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ABSTRACT Interpreting a deep Convolutional Neural Network (CNN) involves identifying the features
in a hierarchy of layers that contribute to recognition. Although the current approaches serve as methods to
interpret a deep CNN, further advancement is required for amore accurate and efficient way of understanding
how a hierarchy of features formed by a deep CNN contributes to recognition. In this paper, we propose
attaching a feedback CNN to a pretrained feedforward CNN as a means of learning how recognition
is performed by the feedforward CNN. In other words, the features reconstructed in a hierarchy of the
feedback CNN represent those learned by the feedforward CNN. By analyzing how clusters are formed
in the layers of feature spaces in the feedback CNN, we can interpret which features critically contribute to
recognition. It also helps to evaluate whether or not recognition is done successfully. In order to show this,
we experimentally verify the capabilities of the proposed approach in terms of 1) accurately recovering the
ground truth input under data corruption; 2) generating novel input data corresponding to an untrained feature
vector without input data iterations; and 3) identifying incorrectly recognized input data by pinpointing the
source of the error in feature spaces. The experiments conducted on the ModelNet datasets indicate that the
proposed approach offers an extended capability of interpreting a deep CNN as described above with higher
accuracy than the conventional approaches.

INDEX TERMS Convolutional neural network, feature interpolation, receptive field, response field.

I. INTRODUCTION
Deep neural networks have achieved impressive performance
in numerous vision-related tasks, including object classifica-
tion [1], [2], detection [3], [4], and image captioning [5]. The
success of these deep neural networks has beenmade possible
by three facts: (i) the availability of a large amount of labeled
training data, (ii) high computational capabilities in terms of
GPUs, and (iii) open source libraries.

Although deep neural networks offer tremendous bene-
fits when these resources are available to them, this end-
to-end training process with highly nonlinear functions of
deep networks treats them as black boxes which lack proper
information about the internal representation of the data.
The activities of neurons toward the representation of the
internal structure of the data as well as their behavior in terms
of collaboration with each other in such complex models
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are obscure, and the model learning is based on trial-and-
error [6]. This is a substantial limitation of deep networks in
understanding the classification applications, as it hinders the
human experts in carefully verifying the classification deci-
sion. Understanding the activities and contributions of neu-
rons in the deep network can be useful for many applications
such as scene understanding [7], image segmentation [8], [9],
and image style transfer [10]–[12]. The clear semantic in
the convolution layer of the deep network can make the
prediction more understandable in terms of the contributions
of specific features for prediction [13], since simple yes and
no answers can be of limited value in certain applications.
A more elaborate and clear answer would involve where
something occurs or how it is structured, as compared to a
binary or real-valued one-dimensional assessment of themere
presence or absence of certain objects at the top layer [14].

In summary, the unreasonable properties of assessing the
model based on the binary or real-valued one-dimensional
answer at the decision layer make it hard to interpret
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the activities of neurons at different layers. Furthermore,
the black-box nature of deep networks makes it nearly impos-
sible for one to know about the collaboration of neurons or
fix problems when errors occur while performing different
tasks. Therefore, meaningful interpretation of a deep neural
network is required which allows the user to learn the behav-
ior of the network and trust its ability in terms of interacting
with the system using deep networks in different applications.

In this paper, our contributions regarding the interpretabil-
ity of deep neural networks are as follows:

i) Modified Feature Extraction and Reconstruction
Network: which learns the local as well as global features
in a hierarchical manner, hence making the interpretability of
neurons at the different spatial locations and different layers
more meaningful.

ii) Response Field-based Reconstruction Algorithm:
In order to evaluate the activities of each neuron in the deep
convolutional neural network at different layers, we take
advantage of the response field-based reconstruction algo-
rithm. The nature of the convolution operation forces the
neurons in the response field to collaborate with each other.
Therefore, in order to find the activities of a particular neu-
ron at a specific layer, the consideration of the neurons in
collaboration with that particular neuron needs to be known.
The proposed response field-based reconstruction method
finds those collaborations and visualizes the effect in the
input space by reconstructing from the specified response
field.

iii) Clustering-based Analysis: In order to analyze the deep
neural network from the perspective of recognizing the input
testing samples as a means of meaningful interpretation,
we propose clustering-based analysis in the filter dimensions.
The proposed clustering-based analysis effectively evaluates
the recognition capability of the deep neural network by
reconstructing the classified testing samples from the repre-
sentative cluster centroids.

iv) Feature Interpolation Algorithm: In order to analyze the
deep neural network in terms of the neuron collaboration,
we propose a feature interpolation algorithm. The feature
interpolation algorithm explores the feature space, where we
sample the feature code from a uniform distribution, then use
two approaches to select the initial samples for interpolation.
In the first approach, we begin by clustering a feature at a spe-
cific location in the filter dimension, then find the k-nearest
centroids of those clusters to the feature code sampled from
the uniform distribution. Then, the nearest feature codes are
obtained from the centroids, the response field is filled from
those feature codes, and then interpolation is applied between
them. In the second approach, rather than clustering a feature
in a specific location in the feature space, we find the nearest
feature codes to the sampled code obtained from the uniform
distribution and filled the receptive field by the proposed
response field-based reconstruction algorithm. The selected
receptive fields are then used for the inter as well as intr-
aclass interpolation. The interpolation is described in detail
in section VIII.

The rest of the paper is organized as follows. Section II
discusses the related work, while Section III introduces
the proposed feature extraction and reconstruction CNN.
In Section IV, detail about the collaboration of neurons in
the response field using the response field-based reconstruc-
tion algorithm is given. In Section V, we conducted a com-
parative analysis based on the representation capabilities of
Feature Extraction and Reconstruction Convolutional Neural
Network (FER-CNN). Section VI discusses the implications
of the feedback weights while using the clustering-based
approach for interpreting the classification of input test-
ing samples. Section VII shows the comparative analysis
based on the classification accuracy of FER-CNN, while
Section VIII describes the feature interpolation algorithm.
Finally, Section IX concludes our work.

II. RELATED WORK
In order to investigate the reasons behind the successful
training of deep neural networks, their capabilities in terms of
the meaningful representation of the input data for successful
recognition and collaboration of neurons to a specific input
for an efficient visualization plays a key role. A variety of
methods based on visualization have been proposed.

A. GRADIENT BASED ITERATIVE OPTIMIZATION
One of the existing approaches for the interpretation of deep
neural networks, based on iterative optimization, has been
proposed in [15] and [16]. Simonyan et al. [16] used gra-
dient descent optimization of the class score with respect
to the input image. In their approach, they maximized the
score of a specific class while updating the input image
using L2 regularization on the generated image and the initial
randomly selected image representation. The approach of
Simonyan et al. [16] involves maximizing the class score,
which results in the mean representation of that class. The
mean representation acts as the candidate of that class; how-
ever, in order to make the representation more specific and
typical, Mahendran and Vedaldi [15] used image prior and
invert a differentiable φ representation of an image while
using gradient descent optimization. They sought an image
x∗ given a feature vector φ0, by minimizing the Euclidean
distance loss between φ0 and φ(x) and using a regularizer
enforcing a natural image prior. Although these iterative opti-
mization approaches allow for an arbitrarily assigned code
to be reconstructed, both of these methods involve test time
optimizations, resulting in high computation time associated
with computing the gradient of the feature representation. The
test time per image on GPU is about six seconds, which is
very high and considered to be unacceptable for real time
applications. By contrast, the proposed approach is only com-
putationally expensive at training time, while the testing is
done in real time and requires up to 3ms due to a single
pass of the input samples through the network. Secondly,
the approach used by Mahendran and Vedaldi requires a
hand-designed natural image prior, while in our case the net-
work implicitly learns such a prior. Furthermore, the proposed
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approach evaluates the activities of different neurons in differ-
ent layers, which provides more insight into the interpretation
of deep neural networks.

B. UP-SAMPLING
Separate from the iterative optimization as a means of inter-
pretation, the up-sampling convolution and deconvolution
methods have been proposed in [12], [17], and [18]. Sprin-
genberg and Dosovitskiy [17] used an up-sampling deconvo-
lutional architecture to invert the features in the upper layer
back to the input space. However, due to the non-invertibility
of max pooling in the deconvolution architecture, an approx-
imate inversion of the pooling has been proposed in [12] by
recording the locations of the maxima within each pooling
region in a set of switch variables, then considering those
location values during reconstruction in the input space. Simi-
larly, Dosovitskiy et al. [18] used up-sampling convolutional
layers, rather than deconvolution and max-pooling, so as to
avoid the max pooling inversion problem. However, in all of
the above-mentioned approaches, the representation was end-
to-end, which does not show the activities of each neuron or
their collaboration with each other. In the proposed network,
the learning rule is based on feature extraction and reconstruc-
tion both locally and globally in a hierarchical fashion. This
makes it possible to extract useful features, rendering it an
efficient way to reconstruct a typical sample from the local
layers along with their mean representation from the global
layers. Furthermore, the proposed approach investigates the
activities of each neuron in different layers without any addi-
tional computational burden. The approaches in [17] and [18]
do not provide information about the recognition capability
of the deep neural network, and only reconstruct the input
samples as a means of an end-to-end representation capa-
bility of the deep neural network. By contrast, the proposed
approach not only reconstructs the input testing samples,
but also analyzes its recognition performance based on the
reconstructed sample from the representative clusters while
using its recognition probabilities.

C. INPUT CROPPING
In order to investigate the interpretation of neurons at differ-
ent layers, Bolei et al. proposed a receptive field cropping-
basedmethod in [19]. They found a receptive field in the input
image corresponding to a specific neural activation in the
feature map. The receptive field in the input space represents
the interpretation of that specific neural activation in the
feature space. This method only provides details about the
input space without any consideration of the accurate repre-
sentation of the input samples. For example, if a noisy sample
is provided to the network, the activation corresponding to
that noisy sample may not be the same, which may result in
a wrong receptive field. In addition, this approach does not
provide explicit information about the activities of neurons in
terms of collaboration towards a specific response, as it does
not use the learned parameters for the input representation in
the backward pass. By contrast, the proposed approach not

only finds the corresponding receptive field, but also shows
the group of neurons responsible for the representation of that
specific receptive field. In addition, the proposed approach
uses the trained parameters to reconstruct the specific feature,
and is thus robust to noise. The receptive field-based cropping
approach does not provide information about the recognition
of the input testing samples, whereas the proposed approach
provides meaningful information about the classified testing
samples by reconstructing them from their representative
cluster centroids.

D. NORMALIZED CONTRIBUTIONS
A decomposition-based approach for the explanation of deep
neural networks has been proposed in [20] in the form of
so-called Layer-wise relevance propagation (LRP). LRP is
based on pixel-wise decomposition, which aims to under-
stand the contribution of a single pixel of an input image
to its corresponding prediction made by a classifier in an
image classification task. The evaluation of a deep neural
network based on normalized contribution using the class
label along with its corresponding input sample is end-to-
end and is limited in terms of evaluating the collaboration
of neurons in the middle layers. The proposed approach not
only analyzes the deep neural network from the classification
layer, but also has the capability to reconstruct the input
sample from any layer and any spatial location in the fea-
ture space, which provides more insight into the behaviors
of neurons and their collaborations in different layers. The
layer-wise relevance propagation does not explore the cluster
space of different class samples in an explicit way; hence,
it results in a blurry reconstruction, whereas the proposed
approach effectively explores the cluster regions and has
the capability to reconstruct the typical samples from the
local layers as well as their mean reconstruction from the
classification layer. Furthermore, LRP [20] does not provide
information about themisclassified testing samples, while the
proposed approach provides meaningful information about
the recognition of the input testing samples by reconstructing
them from their representative cluster centroids.

III. FEATURE EXTRACTION AND RECONSTRUCTION CNN
For automatic local and global feature extraction along with
automatic reconstruction, we use FER-CNN [21] as a basic
platform and modify it as shown in Fig. 1 for the purpose of
interpretation.

FER-CNN is composed of two sub-networks: the Encoder
and Decoder. Since the main purpose of our architecture is to
interpret a deep neural network, we modified FER-CNN so
that it could perform classification by mapping the 3D input
object xi, through a series of layers, to a probability vector ỹi
over C different classes, along with meaningful reconstruc-
tion through the Decoder. Both the Encoder and Decoder are
mirrored, where they each consist of five convolution layers
with the parameters of 6×6×6, 5×5×5, 4×4×4, 3×3×3,
2×2×2, and 1×1×1, as well as fully connected layers with
dimensions of 1500, 500, and 10/40. The filter dimensions are
[64, 196, 512, 1024, 2048, 1500, 500] respectively.
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FIGURE 1. FER-CNN model, The top represent the encoder part, whereas
the bottom represents the decoder part along with skip connections
between the encoder and decoder. Both the encoder and decoder have
five convolution layers and deconvolution layers, respectively, along with
three fully connected layers.

A. TRAINING DETAILS OF FER-CNN
The training procedure of the proposed architecture is com-
posed of the following three steps:

Step 1: End to end training of the encoder part of
FER-CNN by optimizing Softmax classification loss:

L1 =
∑
i

Lc(Genc(xi),Ti), (1)

where yi = Genc(xi) is the output of the encoder and Ti is the
corresponding target for the given input xi. Lc represents the
log classification loss for the given xi and Ti, and L1 is the
total classification loss over all of the input samples.

Step 2: This step involves independent unsupervised layer-
wise training of the decoder weights based on the encoder
trained in the step 1, individually from layer 1 to layer 8, using
the layer-wise objective function:

L2 =
∑
l

Lw
((
yl − Ddecl (yl+1)

)2
+
(
yl+1 − Gencl

(
Ddecl (yl+1)

))2)
, (2)

where l represents the lth layer, yl and yl+1 respectively
represent the input and the output of the lth layer of the
encoder, Gencl . and Ddecl . respectively represent the outputs
of the encoder and decoder at their lth layer, and Lw and
L2 respectively represent the layer-wise loss and total loss
among all of the layers.

Step 3: This step involves the sequential unsupervised
training of multiple layers jointly, starting with layers 1-2,
followed by layers 1-3, up to layers 1-8 based on the following
objective function:

L3 =
∑
l

LH
((
y1 − Ddec1 (Gencl (y1))

)2
+
(
yl+1 − Gencl

(
Ddec1 (yl+1)

))2)
, (3)

Algorithm 1 Response Field-Based Reconstruction
Algorithm

1. Select a location at a specific layer for which we need
to find the response field.

2. Find the receptive field for that specific response in the
given layer.

3. Calculate the response field in that layer for all of the
neurons in the input space.

4. Copy that response field andmake the rest of the feature
space zero.

5. Reconstruct the input space from the computed
response field at that particular layer.

6. Crop the receptive field obtained in the second step.

where Ddec1 (Gencl (y1) and Gencl
(
Ddec1 (yl+1)

)
respectively

represent the first layer output of the decoder when the
lth layer input of the decoder is given as the lth layer output of
the encoder and the lth layer output of the encoder when the
first layer output of the decoder is given as the first layer input
of the encoder, and LH and L3 respectively represent a joint
training loss at a particular sequence and the total training loss
over the entire sequence.

The combined loss of FER-CNN is shown below.

LT = L1 + L2 + L3. (4)

We use ModelNet dataset for training FER-CNN with reso-
lutions of [32×32×32] and a minibatch size of 32. In consid-
eration of the importance of learning rate, we carefully select
the learning rate to be 0.0001 for training the feedforward
weights and 0.00025 for training the feedback weights. Sim-
ilarly, we also used the ADAM optimizer algorithm [22] for
gradient-based optimization of the parameters of FER-CNN
with beta=0.5.

For the implementation of FER-CNN,we used TensorFlow
open-source software. By contrast, for training the network,
we used intel core i7-5960X CPU with 64.0 GB RAM and an
NVIDIA TITAN X graphics card.

IV. RESPONSE FIELD-BASED RECONSTRUCTION
In order to assess the performance of the deep convolutional
neural network, the activities of each neuron in the interme-
diate layers must first be known. FER-CNN is composed of
convolutional layers, so reconstruction from a single feature
is not straightforward. The receptive field in input space is
not only the function of the given feature in that particular
layer, but is also dependent on the neighboring features in
that spatial location. This is due to the fact that overlapping
convolution windows are dictated by the choice of layer
configuration (i.e. window size and stride). In order to address
this problem, we use a response field-based reconstruction
algorithm (Algorithm. 1), which is presented in Fig. 2.

V. COMPARATIVE ANALYSIS
In order to illustrate the effectiveness of the proposed
approach, we conduct comparative analysis in this section
based on the 2D dataset and ModelNet dataset.
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FIGURE 2. The first row shows the feature location in the feature space
which is mapped back to the input space, the second row shows the
response field from the corresponding input receptive field, the third row
shows the reconstruction from the effective response field, and the last
row represents the required receptive field.

A. 2D ANALYSIS OF FER-CNN RECONSTRUCTION
The deep neural network learns the representation of the
input distribution by partitioning the feature space in different
cluster regions. The local clusters formed in the lower layers
combine the local features with interclass or intraclass feature
similarities, whereas the higher layers combine those local
clusters into global clusters. The classification objective com-
bines the cluster space in the final layer such that each sam-
ple in a particular class belongs to its representative cluster
region.

In order to evaluate the capability of the deep neural net-
work in terms of the representation of the internal struc-
ture of the data, we first conducted an analysis on the toy
dataset for simplicity and later used the ModelNet dataset
for further analysis. Regarding the toy dataset, we sampled
two-dimensional data for different classes from amultinomial
distribution. The distributions of different classes are repre-
sented by different colors in Figs. 3 and 4. The total number of

FIGURE 3. FER-FCN. (a) Sample-based Reconstruction (left).
(b) Code-based Reconstruction (right). The colors show the distributions
of four different classes, and the circles in (a) represent the input samples
while the squares represent their corresponding reconstructed samples.
Further, the stars represent the corresponding cluster centers and the
lines represent the linear approximation of the projected input space
partitioned by the hidden units in the first layer.

FIGURE 4. LRP (a) Sample-based Reconstruction (left), (b) code-based
Reconstruction (right): The colors show the distributions of four different
classes, and the circles in (a) represent the input samples while the
squares represent their corresponding reconstructed samples. Further,
the stars represent the corresponding cluster centers and the lines
represent the linear approximation of the projected input space
partitioned by the hidden units in the first layer.

training samples is 1000, where each class has 200 samples,
except for the green color class with 400 samples. As this
experiment is based on the two-dimensional toy dataset,
we modified FER-CNN to a two-layer Feature Extraction
and Reconstruction Fully Connected Network (FER-FCN).
The configuration of the FER-FCN architecture is described
in [2]–[4], where the input is two-dimensional input data
transformed to three-dimensional feature space and in the
second layer. The three-dimensional feature space is pro-
jected to four-dimensional feature space, which represents the
final partitions of the feature space at the class level. Based
on these experiments, we performed sample-based and code-
based analysis to interpret the neurons in the network.

1) SAMPLE-BASED ANALYSIS
For the sample-based analysis, we first trained FER-FCN on
two-dimensional training samples. After training FER-FCN,
we selected samples from each class and reconstructed them
using feedback weights of FER-FCN. The selected input
samples are represented by circles and their reconstructed
results are represented by squares along with their corre-
sponding class color in Fig. 3a. The reconstructed samples
have a small offset from the input. Ideally, the representative
sample of each distribution is located at the center. Thus, if the
network is properly learned, the reconstructed samples should
be more biased toward the cluster representative, which is
the mean of that cluster. This is clear from our experiments,
where the reconstructed samples are more biased toward
the mean of each cluster or distribution, which are repre-
sented by stars with the corresponding color. During this
analysis, we also show the input space partitioning by the
neurons in the first layer. As the FER-FCN configuration
uses three neurons in the first layer, the input is partitioned
into seven possible regions by these three neurons. In the
real scenario, the feature space is non-linear; however, for
the ease of analysis, we approximate the space by the linear
function as shown in equation 5. The linear approximation
of the non-linear space shows that the different class regions
are well separated, as depicted in Fig. 3a. For the purpose
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of comparison, we also applied layer-wise relevance prop-
agation [20] to the recognition part of FER-FCN, which is
based on the normalized contributions accumulated from the
top down to the input space. Fig. 4a shows the LRP-based
analysis, where the resulting contributions are represented by
squares and the corresponding input samples are represented
by circles. The mean of each distribution is represented by a
star with the corresponding color. The reconstructed samples,
after the normalized contributions, show large offset from
the mean of the corresponding distribution as compared to
FER-FCN. Furthermore, the samples from the blue and black
class regions are mapped to the green class region, as shown
in Fig. 4a.

V ≈ W TH (5)

where V is the input space to be partitioned, H are the fea-
tures which partition the input space, and W T are the weight
parameters between V and H .

2) CODE-BASED ANALYSIS
During the code-based analysis of FER-FCN, rather than
selecting a sample from the input data, we pick a class
representative of each distribution to feed to the network at
the final layer. The codes are then reconstructed from the
final layer using the feedback weights of FER-FCN, as shown
in Fig. 3b, where the squares represent the reconstructed sam-
ples based on the class codes. The mean of each distribution
is represented by a star with the corresponding color. The
reconstructed results aremore biased toward themean of their
corresponding distributions, showing the representation capa-
bility of FER-FCN in terms of the interpretation of neurons.
The space partition is the same in both cases (sample-based
and code-based reconstruction), as the input space is divided
into different cluster regions by three neurons in the first
layer in each case. We conducted a comparative analysis with
LRP [20] in terms of the code-based reconstruction. The LRP
approach is based on the input sample along with its corre-
sponding class label. However, only class label information is
available in this analysis, so we use feedforward weights and
transpose them so as to obtain lower layer activations. The
code-based analysis also shows a large offset as compared to
that of the proposed approach, as shown in Fig. 4b.

TABLE 1. The mean square error of the reconstructed sample from the
corresponding ground truth target samples and from the mean of each
cluster.

The interpretation of FER-FCN in terms of qualitative
analysis is shown in Table 1, which shows the mean square
errors between the reconstructed samples and their ground

truth input samples as well as between the reconstructed
samples and the means of their corresponding distributions.
FER-FCN shows less error than LRP [20] in both cases.

B. COMPARATIVE ANALYSIS OF FER-CNN AND
LRP BASED ON MODELNET DATASET
In order to perform a comparative analysis for the inter-
pretation of deep neural networks using FER-CNN and
LRP [20] based on high dimensional 3D data, we selected
the ModelNet dataset [23]. The neural network clusters the
regions based on the interclass or intraclass feature similari-
ties in the local layers, whereas the cluster regions become
class-specific in the final layers due to the classification
objective. We explore this capability of the neural network
in terms of FER-CNN and LRP [20]. Exploring the cluster
regions for each class sample in terms of representations helps
identify the learning capability of the deep neural network.
In order to explore such a cluster space, LRP [20] uses a
normalized contribution-based approach; however, it does not
explore the cluster regions well.

FIGURE 5. LRP-based reconstruction: The reconstructed samples as a
result of normalized contributions [20] are more biased toward the mean
representation from different class samples.

Experiments based on the toy dataset in Fig. 4a show that
a single class cluster region is used as a representative for
multi-class samples. The experimental results based on the
ModelNet dataset [23] are shown in Fig. 5, where the different
class samples such as Rack, Cone, Bookshelf, and Bottle
are represented by LRP. The final representation of these
samples shows more resemblance to the intraclass mean rep-
resentation than explicit class-based sample representation.
Fig. 6 further elaborates upon the representation of different
class samples based on the normalized contribution, where
the different class samples belonging to Chair, Car, Bench,
Bathtub, Bed, and Bowl are represented. The representations
of these samples are more biased toward the intraclass mean
representation than the typical sample-based representation,
implying that the cluster regions are not explored well for
its corresponding cluster representation, hence making it
blurrier.

By contrast, the FER-CNN learning rule is based on fea-
ture extraction and reconstruction, where the features are
clustered based on their local as well as global similari-
ties. The local layers maintain the typical structures of the
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FIGURE 6. LRP-based reconstruction: The reconstructed samples as a
result of normalized contributions [20] are more biased toward the mean
representation from different class samples.

FIGURE 7. FER-CNN-based reconstruction: The reconstructed samples as
a result of FER-CNN show more explicit representation.

FIGURE 8. FER-CNN-based reconstruction: The reconstructed samples as
a result of FER-CNN show more explicit representation.

samples, whereas the final layers converge the samples to
their corresponding labels as their representatives. In contrast
to LRP, the results based on FER-CNN using the Model-
Net dataset are shown in Fig. 7. As discussed previously,
the regions which are assigned to different classes must
be explicit so as to ensure successful training of the deep
neural network. Fig. 7 shows the explicit representation of
these samples as compared to Fig. 5. Similarly, Fig. 8 also

represents the explicit reconstruction of different class sam-
ples, which ensures the successful learning of the deep neural
network.

TABLE 2. Mean square error and cosine distance between the
reconstructed samples from full layer as well from a specific
filter from the target samples.

We also evaluated FER-CNN based on the quantitative
results shown in Table 2. This analysis is based on test-
ing samples that were randomly selected. We calculate the
Euclidean distance and cosine distance between the recon-
structed samples and the ground truth testing samples. The
results show that FER-CNN has a lower per voxel error than
LRP [20].

C. ROBUSTNESS TO THE NOISE (STRUCTURAL
REPRESENTATION)
The capability of the deep neural network to learn the rep-
resentation of the internal structure of the data makes it
useful under heavy corruption in the testing data. This internal
representation of the data is made possible by the successful
collaboration of neurons at different layers, which in turn
provides robustness to the corruption in the input distribution.

However, to ensure the successful representation of the
data in terms of the activities of neurons, FER-CNN adopts
an effective learning mechanism which maintains the rela-
tionship between the receptive field and its corresponding
feature representation both locally and globally. We evaluate
and interpret the performance of FER-CNN by embedding
random noise to the input samples. While the random noise
distorts the structure of the data, the effect of the corrupted
input on the learned representation of the network provides
information about the capability of robustness of the network
toward the variation in the input data. During this evaluation
procedure, we analyzed reconstruction from the full layer as
well as from the specific filter. Regarding reconstruction from
the full layer, we pass the corrupted input sample and obtain
the full code of a specific layer, and then use feedbackweights
to reconstruct the full object with the code obtained from the
corrupted input. Similarly, regarding reconstruction from a
filter, we select a specific feature in the feature space, then
use the response field-based reconstruction algorithm to find
the response field of that feature based on the receptive field,
and then reconstruct that response field as a part of the cor-
rupted input object. Fig. 9 shows the comparative results from
the receptive field-based cropping [19] and FER-CNN-based
reconstruction. The first row of Fig. 9 shows the clean testing
samples from the ModelNet dataset [23] which are corrupted
by uniform random noise. The resulting corrupted samples
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FIGURE 9. The first row shows the input testing samples from ModelNet
dataset, the second row shows the corrupted samples as input to
FER-CNN, the third row shows receptive field cropping [19] from a specific
location in the feature space of the second layer, and the fourth and fifth
rows represent FER-CNN reconstruction from that specific location in the
feature space of second layer and full layer reconstruction, respectively.

are shown in the second row of Fig. 9. The corrupted samples
are then propagated through the feedforward network, and a
specific layer code is obtained. Regarding full layer recon-
struction, we used trained feedback weights of FER-CNN
and reconstructed the corrupted samples as shown in the
fifth row. Similarly, the fourth row shows the reconstruction
results from a specific filter from the proposed network, while
the third row shows receptive field-based cropping [19]. The
proposed approach shows prominent results as compared to
the receptive field-based cropping [19].

Notably, FER-CNN takes advantage of some of the cor-
rupted voxels. These corrupted voxels in the specified sam-
ples may be parts of other samples in the same class, which
adds to the internal representation of the input distribution.
For this reason, FER-CNN produces more prominent results,
showing its capability to enhance the internal representa-
tion of the data. By contrast, the receptive field-based crop-
ping [19] is specific to the current input samples and does
not explore the capability of the network in terms of the
representation of the internal structure of the data.

VI. IMPLICATIONS OF FEEDBACK WEIGHTS
AS A MEAN OF INTERPRETATION
The proposed feedback network with its weights trained
based on the input dataset plays an important role in interpret-
ing what is learned in the feedforward network to which it is
attached. The reconstruction of an input sample through the
feedback network connotes the way in which the feedforward
network clusters a hierarchy of features for classification.
As such, the reconstruction ignores the noise deformation
of input samples but generates more typical representatives
corresponding to the classification result. FER-CNN pro-
vides an effective means for achieving the desired goal of
interpreting the cluster formed in the feedforward path of
the classification network, where the feedback layers pre-
serve information about the individual samples locally as

FIGURE 10. The implication of feedback weights as a mean of the
interpretation of deep neural network using clustering-based analysis.
The top row represents layer-wise representative clusters in the
feedforward path while the bottom row represents the layer-wise
representative clusters in the feedback path.

well as their mean representation globally. The clustering-
based interpretation explores the effect of feedback weights
on the interpretation of deep neural networks, where we
first cluster the feature space in each layer along the filter
dimensions using the k-means clustering algorithm. As we
used the ModelNet10 dataset, which has 10 classes, for this
analysis, we set k=10 in the last fully connected layer. For
the rest of the layers, we set k= [60,50,40,30,30,20,20] as
appropriate. Upon completion of the clustering of the feature
space, we select the testing samples and pass them through
the network, then find the nearest cluster in each layer at each
location, as shown in Fig. 10. The representative clusters at
each layer are implicit in the feedforward path, as shown in
the top row of Fig. 10. By contrast, the bottom row represents
the representative clusters in the feedback path, which are
more biased to the typical representation of the input sample,
and contains information about their representative classes
which we explain further in the following section.

A. CLUSTERING BASED INTERPRETATION
AND FER-CNN RECONSTRUCTION
One of the most important and desirable aspects of this
analysis is to interpret and evaluate what is learned by the
deep neural network. One way to evaluate the performance of
the deep neural network is based on classification accuracy;
however, classification accuracy-based analysis is abstract
and does not provide comprehensive information regarding
the interpretation of the deep neural network. For example,
if an object is misclassified, the classification-based analysis
merely provides the score of its classification and does not
provide any reasons for the failure of an object classification.
In order to explore the interpretation of the deep neural net-
work and analyze what is learned in the recognition part of
the network, the trained feedback connections play a key role.
We use clustering-based analysis using FER-CNN which
provides an effective means for the interpretation of a deep
neural network by reconstructing the output of the recogni-
tion framework, then evaluate its recognition capability both
qualitatively and quantitatively.

In order to perform the clustering-based analysis for
the interpretation of a deep neural network while using
FER-CNN, we cluster the feature space of all of the lay-
ers along the filter dimensions using feedforward and feed-
back weights, then perform interpretation of the deep neural
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network using three different approaches. In the first
approach, we cluster the feature space of all of the layers
along the filter dimensions using the feedforward parameters
of the network, then pass the testing sample through the
network. In this step, we select the cluster centroid at each
spatial location nearest to the corresponding location in the
input testing sample and then pick the selected clusters as
representatives of that testing sample. The cluster distribution
at the local layers provides us with information about the
features which are more biased to the intraclass feature simi-
larities than the specific object class. The cluster distribution
becomes more representative of that class as we go up the
network, and the last layer cluster represents the class of that
object. During the second approach, we cluster the feature
space of all of the layers along the filter dimensions using the
feedback parameters of the network.

After clustering the feature space in the feedback path,
we pass the input testing sample through the network, then
obtain its code at each layer using the feedback parameters.
Then, using the KNN algorithm, the nearest representative
cluster centroids at each layer and each spatial location to the
corresponding spatial location in the input testing sample are
obtained.

FIGURE 11. Clustering-based analysis of the correctly classified input
testing samples from layers 5 and 8. The first column represents the
clustering in the feedforward direction along with the testing sample
features computed from the feedforward parameters. The second column
represents the clustering in the feedback direction, whereas the testing
sample features are computed from the feedforward parameters. In the
third column, both the clustering as well as the testing sample features
are computed using feedback parameters. Each row represents layer-wise
analysis.

The clusters formed in the feedback path carry information
about the misclassified samples to the input space as a mean
of qualitative and quantitative analysis for the interpretation
of the network. In the third approach, we obtain the code of
the testing samples using the feedforward weights, whereas
the clusters are obtained using the feedback weights, and
then the candidate cluster centroids are selected following the
same procedure as that of the first and second approaches.
Figs. 11 to 14 shows the interpretation of the deep neural
network based on the approaches discussed above. First,
we analyze the correctly classified input testing sample using
the cluster-based interpretation shown in Fig. 11. The first
column represents the clustering in the feedforward direction
along with the testing sample features computed from the

FIGURE 12. Clustering-based analysis of the correctly classified input
testing samples by reconstructing them from the local layers as well as
from the correctly classified class probabilities. The first row shows the
input testing samples and the corresponding columns in the second row
represent the generated samples from the local layers, while the third
and fourth rows show the nearest ground truth and their corresponding
reconstructed samples to the cluster centroid based on the recognition
probabilities, respectively.

FIGURE 13. Clustering-based analysis of the wrongly classified input
testing samples from layers 5 and 8. The first column represents the
clustering in the feedforward direction along with the testing sample
features computed from the feedforward parameters. The second column
represents the clustering in the feedback direction, whereas the testing
sample features are computed from the feedforward parameters. In the
third column, both the clustering and the testing sample features are
computed using feedback parameters. Each row represents layer-wise
analysis.

feedforward parameters. The second column represents the
clustering in the feedback direction, where the testing sam-
ple features are computed from the feedforward parameters.
The third column shows clustering in the feedback direction
with the testing sample features computed from the feed-
back parameters. Each row in Fig. 11 represents a layer-
wise analysis. This analysis indicates that the selected clusters
are specific to the corresponding class based on the three
approaches discussed above. In the second analysis, we used
the wrongly classified input testing sample, and the candidate
clusters obtained from the feedback weights in the designated
layers represent the wrong class of the objects as shown in
the third column, whereas the feedforward candidate clusters
show the correct class corresponding to the input testing
sample, as shown in the first and second columns of Fig. 13.
The qualitative analysis for the interpretation of the
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FIGURE 14. Clustering-based analysis of the wrongly classified input
testing samples by reconstructing them from the local layers as well as
from the correctly classified class probabilities. The first row shows the
input testing samples and the corresponding columns in the second row
represent the generated samples from the local layers, while the third
and fourth row show the nearest ground truth and their corresponding
reconstructed samples to the cluster centroid based on the recognition
probabilities, respectively.

deep neural network using feedback weights is shown
in Figs. 12 and 14. In Fig. 12, we first analyze the samples
which have been correctly classified by the recognition net-
work. As the first step of the analysis, we provide these input
testing samples to the network then reconstruct these from the
local layers using the feedback weights. As discussed previ-
ously, the local layers are more biased to the feature similari-
ties than the classification objective; therefore, it reconstructs
the samples having similarities with the input testing samples.
The reconstructed input testing samples are shown in the
corresponding columns in the second row in Fig. 12. The
recognition network generates the class probabilities based on
the input testing samples. These class probabilities are fed to
the feedback network, which generates their features at each
layer. The features at each layer then pick the nearest cluster
centroids and reconstruct them. The nearest sample to the
cluster centroid and its corresponding reconstructed results
are shown in the third and fourth rows of Fig. 12, respec-
tively, and the results indicate that the feature similarity-based
reconstructions from the local layers as well as from the gen-
erated class probability match each other, hence, proving the
correct classification accuracy. For example, the bed, book-
shelf, bottle, car, chair, airplane, and bathtub are all correctly
classified by the recognition network and their reconstructed
results from the correct class codes show similarities with
the input testing samples, as shown in Fig. 12. In Fig. 14,
we analyze the samples which have been wrongly classified
by the recognition network. During this analysis, the network
reconstructs these input testing samples from the local layers
using the feedback weights as shown in the corresponding
columns in the second row of Fig. 14, which shows similar-
ities to the input testing samples regardless of their classifi-
cation. Based on these input testing samples, the recognition
network generates the class probabilities. These class prob-
abilities are fed to the feedback network, which generates
their features at each layer. The features at each layer then

pick the nearest cluster centroids and reconstruct them. The
nearest sample to the cluster centroid and its corresponding
reconstructed results are shown in the third and fourth rows
of Fig. 14, respectively. The results show that the samples
reconstructed from the local layers match the input testing
samples regardless of their recognition probability, whereas
the samples generated from the cluster centroids using the
class probabilities as input to the feedback network do not
match the input testing samples, and it selects the clusters
belonging to the recognition probabilities generated by the
network. This analysis further elaborates that the samples
which are wrongly classified show structural similarities to
the input testing samples. For example, the bathtub, cone,
table, bookshelf, bottle, car, and chair are wrongly classified
as a bed, bottle, bathtub, bench, cone, bookshelf, and bed,
respectively. The misclassified samples show structural simi-
larities with the input testing sample. Such analysis provides
insight into the classification of the recognition network by
qualitatively interpreting its recognition.

TABLE 3. Mean square error between the input sample and
reconstructed samples.

We also performed quantitative analysis in terms of the
mean square error of the misclassified input testing sample
and the generated sample from the wrong recognition prob-
abilities presented in Table 3. This analysis shows that the
error between the input testing sample and the reconstructed
sample from the misclassified class probability is almost
double the error between the input testing sample and its
reconstruction from the local layers. This error difference
provides information about the misclassification of the input
testing samples.

TABLE 4. Comparison based on computational complexity.

Table 4 shows the comparative analysis of the pro-
posed approach with the iterative approaches [15], [16] and
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LRP [20] in terms of computational complexity, their abilities
to evaluate the misclassified samples, and image generation
from any layer and any filter. The computational complexities
of the proposed approach and LRP [20] are the same at
the testing time; however, LRP [20] cannot evaluate the
misclassified samples from the class probabilities. By con-
trast, the proposed approach effectively evaluates the samples
which are misclassified based on their class probabilities.
On the other hand, the iterative approaches [15], [16] are
computationally expensive and cannot evaluate the misclassi-
fied samples. The proposed approach can effectively generate
images from any layer and any filter, whereas LRP is based
on an end-to-end evaluation and reconstructs the images from
the top in terms of the normalized contributions. By contrast,
the iterative approaches generate images from any layer, yet
they do not consider the filter-based reconstruction.

VII. CLASSIFICATION BASED ANALYSIS
We also evaluated FER-CNN for the input testing sam-
ples classification as a means of interpreting the recogni-
tion network. For this analysis, we used the 3D ModelNet
dataset. This dataset is based on Modelnet10 and Model-
Net40. A comparative analysis of FER-CNN with the current
state of the art networks based on ModelNet10 and Model-
Net40 is presented in Table 5. This analysis shows that the
proposed approach outperformed state-of-the-art approaches
in terms of ModelNet10 and ModelNet40 dataset classifica-
tion. Furthermore, these approaches were unable to evaluate
the classified testing samples, whereas the proposed approach
effectively evaluates the wrongly classified testing samples
and provides meaningful information about the misclassified
testing samples, as was already discussed in Section VI.

TABLE 5. Classification accuracy based on modelnet10 and modelnet40.

VIII. FEATURE INTERPOLATION
A deep neural network capable of self-recognizing and visu-
alizing what is learned in a top-down manner without a given
input has significant meaning, as it resembles imagination in
the human thinking process. For example, a deep learning
network that has already been trained is able to reconstruct the
virtual input by itself that corresponds to a code assigned to
the filter associated with a particular node of any layer. In this
case, the virtual input thus constructed does not necessarily

belong to the dataset for training, but may represent an inter-
polation of multiple data in the dataset. Such a capability of
the deep neural network is made possible by the successful
representation of the internal structure of the input data in
terms of the collaboration of neurons. There are a few dif-
ferent ways to explore the representation capability of the
deep neural network. One way is to simply put the samples
at the input and then reconstruct them, but this approach
cannot provide insight about the capability of the network
toward the representation of the input data in terms of the
neuron collaboration. For example, what is the behavior of
the network in the case of a transition from one sample to
the other? In order to address this problem, we proposed a
feature interpolation algorithm (Algorithm. 2) which effec-
tively verifies the behavior of the network in terms of the
neuron collaboration towards the variations in the feature
space of the network. For this interpolation, we transform the
input samples into their feature representations at a specific
layer in the network. We then sample the feature space at
that particular location along the filter dimensions from the
uniform distribution. Next, we select the range of the uniform
distribution between the minimum and maximum values as
that of the selected node in the filter dimensions. In order to
select the k-nearest feature representation of the samples to
the code sampled from uniform distributions, we adopted the
following two approaches.

A. CENTROID-BASED APPROACH
In this approach, we select one particular location in the
feature space and apply the K-mean clustering algorithm
along the filter dimensions at that specific location. Following
clustering in the filter dimensions, we select the k-nearest
centroids of the clusters to the sampled code using the
K-Nearest Neighbor (KNN) algorithm. Once the candidate
k-nearest centroids are selected, we apply the KNN algorithm
with the k equal to 1 in order to find the k-nearest sam-
ples feature representations to each centroid. The required
response field of the contributing neurons is calculated by
the response field-based reconstruction algorithm and filled
by the selected feature representation of those samples.

B. K-NEAREST SAMPLES-BASED APPROACH
In this approach, we select one particular location in the
feature space and apply the KNN algorithm to find k-nearest
samples features to the sampled code. The response field of
each node is computed and filled by the selected k-nearest
features.

Once the response fields for all of the selected centroids
are defined, we calculate the offset distance dk between
the sampled code and the associated centroids or k-nearest
feature codes. The last step involves interpolating among
the response field of the selected feature codes, where we
define αk as a transition parameter from one response field
to the next, and the transitioned response fields are recon-
structed as the interpolated results.

The feature interpolation algorithm is summarized as
follows.
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Algorithm 2 Feature Interpolation
1) Compute the codes for node ‘i’ at layer ‘L’ based on the

input testing samples

ni= �(xi) , (6)

where ni represent the feature codes of neuron i, �(.)
represents themapping function from input to a specific
layer and xi shows the input testing samples.

2) Apply the clustering algorithm in the filter dimensions
to that particular node,

3) Select the centroid of the clusters as

Ck =
1
|Sk |

∑
niεSk

ni, (7)

Ck shows the centroid of the clusters and Sk represents
the total number of features codes in the cluster k .

4) Sample the code from a uniform distribution,

p (ξ) =


0, ξ < min(ni)

1
max(ni)−min(ni)

min(ni) ≤ ξ ≤ max(ni)

0, ξ ≥ max (ni) ,
(8)

where p (ξ) represents the feature code sampled from
the uniform distribution.

5) Apply KNN algorithm to find the k-nearest samples
codes or k-nearest centroids of the clusters in the filter
space to p (ξ),

6) Find the corresponding response field using response
field-based reconstruction algorithm,

7) Compute the distance dk from each sample code to the
p (ξ),

8) Calculate α1, α2, . . . .,αk , where,

αk =
dk∑k
n=1 dn,

, (9)

dk = d
′

ke
−0.006t , (10)

where αk is the normalization parameter for mixing the
response fields, d

′

k is the offset distance between an arbi-
trary selected code in a feature space and the code of a
sample chosen from a nearby cluster k , and dk is used to
control the influence of individual clusters on interpolation by
adjusting t .
The final response field is obtained by

R = α1R1 + α2R2+ . . . .+αKRK . (11)

R is the final response field in the feature space which is used
to reconstruct the input samples.

1) RESULTS AND DISCUSSION OF FEATURE INTERPOLATION
interpolation algorithm for investigating the activities of
neurons in terms of their collaboration, we first trained
FER-CNN on a large-scale ModelNet dataset. The ModelNet

dataset consists of ModelNet10, having 10 classes of around
48000 3D CADmodels, of which 38400 are used for training
and 9600 are used for testing, and the ModelNet40, with
40 classes of 151,128 3D CAD models, where 121512 are
used for training and the remaining 29616 are selected as
testing samples. After training, we used the interpolation
algorithm based on the two approaches discussed above.

FIGURE 15. Centroid-based interpolation: Three clusters centroids are
selected and the samples nearest to each centroid are a bed, gaming
chair, and easy chair. This shows interpolation from the bed to the gaming
chair and from the gaming chair to the easy chair as well as the other way
around.

The first approach involves finding the k-nearest centroids
and its corresponding feature codes to the feature code sam-
pled from the uniform distribution. The selected feature codes
are then used to fill the response field of each centroid. In this
experiment, the selected response fields belong to theGaming
chair, Bed, and Easy chair. The distance dn between the
centroids and the generated feature code from the uniform
distribution is then computed. The mixing parameter αk is
also computed based on eq (9). The interpolation results from
the centroid-based approach are shown in Fig. 15, where the
transformations from the bed to the gaming chair and from the
gaming chair to the bed are shown. Fig. 16. shows a detailed
description of our interpolation algorithm, where the first row
shows the transformation from the bed to the gaming chair.
The in-between samples show the intermediate representation
of the transformation between these two samples. Similarly,
the first sample of the second row shows the last interpolated
sample from the bed, which is a gaming chair, and this sample
is transformed to an easy chair. The easy chair is then trans-
formed back to the bed so as to complete the interpolation
cycle.

The second approach involve selecting the k-nearest fea-
ture codes which are obtained from the testing samples to
the feature code sampled from the uniform distribution. The
selected feature codes of the k-nearest samples in our case
belong to the lounge chair, bed, and carver chair. These
selected feature codes are then used to fill the response fields
of a specific feature at a particular layer. The distance dn
between the feature codes of the k-nearest samples and the
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FIGURE 16. Centroid-based interpolation: First, the centroids of the three
clusters to be interpolated are selected. Then, the nearest sample code
from an individual centroid is selected, as exemplified in the figure with a
bed, gaming chair, and easy chair. The transformation from the bed to the
gaming chair is shown in the first row, where the first sample shows the
starting point of interpolation and the last sample shows the interpolated
sample by changing its feature code in the response field. The in-between
samples show the intermediate representation of the transformation
from the bed to the gaming chair. The first sample of the second row
shows the last interpolated sample from the bed, which is the gaming
chair, and this is transformed to the easy chair, whereas the first sample
of the last row is the result of interpolation from the gaming chair to the
easy chair, where it is transformed back to the bed.

FIGURE 17. k-Nearest samples-based interpolation: Three nearest
samples codes to the uniformly generated code are selected which
belong to the bed, lounge chair, and carver chair. This shows interpolation
from the bed to the lounge chair and from the lounge chair to the carver
chair, as well as the other way around.

generated feature code from the uniform distribution is com-
puted along with the mixing parameter αk using eq (9).
The interpolation results from the k-nearest samples-based
approach are shown in Fig. 17, where the transformations
from the bed to a lounge chair, and from the lounge chair to a
carver chair and then back to the bed, are shown. A detailed
description of the k-nearest sample-based approach is shown
in Fig. 18, where the first row shows the transformation from
the bed to a lounge chair. The in-between samples show the
intermediate representations of the transformation between
these two samples. Similarly, the first sample of the second
row shows the last interpolated sample from the bed, which
is a lounge chair, and this sample is transformed to a carver
chair. The carver chair is then transformed back to the bed.

FIGURE 18. k-Nearest samples-based interpolation: Three nearest
samples codes to the uniformly generated code are selected, which
belong to the bed, lounge chair, and carver chair. The first row shows
interpolation from the bed to the lounge chair, where the first sample
shows the start of the interpolation and the last sample shows the
interpolated sample by changing its feature code in the response field.
The in-between samples show the intermediate representation of the
transformation from the bed to the lounge chair. The first sample of
the second row shows the last interpolated sample from the bed, which is
the lounge chair, and this is transformed to a carver chair, whereas the
first sample of the last row is the result of interpolation from the lounge
chair to the carver chair, and this is transformed back to the bed.

2) HYPER-PARAMETERS SETTING
The hyper-parameters play a crucial role in the learning of
a deep neural network. One of the ways to find a suitable
learning rate for training a deep neural network is to start with
a very low learning rate and then linearly or exponentially
increase it in each iteration. Once the loss begins to increase
drastically, stop the training and then select the optimal learn-
ing rate. The proposed network is based on two independent
steps, where the selection of learning rate is more challeng-
ing and computationally expensive based on the procedure
discussed above. In the proposed network, the feedforward
CNN loss is convex, so a comparatively lower learning rate is
used. On the other hand, the second step is based on training
feedback CNN, where the space is highly non-linear, so we
used a comparatively higher learning rate in order to avoid
local minima.

IX. CONCLUSIONS
We investigate the implications of feedback weights in deep
neural network as a means of interpreting the activities
of neurons at different layers toward the recognition of
the input testing samples by proposing a clustering-based
interpretation algorithm. The proposed algorithm effectively
reconstructs the input testing samples from the class prob-
abilities by selecting the centroids of their representative
clusters in the feedback path. The reconstructed samples are
evaluated both qualitatively and quantitatively in terms of
their recognition, and the results provide meaningful infor-
mation about the cause of failure. The cluster-based analysis
in the feedback path of the network is made possible by a
modified feature extraction and reconstruction neural net-
work with the capability of learning hierarchy of the features.
The feature extraction and reconstruction network provides
typical sample reconstruction from the local layer and its
corresponding mean representation from the global layers.
Furthermore, we propose the use of a feature interpolation
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algorithm to analyze the deep neural network in terms of
the neuron collaboration. The feature interpolation algorithm
provides meaningful visual information about the behavior
of the neurons during the transformation among different
objects in the feature space. For future work, we will extend
our work of interpretation as a means of connecting the
semantic knowledge while extracting meaningful features
using a deep neural network.
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