluated in
the two simulation system. Experimental results show that
the algorithms proposed are efficient. What is more, the four
algorithms of GA, GAL, GAM, GALM can converge to the
global optimal solution quickly and have a higher robustness.

REFERENCES
[1] I. Adiri, J. Bruno, E. Frostig, and A. H. G. R. Kan, ‘‘Single machine flow-

time scheduling with a single breakdown,’’ Acta Inform., vol. 26, no. 7,
pp. 679–696, 1989.

[2] M. I. Alghamdi, X. Jiang, J. Zhang, J. Zhang, M. Jiang, and X. Qin,
‘‘Towards two-phase scheduling of real-time applications in distributed
systems,’’ J. Netw. Comput. Appl., vol. 84, pp. 109–117, Apr. 2017.

[3] C. Anglano, J. Brevik, M. Canonico, D. Nurmi, and R. Wolski, ‘‘Fault-
aware scheduling for bag-of-tasks applications on desktop grids,’’ in Proc.
7th IEEE/ACM Int. Conf. Grid Comput., Sep. 2006, pp. 56–63.

[4] C. Anglano and M. Canonico, ‘‘Scheduling algorithms for multiple
bag-of-task applications on desktop grids: A knowledge-free approach,’’
in Proc. IEEE Int. Symp. Parallel Distrib. Process. (IPDPS), Apr. 2008,
pp. 1–8.

[5] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L.Marchal, andY. Robert,
‘‘Centralized versus distributed schedulers for bag-of-tasks applications,’’
IEEE Trans. Parallel Distrib. Syst., vol. 19, no. 5, pp. 698–709, May 2008.

[6] A. Benoit, L. Marchal, J.-F. Pineau, Y. Robert, and F. Vivien, ‘‘Scheduling
concurrent bag-of-tasks applications on heterogeneous platforms,’’ IEEE
Trans. Comput., vol. 59, no. 2, pp. 202–217, Feb. 2010.

[7] J. Celaya and U. Arronategui, ‘‘Fair scheduling of bag-of-tasks appli-
cations on large-scale platforms,’’ Future Gener. Comput. Syst., vol. 49,
pp. 28–44, Aug. 2015.

[8] R. Datta, S. Pradhan, and B. Bhattacharya, ‘‘Analysis and design optimiza-
tion of a robotic gripper using multiobjective genetic algorithm,’’ IEEE
Trans. Syst., Man, Cybern. Syst., vol. 46, no. 1, pp. 16–26, Jan. 2016.

[9] M. D. de Assunção, A. da Silva Veith, and R. Buyya, ‘‘Distributed data
stream processing and edge computing: A survey on resource elasticity and
future directions,’’ J. Netw. Comput. Appl., vol. 103, pp. 1–17, Feb. 2018.

[10] Z. Ding, J. Liu, Y. Sun, C. Jiang, and M. Zhou, ‘‘A transaction and
QoS-aware service selection approach based on genetic algorithm,’’ IEEE
Trans. Syst., Man, Cybern., Syst., vol. 45, no. 7, pp. 1035–1046, Jul. 2015.

[11] N. Doulamis, E. Varvarigos1, and T. Varvarigou, ‘‘Fair scheduling algo-
rithms in grids,’’ IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 11,
pp. 1630–1648, Nov. 2007.

[12] M. Guo, Q. Guan, and W. Ke, ‘‘Optimal scheduling of VMs in queueing
cloud computing systems with a heterogeneous workload,’’ IEEE Access,
vol. 6, pp. 15178–15191, 2018.

[13] S. Haider and B. Nazir, ‘‘Dynamic and adaptive fault tolerant scheduling
with QoS consideration in computational grid,’’ IEEE Access, vol. 5,
pp. 7853–7873, 2017.

[14] H. Han,W. Bao, X. Zhu, X. Feng, andW. Zhou, ‘‘Fault-tolerant scheduling
for hybrid real-time tasks based on CPB model in cloud,’’ IEEE Access,
vol. 6, pp. 18616–18629, 2018.

[15] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis With Applications to Biology, Control, and Artificial
Intelligence. Ann Arbor, MI, USA: Univ. of Michigan Press, 1975.

[16] H. C. Lau and C. Zhang, ‘‘Job scheduling with unfixed availability
constraints,’’ in Proc. ACM 35th Meeting Decis. Sci. Inst. (DSI), 2004,
pp. 4401–4406.

[17] M. Hu and B. Veeravalli, ‘‘Requirement-aware scheduling of bag-of-tasks
applications on grids with dynamic resilience,’’ IEEE Trans. Comput.,
vol. 62, no. 10, pp. 2108–2114, Oct. 2013.

[18] A. Iosup, O. Sonmez, S. Anoep, and D. Epema, ‘‘The performance of bags-
of-tasks in large-scale distributed systems,’’ in Proc. 17th Int. Symp. High
Perform. Distrib. Comput., 2008, pp. 97–108.

[19] A. Janiak and W. Janiak, ‘‘Single-processor scheduling problem with
dynamic models of task release dates,’’ IEEE Trans. Syst., Man,
Cybern. A, Syst. Humans, vol. 41, no. 2, pp. 264–271, Mar. 2011.

[20] I. Kacem, C. Sadfi, and A. El-Kamel, ‘‘Branch and bound and dynamic
programming to minimize the total completion times on a single machine
with availability constraints,’’ in Proc. IEEE Int. Conf. Syst., Man Cybern.,
vol. 2, Oct. 2005, pp. 1657–1662.

[21] G. Kumar andM.K. Rai, ‘‘An energy efficient and optimized load balanced
localization method using CDS with one-hop neighbourhood and genetic
algorithm inWSNs,’’ J. Netw. Comput. Appl., vol. 78, pp. 73–82, Jan. 2017.

[22] W. Y. Lee, S. J. Hong, and J. Kim, ‘‘On-line scheduling of scalable
real-time tasks on multiprocessor systems,’’ J. Parallel Distrib. Comput.,
vol. 63, no. 12, pp. 1315–1324, 2003.

[23] Y. C. Lee and A. Y. Zomaya, ‘‘Practical scheduling of bag-of-tasks appli-
cations on grids with dynamic resilience,’’ IEEE Trans. Comput., vol. 56,
no. 6, pp. 815–825, Jun. 2007.

[24] A. Legrand and C. Touati, ‘‘Non-cooperative scheduling of multi-
ple bag-of-task applications,’’ in Proc. IEEE 26th Int. Conf. Comput.
Commun. (INFOCOM), May 2007, pp. 427–435.

[25] J. Li, L. Shu, J.-J. Chen, and G. Li, ‘‘Energy-efficient scheduling in non-
preemptive systems with real-time constraints,’’ IEEE Trans. Syst., Man,
Cybern. Syst., vol. 43, no. 2, pp. 332–344, Mar. 2013.

[26] C.-C. Lin, H.-H. Chin, and W.-B. Chen, ‘‘Balancing latency and cost in
software-defined vehicular networks using genetic algorithm,’’ J. Netw.
Comput. Appl., vol. 116, pp. 35–41, Aug. 2018.

[27] M. Maheswaran, S. Ali, H. J. Siegal, D. Hensgen, and R. F. Freund,
‘‘Dynamic matching and scheduling of a class of independent tasks onto
heterogeneous computing systems,’’ in Proc. 8th Heterogeneous Comput.
Workshop (HCW), Apr. 1999, pp. 30–44.

[28] S. Mingsheng, ‘‘Optimal algorithm for scheduling large divisible work-
load on heterogeneous system,’’ Appl. Math. Model., vol. 32, no. 9,
pp. 1682–1695, 2008.

[29] M. A. Oxley et al., ‘‘Makespan and energy robust stochastic static resource
allocation of a bag-of-tasks to a heterogeneous computing system,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 26, no. 10, pp. 2791–2805, Oct. 2015.

[30] C. Pang, J. Yan, and V. Vyatkin, ‘‘Time-complemented event-driven archi-
tecture for distributed automation systems,’’ IEEE Trans. Syst., Man,
Cybern. Syst., vol. 45, no. 8, pp. 1165–1177, Aug. 2015.

[31] X. Qi, T. Chen, and F. Tu, ‘‘Scheduling the maintenance on a single
machine,’’ J. Oper. Res. Soc., vol. 50, no. 10, pp. 1071–1078, 1999.

[32] X. Qin and T. Xie, ‘‘An availability-aware task scheduling strategy
for heterogeneous systems,’’ IEEE Trans. Comput., vol. 57, no. 2,
pp. 188–199, Feb. 2008.

[33] M. Sajid, Z. Raza, andM. Shahid, ‘‘Energy-efficient scheduling algorithms
for batch-of-tasks (BoT) applications on heterogeneous computing sys-
tems,’’Concurrency Comput., Pract. Exper., vol. 28, no. 9, pp. 2644–2669,
2015.

[34] E. Sanlaville and G. Schmidt, ‘‘Machine scheduling with availability con-
straints,’’ Acta Inf., vol. 35, no. 9, pp. 795–811, 1998.

[35] G. Schmidt, ‘‘Scheduling with limited machine availability,’’ Eur. J. Oper.
Res., vol. 121, no. 1, pp. 1–15, 2000.

[36] G.-J. Sheen and L.-W. Liao, ‘‘Scheduling machine-dependent jobs to
minimize lateness on machines with identical speed under availability
constraints,’’ Comput. Oper. Res., vol. 34, no. 8, pp. 2266–2278, 2007.

[37] S. Srinivasan and N. K. Jha, ‘‘Safety and reliability driven task allocation
in distributed systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 10, no. 3,
pp. 238–251, Mar. 1999.

[38] T. Zhao, K.-L. Li, Z. Xiao, and X. Qin, ‘‘A QoS scheduling scheme
with availability constraint in distributed systems,’’ in Proc. 13th Int.
Conf. Parallel Distrib. Comput., Appl. Technol. (PDCAT), Dec. 2012,
pp. 481–486.

[39] T. Zhao, K.-L. Li, Z. Xiao, and X. Qin, ‘‘H2ACO: An optimization
approach to scheduling tasks with availability constraint in heterogeneous
systems,’’ J. Internet Technol., vol. 15, no. 1, pp. 115–124, 2014.

[40] B. Vahedi-Nouri, P. Fattahi, and R. Ramezanian, ‘‘Minimizing total flow
time for the non-permutation flow shop scheduling problem with learn-
ing effects and availability constraints,’’ J. Manuf. Syst., vol. 32, no. 1,
pp. 167–173, 2013.

[41] X. Wang, Y. Wang, and Y. Cui, ‘‘A new multi-objective bi-level program-
ming model for energy and locality aware multi-job scheduling in cloud
computing,’’ Future Gener. Comput. Syst., vol. 36, pp. 91–101, Jul. 2014.

VOLUME 7, 2019 104787



H. Xuan et al.: Off-Line Time Aware Scheduling of BoT on Heterogeneous Distributed System

[42] X. Wang and T. C. E. Cheng, ‘‘An approximation scheme for two-machine
flowshop scheduling with setup times and an availability constraint,’’
Comput. Oper. Res., vol. 34, no. 10, pp. 2894–2901, 2007.

[43] L. Xiao, Y. Zhu, L. M. Ni, and Z. Xu, ‘‘Incentive-based scheduling for
market-like computational grids,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 19, no. 7, pp. 903–913, Jul. 2008.

[44] H. Xuan, Y. Wang, and X. Wang, ‘‘Fault-tolerant scheduling algorithm
with re-allocation for divisible loads on homogeneous distributed system,’’
IEEE Access, vol. 6, pp. 73147–73157, 2018.

[45] Y. Yang, X. Peng, and X. Wan, ‘‘Security-aware data replica selection
strategy for bag-of-tasks application in cloud computing,’’ J. High Speed
Netw., vol. 21, no. 4, pp. 299–311, 2015.

[46] H. Yuan, Y. Wang, L. Chen, ‘‘An availability-aware task scheduling for
heterogeneous systems using quantum-behaved particle swarm optimiza-
tion,’’ in Proc. Int. Conf. Swarm Intell. Berlin, Germany: Springer, 2010,
pp. 120–127.

[47] F. Zhang, J. Cao, K. Li, S. U. Khan, and K. Hwang, ‘‘Multi-objective
scheduling of many tasks in cloud platforms,’’ Future Generat. Comput.
Syst., vol. 37, pp. 309–320, Jul. 2014.

[48] Y. Zhang and Y. Zhou, ‘‘Distributed coordination control of traffic network
flow using adaptive genetic algorithm based on cloud computing,’’ J. Netw.
Comput. Appl., vol. 119, pp. 110–120, Oct. 2018.

[49] L. Zhou, H. Wang, S. Lian, Y. Zhang, A. Vasilakos, and W. Jing,
‘‘Availability-aware multimedia scheduling in heterogeneous wireless net-
works,’’ IEEE Trans. Veh. Technol., vol. 60, no. 3, pp. 1161–1170,
Mar. 2011.

HEJUN XUAN received the B.Sc. degree in
computer science and technology from Xinyang
Normal University, China, in 2012, and the Ph.D.
degree in computer software and theory from
Xidian University, China, in 2018. He is cur-
rently with the School of Computer and Informa-
tion Technology, Xinyang Normal University. His
research interests include cloud/grid/cluster com-
puting, and scheduling in parallel and distributed
systems.

SHIWEI WEI received the B.Sc. and M.Sc.
degrees in computer science and technology
from the Guilin University of Electronic Tech-
nology, China, in 2004 and 2007, respectively.
He is currently an Associate Professor in com-
puter and technology with the Guilin University
of Aerospace Technology. His research interests
include cloud computing and machine learning.

YANLING LI received the Ph.D. degree in com-
puter science and technology from the Huazhong
University of Science and Technology, China. She
is currently a Professor with the Computer and
Information Technology, Xinyang Normal Univer-
sity. Her research interests include machine learn-
ing and image processing.

HUAPING GUO received the Ph.D. degree in
computer science and technology from Zhengzhou
University, China. He is currently anAssistant Pro-
fessor with the Computer and Information Tech-
nology, Xinyang Normal University. His research
interests include machine learning and image
processing.

104788 VOLUME 7, 2019


	INTRODUCTION
	PROBLEM FORMULATION
	SYSTEM AND TASK DESCRIPTION
	MATHEMATICAL MODELING

	PROPOSED SAP ALGORITHM
	THE ALGORITHM FRAMEWORK
	DESCENDING ORDER
	PROCESSOR SELECTION IN ALLOCATION
	SEGMENT SELECTION IN ALLOCATION
	THE STRATEGY OF PULLING
	SELECTION OF OBJECTIVE TASK
	SELECTION OF OBJECTIVE SEGMENT


	GA FOR BOT SCHEDULING
	ENCODING AND POPULATION INITIALIZATION
	MUTATION OPERATOR
	LOCAL SEARCH
	MODIFIED OPERATOR

	EXPERIMENTS AND ANALYSIS
	PARAMETERS VALUE
	TASKS PARAMETERS
	SYSTEM PARAMETERS
	GENETIC ALGORITHM PARAMETERS

	EXPERIMENTAL RESULTS IN SMALL SIMULATION SYSTEM
	EXPERIMENTAL RESULTS IN LARGE SIMULATION SYSTEM
	EXPERIMENTAL ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	HEJUN XUAN
	SHIWEI WEI
	YANLING LI
	HUAPING GUO


