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ABSTRACT Grey wolf optimizer (GWO) is a very efficient metaheuristic inspired by the hierarchy of the
Canis lupus wolves. It has been extensively employed to a variety of practical applications. Crow search
algorithm (CSA) is a recently proposed metaheuristic algorithm, which mimics the intellectual conduct
of crows. In this paper, a hybrid GWO with CSA, namely GWOCSA is proposed, which combines the
strengths of both the algorithms effectively with the aim to generate promising candidate solutions in
order to achieve global optima efficiently. In order to validate the competence of the proposed hybrid
GWOCSA, a widely utilized set of 23 benchmark test functions having a wide range of dimensions and varied
complexities is used in this paper. The results obtained by the proposed algorithm are compared to 10 other
algorithms in this paper for verification. The statistical results demonstrate that the GWOCSA outperforms
other algorithms, including the recent variants of GWO called, enhanced grey wolf optimizer (EGWO)
and augmented grey wolf optimizer (AGWO) in terms of high local optima avoidance ability and fast
convergence speed. Furthermore, in order to demonstrate the applicability of the proposed algorithm at
solving complex real-world problems, the GWOCSA is also employed to solve the feature selection problem
as well. The GWOCSA as a feature selection approach is tested on 21 widely employed data sets acquired
from the University of California at Irvine repository. The experimental results are compared to the state-
of-the-art feature selection techniques, including the native GWO, the EGWO, and the AGWO. The results
reveal that the GWOCSA has comprehensive superiority in solving the feature selection problem, which
proves the capability of the proposed algorithm in solving real-world complex problems.

INDEX TERMS Grey wolf optimizer, crow search algorithm, hybrid algorithm, function optimization,
feature selection.

I. INTRODUCTION

Optimization is a process of searching the most optimal
solution among all the available solutions of a particu-
lar problem. In consideration of the nature of optimiza-
tion algorithms, these algorithms can be categorized broadly
into two groups, i.e., deterministic algorithms and stochas-
tic intelligent algorithms [1], [2]. In the case of determinis-
tic algorithms, identical solutions are produced if its initial
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starting values are the same with each other when solving
the same problem. In contradiction to deterministic algo-
rithms, stochastic algorithms utilize random steps in order
to reach the optima. In this, the optimization process can-
not be repeated under any conditions. However, same final
optimal solutions can be achieved by both of them in most
of the cases. Stochastic algorithms are further classified
into two types, i.e., heuristic algorithms and metaheuristic
algorithms [3]. Heuristic, as the name suggests, is the process
of finding the solutions by trial and error method whereas
metaheuristic algorithms solve the optimization problems
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stochastically having some prior knowledge about the ran-
dom search [4]. It is a process of optimization which starts
with a random solution, then explores and exploits the search
space randomly with a specific probability. Since the last
two decades, nature-inspired metaheuristic algorithms have
become very popular due to their powerful and efficient per-
formance in dealing with high-dimensional nonlinear opti-
mization problems [3], [5]. These algorithms have the ability
to exploit the useful information of the population in order
to find the optimal solutions. Until now, substantial research
has been done by various researchers on these algorithms and
several nature-inspired metaheuristic algorithms have been
introduced such as Particle Swarm Optimization (PSO) [6],
Genetic algorithm (GA) [7], Differential Evolution (DE) [8],
Bat Algorithm (BA) [9], Firefly Algorithm (FA) [10], [11],
Butterfly Optimization Algorithm (BOA) [12], Grey Wolf
Optimization (GWO) algorithm [13] and Crow Search algo-
rithm (CSA) [14].

A major application of metaheuristic algorithms is in the
domain of feature selection which deals with the dimensions
of the data set in order to make predictions, however, when
the dimensionality of the data sets is increased then the
performance of the classification methods is considerably
affected [15]. Moreover, high dimensional data sets have var-
ious disadvantages such as large time for model construction,
redundant data and degraded performance which makes data
analysis very difficult. To resolve this issue, feature selection
is utilized as a major preprocessing step with the goal of
selecting a subset of features out of the large data set as well as
increase the accuracy of the classification or clustering model
leading to the removal of noisy, extraneous and ambiguous
data. In the past, various attempts have been made to employ
metaheuristic algorithms such as PSO [16], [17], GA [18],
[19] and record-to-record travel algorithm [20], [21] have
been employed to solve feature selection problems. Further-
more, some recent algorithms including GWO [22], ant lion
optimizer [23], flower pollination algorithm [24] and whale
optimization based approaches [25] have also been used to
find the optimal feature subset. Recently, binary butterfly
optimization based approaches have been employed to solve
the feature selection problem [26].

While designing or employing a metaheuristic, it must
be kept in the mind that diversification (exploration of the
search space) and intensification (exploitation of the optimal
solutions obtained so far) must be balanced in an efficient
manner. In this regard, one significant alternative is to develop
a memetic algorithm in which (at least) two algorithms are
integrated together with the aim to enhance the overall per-
formance. The aim of the current study is to propose a hybrid
algorithm focussing on the integration of GWO and CSA
to demonstrate superior performance on global optimization
and general classification problems.

GWO in fact is a metaheuristic algorithm, inspired by the
leadership behavior and unique mechanism of hunting of grey
wolves. This population-based metaheuristic has the ability
to avoid local optima stagnation to some extent [3]. It also
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has good convergence ability towards the optima. In gen-
eral, GWO advances itself strongly to exploitation. However,
it cannot always implement exploration well. Thus, in some
cases, GWO cannot always deal with the problem success-
fully and fails to find the global optimal solution. CSA is a
recently proposed metaheuristic algorithm which mimics the
intelligent behavior of crows. The authors utilized the intel-
ligence of crows shown in a group in order to communicate
with each other, hide and retrieve food. The strength of CSA
lies in the ability to avoid local optima easily when dealing
with complex, high dimensional and multimodal problems.
On the contrary, the local search strategy of CSA is not very
much efficient.

Considering the strengths of GWO and CSA, these two
algorithms are ideal for hybridization. Therefore, in this
study, a hybrid algorithm comprising GWO and CSA, termed
GWOCSA is proposed which combines the two algorithms in
order to achieve a more suitable trade-off between diversifica-
tion and intensification, and offer significantly better results
than the conventional GWO and CSA in terms of solution
accuracy and convergence speed.

The major contributions of this research work are summa-
rized as follows:

1) A novel hybridization approach based on GWO and
CSA is proposed.

2) The proposed approach is applied on 23 function opti-
mization benchmark problems.

3) The proposed hybrid approach is employed to solve
feature selection problem and the results are validated
on 21 data sets.

4) The performance of the proposed approach is compared
with conventional GWO, CSA and eight other algo-
rithms; Bat Algorithm (BA), Biogeography-based opti-
mization (BBO), Dragonfly Algorithm (DA), Genetic
Algorithm (GA), Particle Swarm Optimization (PSO),
Satin Bird Optimizer (SBO), Enhanced GWO (EGWO)
and Augmented GWO (AGWO).

The remainder of the paper is arranged as follows:
Section II presents the related works. Section III presents
the background information of GWO and CSA focussing
on their inspiration and mathematical model. The proposed
hybrid algorithm is presented in Section IV whereas the
experimental results on function optimization problems as
well as feature selection problems are discussed in Section V.
Finally, conclusions and future work are stated in Section V1.

Il. RELATED WORKS

In the last few decades, hybrid algorithms have been utilized
by various researchers to solve a variety of problems in the
optimization field [27]. These hybrid algorithms have shown
better performance in comparison to their counterparts in
solving various complex problems [28]. In [29], GA has been
hybridized with PSO for global optimization. In this research,
the authors have utilized the hybridization of GA and PSO to
generate individuals not only from the crossover and mutation
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operators but also by global and local search operators of
PSO. GA has also been hybridized with Taguchi method for
global numerical optimization [30]. In this hybrid algorithm,
the Taguchi method is appended as an additional step in GA
in order to choose higher quality genes to attain superior
performance. In [31], grey wolf optimizer is hybridized with
hybrid differential evolution algorithm for solving contin-
uous global optimization problems. Nabil [32] introduced
a hybrid algorithm between flower pollination algorithm
and clonal selection algorithm to find more accurate solu-
tions than the conventional FPA. The performance of the
proposed hybrid algorithm is proved using various bench-
mark test problems. Tawhid and Ali [33] proposed a novel
approach which hybridized GWO and GA, and employed
the proposed approach to minimize the energy function of
a simplified model of the molecule. Jayabarathi et al. [34]
hybridized GWO with crossover and mutation operators of
GA to achieve improved performance in solving economic
dispatch problems. In another study, the exploration capa-
bility of GWO is hybridized with the ability of exploitation
in PSO in order to improve the performance [35]. Recently,
in order to enhance the performance of complex systems,
GWO is hybridized with artificial bee colony and employed
to optimize the parameters [36]. This research work focussed
on utilizing the bee’s information sharing strategy of artificial
bee colony algorithm to perform exploration in addition to the
exploitation capability of GWO. In [37], BBO and GWO are
hybridized together to balance exploration and exploitation
and to obtain superior performance than BBO and GWO indi-
vidually. Hassanien et al. [38] hybridized CSA with a rough
searching scheme in order to handle the impreciseness and
roughness of the existing information regarding the global
optimal solution and ultimately improving the performance
of CSA. These studies confirm that the hybrid algorithms
demonstrate superior performance in comparison to local or
global search algorithms.

In the feature selection domain, various hybrid algorithms
have been proposed with a great deal of success. The first
hybrid metaheuristic algorithm for feature selection was pro-
posed in 2004 which focussed on hybridizing local search
techniques in GA to control the search process [39]. Another
hybrid algorithm was proposed for feature selection in [40]
which focussed on hybridization of GA and PSO algorithms
with SVM classifier and employed to microarray data clas-
sification. Moreover in [41], PSO is hybridized with a local
search algorithm to guide the search process in an efficient
manner in order to select the minimal reducts depending on
their correlation data. Hybrid algorithms based on ant colony
optimization using GA [42], [43] and cuckoo search [44] are
proposed in the same field.

Moreover, hybrid algorithms have also been utilized
for feature selection such as hybridization of differen-
tial evolution and artificial bee colony has been done [45]
whereas hybrid algorithms based on the whale optimiza-
tion algorithm and simulated annealing are also employed
for feature selection [46]. Recently, an approach based on
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grasshopper optimization algorithm [47] and evolutionary
population dynamics [48] has been successfully employed
in [49] as a solution for selecting the optimal feature set.
Interested readers are referred to [50] and [51] for further
reading about metaheuristics and feature selection.

Despite the advantages of the aforementioned hybrid
algorithms for function optimization and feature selection,
one might question the intention of developing a new
hybrid algorithm. This question can be responded using the
No-Free-Lunch (NFL) which rationally proves that any sin-
gle algorithm is not capable of solving all optimization
problems [52]. This means that there is always room for
developing new algorithms to solve the function optimization
problems as well as feature selection problems in a more
efficient manner. This inspired our efforts to propose yet
another hybrid algorithm for function optimization and fea-
ture selection problems.

lll. METHODS

A. GREY WOLF OPTIMIZER

Grey Wolf Optimizer (GWO) was proposed by
Mirjalili et al. [13] in 2014. It is a newcomer in the field
of nature-inspired metaheuristic algorithms. It mimics the
leadership and hunting characteristics of the grey wolves.
Grey wolves are members of Canidae family and they follow
a very strict social hierarchy. They prefer to hunt for prey in
a pack of 5-12 wolves. Some assumptions have been taken
in the conventional GWO for its efficient simulation which
includes the four levels in wolves’ hierarchy that are alpha
(), beta (B), delta (§) and omega (w). o wolf is at the topmost
level being the leader of the wolf pack. It can be a male or a
female wolf. It is responsible for taking all types of decisions
like hunting, maintaining discipline, sleeping and waking
time for whole pack [53]. The second level is 8 which are the
subordinate wolves and help the « leader in decision making
or other activities. 8 wolf being the second best in the group
has the highest probability to become « leader in the group.
The third level of grey wolves, i.e., § wolves, dominate the
wolves of forth and the last level called the @ wolves which
are responsible for maintaining safety and integrity in the
wolf pack [13]. GWO is mathematically modeled into four
phases which are described as follows:

1) HIERARCHICAL STRUCTURE

The GWO algorithm is mathematically modeled on the basis
of the social hierarchy of the wolves. The top level of the
social hierarchy, i.e., o is considered as the best solution
found. Similarly, 8 and § are considered as second and
third best solution respectively. @ wolves are assumed to
be the remaining candidate solutions that follow «, 8 and &
wolves [13].

2) ENCIRCLING PREY
All the grey wolves have some inherent characteristic
of encircling the prey during hunting. The mathematical
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equations modeled in GWO for encircling characteristic of
the wolves are represented in Eq. (1) and Eq. (2) [13].

— - = —

D =[C.X,(1)— X (@) (D
— — — —
X(t+1)=X,t)—A.D 2)

Here, D is the distance from the prey to the wolf. X represents
the position vector of the wolf and X 1ndlcates the position
vector of the prey at iteration ¢. A and C are the vectors
which are random and are calculated as shown in Eq. (3) and
Eq. (4) [13].

?1 -7 A3
4)

Here, 7 and 73 are the random vectors in the range of [0, 1].
These vectors make wolves to reach at any point between
the prey and the wolf. Vector a is involved in controlling
activity of the GWO algorithm and used in calculating A. The
component values of a vector decreases linearly from 2 to
0 over the courses of iterations [13].

=2
=2.

ﬁi N}
%i Ql,

3) HUNTING THE PREY

Having the ability to recognize the location of the prey,
the grey wolves can easily encircle it. The o wolf guides
the whole hunting process. All the grey wolves do hunting
according to «, B and § wolves. They also update their
positions according to the resultant best position of «, 8 and
& wolves. Mathematically, it is formulated in Eq. (5), Eq. (6)
and Eq. (7) [13].

- o> > > > > > > > > —>
Dy =|C1. Xy — X |,Dpg=|C2.Xg — X |,Ds=|C3.Xs — X |

%)
> o oo o = = > > = =
X1 =Xy —A1.Dy, X =Xg — A2.Dg, X3=X5 — A3.D;

(6)

The updated position of the grey wolf can be calculated using
Eq. (7).

- > > o
X+ =X +X2+X3)/3 (7

The pseudo code of the GWO algorithm is presented in Fig. 1.

4) SEARCHING AND ATTACKING THE PREY

Grey wolves attack the prey only when it stops moving.
Mathematically, it is modelled on the basis of a vector used
in Eq. (3). A is a random vector whose value lies in the range
[—a, a], where the value of a is decreased from 2 to O over
the course of iterations using Eq. (8).

d =2— (2 xt/Maxier) ®)

So, if |ﬁ| < 1, it means the wolf will be forced to attack
the prey by going towards it and if |;l| > 1, the wolf will
get diverge out from the prey and will search out for a fitter
prey [13]. The process of searching for prey by grey wolves is
done according to the location of the ¢, 8 and § wolves. The
exploitation and exploration depend only on the values of A
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Algorithm 1 Pseudo Code of GWO [13]
Initialize the population of grey wolves X;(i = 1,2, ...,n)
Initialize parameters a, A and C
Calculate the fitness of each Search_agent (Wolf)
Xy = The best search_agent/wolf
Xg =The second best search_agent/wolf
= The third best search_agent/wolf
while (t<Max_iterations)
Jor each search_agent
Update the position of current search_agent
using Eq.(7),
end for
Update parameters a, A, C
Calculate the fitness of all search agents.
Update X, Xg, Xs
t=t+1
end while
return X,

3
® orany

other
hunters

Estimated

position of
the prey

© 0000

FIGURE 1. Position updating in GWO [13].

and C vector. We can utilize the random values of A to make
the wolf diverge or converge from the prey. Random values
of C vector lie in the range [0, 2] which plays an important
role in avoiding local optima stagnation. It adds some random
weight to the prey to make it more difficult for grey wolves
to define the distance from the prey to the wolf. C > 1 means
C is emphasizing the effect of prey and if C < 1, C’s effect
will get de-emphasize stochastically. In the whole process,
mainly A and C vectors are to be adjusted carefully. Both
the parameters will emphasize or deemphasize exploitation
or exploration. In the end, when the last criterion is satisfied,
the GWO algorithm will get terminated and the best position
of the alpha wolf will be the outcome. The diagrammatical
representation of the effect of parameters Aand Cin updating
the wolves’ position is represented in Algorithm 1.

B. CROW SEARCH ALGORITHM

Askarzadeh proposed a nature-inspired algorithm which
mimics the food hiding mechanism of crows in 2016 [14].
Basically, a crow is considered an intelligent bird that has
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a sharp brain and it possess the ability which is utilized to
warn its species about some dangerous situations. One of the
best aspects of their intelligence is that they can effectively
hide and easily remember its food location. The working of
CSA is depended on four major principles, i.e., they live in
a flock, remember the location of the hidden food, follow
another member of their species and finally, shield their
caches from being pilfered stochastically. Due to its sim-
plicity and efficiency, CSA has been used to solve different
problems related to the selection of conductor size [54], fea-
ture selection [55], [56], image segmentation [57] and elec-
tromagnetic optimization [58].

C. MATHEMATICAL MODEL OF CSA

The working principle of CSA is based upon the ability
of crows in hiding and retrieving the food. The complete
working of the CSA is presented below:

1) In the first step, the optimization problem along with
its decision variables and constraints is formulated and
the values of adjustable parameters, i.e., flock size (N,
the maximum number of iterations(MaxXiserations ), Flight
Length (fI) and Awareness Probability (AP) are set.

2) A matrix of N rows and d columns is designed where
N, d is a number of crows and decision variables
respectively. Each crow represents a feasible solution.
Here, the memory for each crow is setup. Moreover,
in the beginning, all crows do not have any experience
so it is assumed that each crow has concealed their food
at random locations.

3) Now, the value of fitness function is computed.

4) In this step, the new position of the crow is computed.
First, a random number is generated and compared to
awareness probability and if the value of the random
number is smaller than awareness probability then the
crow moves randomly in the search space. Otherwise,
the crow (x/) randomly selects any flock crow (/) and
then follows 7/ to determine the location of its hidden
food. The new position for the crow (x') is calculated
as:

xi+l,l+l — xi,t + ¥ X.ﬂi,t X (mj,l _xi,t) (9)

Here r represents a random number whereas the iter-
ation count is demonstrated by ¢. This process will be
repeated for all N crows.

5) The fitness of the new position will be computed.

6) Based upon the fitness value of new and memorized
position, i.e., if the fitness value of the newly occupied
position is better than the memorized one, then the
memory of the crow will be updated.

7) The steps from 4 to 6 are repeated until maximum
iterations or the termination criterion is met. The best
position of the crow memory will represent the final
solution of the optimization problem.

The pseudo code of the CSA algorithm is presented in
Algorithm 2.
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Algorithm 2 Pseudo Code of CSA [14]
Initialize the population of crows X;(i = 1,2, ...,n)
Calculate the fitness of each crow
Initialize the memory of crows
while (t<Max_iterations)
for each crow
Define an Awareness Probability (AP)
Generate a random number r
ifr > AP
Update the position of crow using Eq.(9),
else
Generate the position of crow randomly
endif
end for
Check the feasibility of new positions
Calculate the fitness of all search agents.
Update the memory of crows
t=t+1
end while
return the best crow

IV. THE PROPOSED APPROACH

A. MODIFIED POSITION UPDATION MECHANISM

It is a well established fact that both exploration, as well
as exploitation, is essential for any population-based algo-
rithm to demonstrate excellent performance. In classical
GWO, the foremost matter of concern is that all the search
agents (wolves) are updated according to the « (best search
agent), B (second best search agent) and § (third best search
agent) in the whole optimization process as shown in Eq. (7).
Basically, this position updating mechanism leads to prema-
ture convergence because the search agents were not allowed
to explore the search space efficiently. Moreover, the same
optimization process as mentioned in Eq. (7) provides limited
exploitation capability in the later stages of optimization
which leads to slow convergence.

Therefore in order to overcome the aforementioned limi-
tations of the conventional GWO, it is hybridized with CSA
to achieve a more suitable balance between exploitation and
exploration. Specifically, CSA incorporates a control parame-
ter f1 in its position updation equation as mentioned in Eq. (9)
which allows the search agents to decide the magnitude
of the step movement towards the other search agent. This
parameter plays a very significant role in the attaining the
global optima as the large value of fI lead of global explo-
ration while a small value of fI results to local exploitation.
Fig. 2 demonstrates the effect of fI in the searching pro-
cess of CSA. As already mentioned earlier, GWO has good
exploitation ability but poor exploration capability, therefore
in the proposed GWOCSA, a larger value of fI is utilized
in order to utilize the CSA’s excellent exploration quality
as shown in Eq. (10). This means, the proposed algorithm
can effectively maximize the two algorithms’ advantages
and therefore, it can obtain strong universal applicability.
In GWOCSA, instead of updating from ¢, 8 and §, a search
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FIGURE 2. Position updating in CSA [14].

agent is allowed to update its position only using « and 8 as
shown in Eq. (10).

- — > = > =
Xt +D=X +f1 xrand x (X1 —X)+ X — X))/2
(10)

Another signification addition, in order to maintain popula-
tion diversity, not all individuals in the population are updated
by the alpha and beta updating direction, but by alpha only
in the proposed GWOCSA. This acts as a shrinking strategy
which enables the proposed algorithm to escape from local
optimum.

Xe+D)=X +flxrand x (X1 —X) (11

B. ADAPTIVE BALANCE PROBABILITY (p) STRATEGY

Although, the proposed GWOCSA possess the excellent
capabilities of exploration and exploitation of CSA and
GWO, however, a proper balance of these two phases must
be achieved in order to achieve good performance. In an
ideal scenario, an algorithm must attain the ability to explore
a huge search space in the early optimization stage to
avoid premature convergence while exploiting small regions
in the later optimization phases to efficiently refine the
final solutions. This means, in order to attain the required
exploration-exploitation ratio, a fixed balance probability
between Eq. (10) and Eq. (11) is not favorable. Therefore,
in this study, an adaptive balance probability is proposed
which allows the GWOCSA to achieve acceleration through-
out early steps of optimization process whereas in the later
stages of optimization promising solutions will possess a high
probability to be exploited. The adaptive balance probability
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FIGURE 3. Adaptive balance probability p.

(p) is computed as follows:
p=1—(1.01 x 3 /Max_iter?) (12)

where ¢ denotes current iteration and Max_iter denotes max-
imum number of iterations.

C. NONLINEAR CONTROL PARAMETER (o) STRATEGY

As mentioned in the previous section that the parameter A
plays a very significant role in balancing the exploration and
exploitation of a search agent. Specifically, the parameter A
is critically dependent on @ which ultimately controls the
direction of the search process. A larger value of @ facil-
itates exploration phase whereas a smaller value facilitates
exploitation. This means a suitable selection of @ can offer
an upright balance of exploration and exploitation which can
lead to superior performance. In the classical GWO, the value
of @ is linearly decreased from 2 to O using Eq. (3). Till
now, several mechanism of updating control parameter @
have been proposed, such as [59] and [60]. Therefore, it can
be observed that superior performance can be achieved if the
values of control parameter @ are selected by using a non-
linearly decreasing approach, instead of a linearly decreasing
approach. Using the above information, an improved strategy,
as shown in Eq. (13), is utilized to generate the values for
control parameter @ during the optimization process. This
strategy allows the proposed algorithm to effectively explore
the search space in comparison to traditional GWO.

a =2 — (cos(rand()) x 1/Max_iter) (13)

The pseudo code of the proposed GWOCSA algorithm is
shown in Algorithm 3.

V. EXPERIMENTS AND RESULTS

In order to extensively investigate the performance of
GWOCSA algorithm, the experiments were conducted in
two sets. In the first set of experiments, a benchmark
function set containing 23 test problems having different
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Algorithm 3 Pseudo Code of the Proposed GWOCSA
Initialize the population of grey wolves Xi(i = 1,2, ...,n)
Initialize parameters a, A and C
Calculate the fitness of each Search_agent (Wolf)

Xo = The best search_agent/wolf

Xg = The second best search_agent/wolf

while (t<Max_iterations)

Jor each search_agent
if p>rand
Update the position of current search_agent
using Eq.(10)
else
Updatethe position of current search_agent
using Eq.(11)
endif
end for

Update the value of p using Eq. (12)

Update the value of a using Eq. (13)

Update parameters A, C

Calculate the fitness of all search agents.

Update X, Xg

t=t+1

end while

return Xy

characteristics is employed whereas in the second set of
experiments twenty-one data sets from UCI repository are uti-
lized in order to compare the performance of GWOCSA with
other metaheuristics as feature selection approaches. The
algorithms which are utilized in the comparative study are
BA [9], BBO [61], CSA [14], DA [62], GA [63], GWO [13],
PSO [64], SBO [65], EGWO [66] and AGWO [67]. Table 1
shows the initial values of critical parameters for the algo-
rithms used in this study which are selected according to
the literature. The maximum limit on number of iterations
is set to 300 for benchmark functions whereas for feature
selection problem, it is set to 100 [68]. Lastly, the size of
the population is fixed to 30 for function optimization prob-
lem and 7 for feature selection problem. All the results are
reported on the average of 30 independent runs in order to
achieve statistically meaningful results. All the algorithms
are implemented using MATLAB R2009b, under Microsoft
Windows 8 operating system. All simulations are carried out
on a CPU i5 — 3210 (Intel CoreTM Processor @2.50 GHz)
computer.

A. FUNCTION OPTIMIZATION EXPERIMENTS

In order to evaluate the performance of the proposed
GWOCSA, various experiments on a diverse subset of
function optimization problems are done in this section.
These functions have been widely employed by different
researchers in order to validate the performance of optimiza-
tion algorithms [69], [70]. These functions are divided into
three categories on the basis of dimensionality and modality.
In the first category, unimodal functions (F1-F7) investigate
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TABLE 1. Parameter settings of the algorithms used for comparison in
the current study.

Parameter Value (s)
BA Pulse rate 0.5
Loudness 0.5
Frequency Min=0 and Max=1
BBO  Immigration probability [0,1]
Mutation probability 0.05
Habitat modification probability 1.0
Step size 1.0
Migration rate 1.0
Maximum immigration 1.0
CSA  Flight length 2
Awareness probability 0.1
DA Inertia weight 0.9-0.2
Separation weight 0.1
Alignment weight 0.1
Cohesion weight 0.7
Food attraction weight 1
Enemy distraction weight 1
GA Mutation ratio in GA 0.1
Crossover ratio in GA 0.9
Selection mechanism in GA Roulette wheel
GWO a linearly decreased from 2 to 0
LSA  Channel time 10
PSO  Inertiaw in PSO [0.9, 0.6]
Acceleration constants in PSO [2,2]
SBO  Step size 0.94
Mutation probability 0.05
Difference between the upper 0.02

and lower limit

the convergence speed of an algorithm which are shown
in Table 2. In the second category, multimodal functions
(F8-F13) assess the ability of an algorithm to find global
optima when the number of local optima increases exponen-
tially with (tuned) problem dimension as shown in Table 3.
In the last category, i.e., fixed dimensional multimodal func-
tions, the number of design variables cannot be altered and
moreover, these functions offer dissimilar search space in
comparison to multimodal benchmark functions. These fixed
dimensional multimodal functions are shown in Table 4.
Tables 5- 7 show the results of all the algorithms on differ-
ent benchmark functions. In each table, mean and standard
deviation of the best solution obtained by every algorithm
are reported and the best results are highlighted in bold.
It can be observed that the performance of the proposed
GWOCSA is superior to other algorithms in most of the
benchmark functions. Table 5 demonstrates the comparison
between the proposed GWOCSA with other algorithms for
unimodal functions. It can be analyzed that GWOCSA has
shown superior results by obtaining best mean values for
six out of seven benchmark functions. As mentioned earlier,
unimodal functions are utilized to assess the convergence
towards the (only) optima. Therefore, the results reported
in Table 5 prove that the hybridization of GWO and CSA
has demonstrated better performance in comparison to GWO,
CSA as well as other algorithms employed in this study. Addi-
tionally, in order to better validate the superior convergence
behavior of GWOCSA on test functions, Fig. 4 is provided.
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TABLE 2. Unimodal benchmark functions.

Formula Dim Range finin

Fl(x)= X1, x7 30 [-100,100] 0

F2(x)= Xioq x| — Tl 1%l 30 [-10, 10] 0

F3(x)= Xy (81 %) 30 [-100,100] 0

F4(x)= max(|x;|,1 < i < n) 30 [-100,100] 0

F5(x)= Z{o{ [100(x; 41 — %,2)* + (x; — 1)?] 30 [-30, 30] 0

F6(x)= X7 ([x; + 0.5])2 30 [-100, 100] 0

F7(x)= ¥, ix;* + rand(0,1) 30 [-1.28, 1.28] 0

TABLE 3. Multimodal benchmark functions.
Function Dim Range fimin
F8(x)= X —x; sin(y/]x;) 30 [-500, 500] —418.982
FO(x)=X1, (x? — 10 cos(2mx;) + 10) 30 [-5.12,5.12] 0
F10(x)= —20 exp <—0.2 x [r3n, xf) — exp (ST, cos(2mx)) + 20 + e 30 [-32, 32] 0
FlI(X)= 5200 Xy ;2 — [T cos ("—ﬁ) +1 30 [-600, 600] 0
F12(x)= %{10 sin(my;) + 215 (1 — D?[1 + 10sin? (my;41)] + (0 — D2} + Ty u(x;, 10,100,4)
% +1 k(i —a)™ x >a 30 [-50, 50] 0
yi=1-}-—4 , u(x;, a,k,m) = 0—a xp<a
k(—=x; —a)™x; < —a
F13(x)= 0.1{sin®(3mx;) ¥, (x; — D2 [1 + sin?(3nx; + 1] + (x,, — D?[1 + sin?(2mx,)]} +
S u(x,, 5, 100,4) 30 [-50, 50] 0
TABLE 4. Fixed-dimensional multimodal benchmark functions.
Function Dim Range finin
-1
_ (L 25 1 -
Fl4(x)= ( Ly Zi:lﬁz?:l(xi—ai,-)ﬁ) 2 [-65, 65] 1
FI5()=Y1L, [q, — Zibitbixs) ’ 4 [-5, 5] 0.00030
=1 bE+bix3+xy ’ .
F16(x)= 4x? — 2.1x} + xf + x;, — 4xF + 4} 2 [-5, 5] -1.0316
5.1 5 2 1
F17(x)= (x2 — b+ 23 —6) +10(1--)cosx; — 10 2 [-5, 5] 0.398
F18(x)=[1 + (x; + x, + 1)2(19 — 14x; + 3x% — 14x, + 6x1x, + 3x3)] X ) [2.2] 3
[30 + (2x; — 3x,)%times(18 — 32x; + 12x? + 48x, — 36x,x, + 27x%)] ’
2
F19(00= — 2ty ¢ exp (- 231 ay (5 —py)”) 3 [1,3] -3.86
2

F20(x)= — X7 ¢; exp (_ 216=1 a; (xj - pij) ) 6 [0, 1] -3.32
F21(x)= =¥ [(X —a)X —a)" +¢]7! 4 [0, 10] -101532
F2(x)= = Y7 [(X —a)X —a)T +¢]7! 4 [0, 10] -10.4028
F23(x)= =Y [(X —a)X —a)" +¢]7! 4 [0, 10] -10.5363

Looking closely, it can be analyzed that GWOCSA tends to
demonstrate a faster convergence rate in comparison to other
algorithms in the first quarter of optimization. The underlying
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reason for the superior performance of the proposed algo-
rithm is that it is able to locate high performing regions in the
search space of the function optimization problem in hand.
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TABLE 5. Results of unimodal benchmark functions.

F BA BBO CSA DA GA GWO PSO SBO EGWO AGWO GWOCSA
Fl Mean 1.07E+04 2.28E+01 7.25E+01 6.33E+00 9.87E+02 4.00E-15 1.67E-03 4.27E-01 1.74E-16 2.45E-24 1.01E-28
Std Dev  2.50E+03 9.67E+01 2.75E+01 1.33E+01 3.81E+02 4.52E-15 5.63E-03 1.39E-01 3.69E-16 5.37E-24 1.26E-28
m Mean 5.00E+05 6.65E-01 5.29E+00 1.94E+00 7.17E-03 1.31E-09 3.20E-01 2.47E-01 5.16E-11 1.44E-15 1.50E-17
Std Dev ~ 2.23E+06 9.78E-02 1.05E+00 1.15E+00 2.69E-02 6.24E-10 3.66E-01 3.91E-02 8.54E-11 1.20E-15 1.25E-17
3 Mean 3.65E+04 1.59E+04 6.69E+02 3.47E+02 6.25E+02 5.06E-02 3.92E+02 1.94E+03 1.27E-01 3.66E-02 5.18E-04
Std Dev  1.67E+04 4.75E+03 2.70E+02 8.52E+02 3.36E+02 6.80E-02 2.49E+02 6.78E+02 2.83E-01 1.63E-01 1.07E-03
4 Mean 4.68E+01 4.99E+01 8.69E+00 4.49E+00 6.66E+00 9.85E-04 4.32E+00 8.92E+00 1.55E+00 6.39E-06 2.07E-07
Std Dev  8.12E+00 7.26E+00 1.86E+00 3.45E+00 3.34E+00 6.86E-04 1.65E+00 3.55E+00 3.95E+00 1.08E-05 3.00E-07
Fs Mean 8.36E+06 2.41E+02 1.77E+03 1.25E+03 5.63E+02 2.74E+01 8.07E+01 4.54E+02 2.80E+01 2.73E+01 2.70E+01
Std Dev  4.88E+06 2.24E+02 9.42E+02 2.22E+03 4.94E+02 7.68E-01 5.64E+01 4.74E+02 9.83E-01 6.85E-01 5.00E-01
6 Mean 1.16E+04 1.29E+00 6.58E+01 1.47E+01 1.20E+01 1.03E+00 1.20E-03 4.36E-01 3.19E+00 1.49E+00 1.23E+00
Std Dev  2.91E+03 1.78E+00 2.75E+01 2.45E+01 7.16E+00 4.13E-01 1.89E-03 1.86E-01 5.08E-01 3.13E-01 2.62E-01
7 Mean 3.71E+00 1.79E-01 8.15E-02 3.98E-02 3.55E-02 3.92E-03 3.88E-02 3.28E-01 1.19E-02 3.17E-03 1.92E-03
Std Dev  1.84E+00 6.27E-02 3.62E-02 2.99E-02 2.82E-02 2.79E-03 1.81E-02 8.69E-02 5.87E-03 2.27E-03 9.88E-04
TABLE 6. Results of multimodal benchmark functions.
F BA BBO CSA DA GA GWO PSO SBO EGWO AGWO GWOCSA
F8 Mean  -2.84E+71 -1.02E+04 -6.26E+03 -2.75E+03 -1.22E+03 -6.16E+03 -6.84E+03 -5.92E+03 -6.34E+03 -3.66E+03 -3.57E+03
Std Dev  7.36E+71 5.40E+02  5.62E+02  3.10E+02  7.00E+02 1.03E+03  6.46E+02 1.18E+03  6.13E+02  2.92E+02  4.42E+02
F9 Mean 6.63E+01  7.58E+00  4.35E+01 3.01E+01  3.34E+00 8.21E+00 5.22E+01  4.75E+01 1.87E+02 1.47E+00  1.19E+00
Std Dev  2.18E+01 1.98E+00 1.08E+01 1.32E+01  2.51E+00  5.65E+00  1.34E+01 1.13E+01 5.25E+01 6.56E+00  3.32E+00
Flo Mean 1.45E+01 3.31E-01 443E+00  3.15E+00  2.03E+00 1.30E-08 1.86E+00 1.52E+00 1.30E-01 2.77E-13 1.37E-14
Std Dev  8.62E-01 8.31E-02  7.44E-01 1.46E+00  1.45E+00  1.02E-08  8.57E-01 1.95E+00  5.83E-01 3.06E-13 3.53E-15
F11 Mean 1.13E+02  6.14E+01  1.57E+00  6.91E-01 9.95E-01 8.81E-03 1.50E-02  6.34E-01 9.89E-03  0.00E+00  0.00E+00
Std Dev  3.11E+01 1.90E+01 2.75E-01 3.77E-01 2.11E-01 1.06E-02 2.09E-02 1.52E-01 1.18E-02 0.00E+00  0.00E+00
Fl2 Mean 4.55E+06  6.45E+00  6.32E+00 1.51E+00  1.99E+00 7.49E-02 3.39E-01 4.44E+00  3.00E+00 1.06E-01 4.92E-02
Std Dev  7.23E+06  1.90E+00  1.90E+00 1.51E+00 1.61E+00  5.13E-02  4.70E-01  2.59E+00 3.55E+00  3.36E-02  8.54E-03
FI3 Mean 2.42E+07 1.04E-01 1.82E+01 1.06E+00 3.99E-01 9.19E-01 2.58E-01 5.68E-02 2.70E+00 1.12E+00 9.39E-01
Std Dev  1.22E+07 1.01E-01 1.77E+01 1.31E+00 3.21E-01 2.43E-01 2.93E-01 2.97E-02 5.52E-01 2.04E-01 2.09E-01

TABLE 7. Results of fixed-dimensional multimodal benchmark functions.

F BA BBO CSA DA GA GWO PSO SBO EGWO AGWO GWOCSA
Fl4 Mean 1.01E+01  9.83E+00 1.15E+00 1.35E+00 2.04E+00 3.80E+00 4.83E+00 9.20E+00 6.42E+00 2.28E+00  9.98E-01
Std Dev  5.40E+00 7.68E+00  6.64E-01  6.66E-01 1.41E+00 3.23E+00 3.45E+00 6.26E+00 5.03E+00 2.22E+00 2.21E-05
F15 Mean 4.81E-03  6.20E-03  4.12E-04  3.70E-03  3.28E-02 1.52E-03  2.35E-03  2.90E-03  7.58E-03  5.58E-03  3.38E-04
Std Dev 5.56E-03  7.24E-03  2.96E-04  5.92E-03  3.07E-02  4.44E-03  6.16E-03  2.83E-03  9.76E-03  8.76E-03 2.22E-05
Fl6 Mean -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -5.07E-01 -1.03E+00 -1.03E+00 -9.91E-01 -1.03E+00 -1.03E+00 -1.03E+00
Std Dev  2.64E-09  1.74E-04  3.13E-15 5.59E-07 3.95E-01 9.33E-08 1.76E-16  1.82E-01  2.26E-08  7.15E-06 5.57E-06
F17 Mean 3.98E-01 3.98E-01 3.98E-01 3.98E-01 6.05E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
Std Dev 1.33E-09  1.72E-04  1.77E-15  1.23E-09 7.36E-02  3.79E-06 0.00E+00  7.30E-06  3.02E-07  2.10E-04 2.93E-04
F18 Mean 5.70E+00  5.75E+00  3.00E+00 3.00E+00 2.87E+01 3.00E+00 3.00E+00 2.09E+01 7.05E+00 3.00E+00 3.00E+00
Std Dev  8.31E+00 8.39E+00  3.09E-14  2.82E-10 3.98E+01 1.73E-04  1.91E-15 3.38E+01 9.89E+00  7.55E-05 1.97E-05
F19 Mean -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -2.11E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00
Std Dev 1.12E-07  1.88E-03  2.43E-13  2.34E-03  8.66E-01  2.77E-03  2.22E-15 2.50E-07  2.15E-03  2.92E-03 2.52E-03
F20 Mean -3.28E+00 -3.28E+00 -3.28E+00 -3.22E+00 -1.01E+00 -3.25E+00 -3.27E+00 -3.28E+00 -3.24E+00 -3.17E+00 -3.31E+00
Std Dev 5.82E-02  5.52E-02  6.18E-02  1.08E-01  5.47E-01 7.52E-02 598E-02  5.82E-02  7.11E-02  1.03E-01 5.58E-03
F21 Mean -5.54E+00 -5.15E+00 -8.41E+00 -7.01E+00 -4.66E+00 -9.14E+00 -5.02E+00 -5.62E+00 -5.26E+00 -5.45E+00 -6.80E+00
Std Dev  3.55E+00 3.43E+00 3.14E+00 3.04E+00 3.04E+00 2.49E+00 3.18E+00 3.81E+00 3.08E+00 1.81E+00  2.23E+00
F22 Mean -5.39E+00 -6.02E+00 -1.00E+01 -7.64E+00 -7.41E+00 -1.04E+01 -7.25E+00 -8.16E+00 -7.56E+00 -6.89E+00 -8.76E+00
Std Dev  3.46E+00 3.70E+00 1.71E+00 2.88E+00 3.47E+00  2.30E-03 3.64E+00 3.52E+00 3.61E+00 1.08E+00 6.47E-01
F23 Mean -5.43E+00 -7.17E+00 -9.36E+00 -6.09E+00 -4.79E+00 -9.72E+00 -7.51E+00 -5.79E+00 -7.02E+00 -7.28E+00 -8.82E+00
Std Dev 3.87E+00 3.50E+00 2.87E+00 2.82E+00 3.11E+00 2.50E+00 3.84E+00 3.98E+00 4.02E+00  1.09E+00 5.52E-01

The rest of benchmark functions are multimodal, i.e., they
have many local solutions. As we briefly mentioned before,
this type of functions validates the performance of new
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algorithms in terms of its ability to avoid local optima stag-
nation. Tables 6 and 7 demonstrate that the performance
of the proposed GWOCSA is superior to other algorithms

26351



IEEEACC@SS S. Arora et al.: New Hybrid Algorithm Based on Grey Wolf Optimization and CSA for Unconstrained Function Optimization

TABLE 8. p -values obtained from the rank-sum test on different benchmark functions (p > 0.05 are underlined).

BA BBO CSA DA GA GWO PSO SBO EGWO AGWO
F1 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05
F2 8.86E-05  8.86E-05 8.86E-05 1.03E-04 1.37E-02 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05
F3 8.86E-05  8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 1.20E-04 3.70E-01
F4 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 1.89E-04
F5 8.86E-05 8.86E-05 8.86E-05 7.80E-04 1.03E-04 5.22E-02 2.54E-04 8.86E-05 2.20E-03 1.45E-01
F6 8.86E-05  5.22E-02  8.86E-05 2.76E-02  1.03E-04 1.35E-01 8.86E-05 8.86E-05 8.86E-05 2.50E-03
F7 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 2.50E-03 8.86E-05 8.86E-05 8.86E-05 4.00E-02
F8 8.86E-05 8.86E-05 8.86E-05 8.86E-05 1.03E-04 8.86E-05 8.86E-05 8.86E-05 2.96E-01 1.71E-03
F9 8.86E-05 1.03E-04 8.86E-05 8.86E-05 8.97E-03 1.40E-04 8.86E-05 8.86E-05 8.86E-05 7.53E-01
F10  8.86E-05 8.86E-05 8.86E-05 8.86E-05 3.77E-04 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05
F11 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 3.35E-03 1.00E+00
F12  886E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 4.00E-02 2.06E-02 8.86E-05 8.86E-05 8.86E-05
F13 8.86E-05  8.86E-05 8.86E-05 8.52E-01 1.40E-04 6.81E-01 1.20E-04 8.86E-05 8.86E-05 8.97E-03
F14  8.86E-05 1.55E-04 222E-03 5.75E-01 4.05E-03  7.80E-04 7.80E-04 1.40E-04 3.90E-04 2.28E-02
F15 8.86E-05 8.86E-05 1.17E-01  8.86E-05 8.86E-05 5.17E-04 9.11E-01 8.86E-05 1.20E-04 1.40E-04
Fl6  8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 2.50E-03 8.86E-05 7.65E-01l
F17  8.86E-05 4.05E-03 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05 4.38E-02
F18 1.37E-02 3.90E-04 8.86E-05 8.86E-05 3.13E-01 8.86E-05 8.86E-05 1.17E-01 6.27E-01  4.05E-03
F19  7.94E-01 7.94E-01 8.86E-05 6.20E-02 8.86E-05 7.94E-01 8.86E-05 8.86E-05 1.16E-03 5.50E-01
F20  6.00E-01 7.93E-01 1.00E+00 2.51E-02 8.86E-05 6.18E-02 3.12E-01 6.01E-01  1.00E-02  8.86E-05
F21 191E-01 6.74E-02 1.17E-01  9.70E-01 = 2.28E-02 4.55E-03  8.59E-02 2.63E-01  6.74E-02  1.08E-01
F22 1.71E-03  1.00E-02  1.51E-03  6.20E-02 1.45E-01 8.86E-05 145E-01 1.00E+00 3.13E-01  2.19E-04
F23  4.05E-03 6.20E-02 7.31E-02 7.80E-04 3.90E-04 1.37E-02 3.13E-01 1.00E-02  1.45E-01  2.54E-04

TABLE 9. Average ranking of all the algorithms based on Friedman test.

BA BBO CSA DA GA GWO PSO SBO EGWO AGWO GWOCSA

F1 13 9.3 10.9 9.05 12 4 6.7 8.7 3 2 1
F2 13 9.9 11.95 10.43 1.63 5 8.1 8.25 4 2.95 1.95
F3 12.95 12.05 8.75 6.5 8.8 4.55 7.55 10.9 43 2.2 2.55
F4 12.35 12.65 9.3 7 7.95 3.25 6.8 9.25 5.4 1.95 1.05
F5 13 8.5 11.45 7.7 9.6 2.95 6.4 9.8 4 3.4 24
F6 13 5 11.9 7.55 10.2 5.65 1.75 3.6 8.5 6.95 5.95
F7 13 10.7 8.7 7.15 6.85 3.1 73 11.95 5.1 2.6 1.75
F8 1.75 2 6.3 11.05 11.95 6.35 4.9 6.5 5.8 9.4 9.5
F9 10.65 53 8.75 7.6 4.2 5 9.5 9.45 13 1.85 1.85
F10 13 6.4 11.5 9.95 7.6 4 8.55 7.95 3.65 2.2 1.2
F11 12.95 12.05 10.95 8.6 9.8 4.65 59 8.65 4.25 1.73 1.73
F12 13 10.8 11.05 7 7.9 2.6 3.55 9.45 8.2 3.45 1.8
F13 13 3.1 11.85 6.2 5 7.35 3.7 2.65 10.3 7.95 7.35
F14 11.33 10.4 2.6 3.43 6.38 7.9 8.38 10.18 8.5 6.93 5.08
F15 10.1 10.15 2.2 9.1 12.2 52 3.1 9.05 7.85 7.75 2.8
F16 6.38 11.9 3.83 4.1 13 7.95 3.83 7.73 6.63 10.4 10.45
F17 4.6 9.25 2.85 3.03 12.9 8.05 2.85 5.58 6.6 9.8 10.55
F18 4.7 9.95 3.83 4 7.5 3.83 3.83 9.73 9.1 9.75 8.8
F19 8.5 8.5 1.7 5.5 12.95 8.5 1.7 3.35 52 8.45 7.75
F20 5.98 5.83 4.35 6.8 12.95 6.95 3.25 3.45 6.5 9.35 5.95
F21 7.45 9.3 3.43 5.4 9.1 5.15 7.53 7.7 8.9 7.25 6.5
F22 9.6 9.18 2.05 5.78 7.48 4.75 5.78 5.5 7.85 8 72
F23 8.55 7.15 2.95 7.15 8.95 52 5.13 8.25 7.9 7 6.2

Average 231.84 19936 163.14 160.07 206.89 12193 126.08 177.62 154.53 133.31 111.36

on more than 60% of the multimodal benchmark functions. has an overall edge in terms of overall performance. Fur-
Nevertheless, some algorithms obtain better results compared thermore, it is worthwhile to mention that GWOCSA shows
to GWOCSA in some special cases, however, GWOCSA superior performance in comparison to EGWO and AGWO
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FIGURE 4. Convergence curves of the unimodal functions.

in almost all of the cases. This proves that the hybridization
of GWO and CSA has significantly improved the global
searching ability and stability. Additionally, Figs. 5 and 6
demonstrate the convergence behavior of all the algorithms
on multimodal benchmark functions. As it can be observed
from these figures that GWOCSA converges fast compared
to other algorithms and achieves optima of most functions
which demonstrates the strong exploitation ability in the later
stages of optimization as well as the capability to keep the
diverse distribution of population during the search process.
According to the above observations, it can be concluded that
the performance of the proposed GWOCSA is superior to
the other ten algorithms when utilized to solve most of these
optimization problems.

A nonparametric statistical test, Wilcoxon’s rank-sum
test [71] is conducted in order is to determine whether
the proposed GWOCSA algorithm provides a significant
improvement compared to other algorithms or not. The test
was carried out using the results of the proposed GWOCSA
in each benchmark function and compared with each of the
other algorithms at 5% significance. Table 8 presents the
p-values obtained by the test, where the p-values less than
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FIGURE 5. Convergence curves of the multimodal functions.

0.05 signify that the null hypothesis is rejected, i.e., there
is a significant difference at a level of 5%. On the contrary,
the p-values (greater than 0.05) are underlined which mean
that there is no significant difference between the compared
values. It can be analyzed from the results of Table 8 that in
most of the comparisons the p-values are smaller than 0.05
which verify that the improvement achieved by the proposed
GWOCSA is statistically significant on the majority of the
benchmark functions.

Table 9 demonstrates the results obtained from the
Friedman’s test. The aim of the test is to determine whether
the proposed GWOCSA algorithm provides a significant
improvement compared to the other algorithms. In this test,
a rank is assigned on the basis of performance of the algo-
rithm; this means smaller the rank, better the algorithm.
As can be seen from Table 9, the GWOCSA algorithm has
demonstrated better or similar results compared to the other
algorithms for most of the unimodal and multimodal bench-
mark functions, except for F2, F3, F6, F§8 and F13. But for
GWOCSA, the rank of these benchmark functions is close
to the first rank achieved by other algorithms which indi-
cates GWOCSA gives solutions very close to global optima
in these functions. Though some algorithms perform better
than the GWOCSA algorithm in some fixed dimensional
multimodal benchmark functions, however, GWOCSA algo-
rithm has an overall edge in terms of performance. It can
be analyzed from the results of this table that the proposed
GWOCSA obtained the best average rank in comparison
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FIGURE 6. Convergence curves of the fixed dimensional functions.

to GWO, CSA and other algorithms. This means that the
results of GWOCSA are significantly better than the other
algorithms.

B. FEATURE SELECTION EXPERIMENTS

Feature selection problem can be considered as a
multi-objective optimization problem in which two opposing
goals are to be accomplished; selecting a minimum number
of features and achieving maximum classification accuracy.
In the feature selection problem, that solution is considered
best which contains a minimal number of features along with
the highest classification accuracy. Here, several experiments
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TABLE 10. Data sets used in the current study.

D.No. Name No. of features No. of samples
D1 Breastcancer 9 699
D2 BreastEW 30 569
D3 Cleanl 166 476
D4 Clean2 166 6598
D5 CongressEW 16 435
D6 Exactly 13 1000
D7 Exactly2 13 1000
D8 HeartEW 13 270
D9 IonosphereEW 34 351

D10  KrvskpEW 36 3196
D11  Lymphography 18 148
D12  M-ofn 13 1000
D13 PenglungEW 325 73
D14  Semeion 265 1593
D15  SonarEW 60 208
D16  SpectEW 22 267
D17  Tic-tac-toe 9 958
D18 Vote 16 300
D19  WaveformEW 40 5000
D20  WineEW 13 178
D21  Zoo 16 101

have been performed over twenty-one distinct UCI data sets
and the performance of proposed hybrid GWOCSA has been
compared with state-of-the-art feature selection approaches.
The details of twenty-one data sets have been depicted
in Table 10 [22]. These data sets have been selected so that
they represent a various number of features and tuples on
which the proposed approach needs to be tested [22], [23].
Above all, the selected data sets have a huge search space
so that the testing of the optimization algorithm can be
performed appropriately. Each dataset is divided in a way as
done in cross-validation methods [72].

As already discussed, the new positions of the search
agents will have continuous solutions and therefore these con-
tinuous values must be transformed into corresponding binary
values. This conversion is performed by applying squashing
of continuous solutions in each dimension using a Sigmoidal
(S-shaped) transfer function [73] which will force the search
agents to move in a binary search space as shown in Eq. (14).

1

S=—— 14
1+ e~ (1) (1

where x;* is the continuous-valued position of i search agent
in k™ dimension at iteration 7.

The output from the S-shaped transfer function is still in a
continuous manner and henceforth it has to be the threshold
to reach the binary-valued one. The S-shape functions map
the infinite input smoothly to a finite output. The commonly
stochastic threshold is applied as mentioned in Eq. (15) to
reach the binary solution in case of sigmoidal function.

0 Ifrand< S

k

i+ = 15
% ) 1 Ifrand> S (1%
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TABLE 11. Classification accuracy of the proposed GWOCSA vs other feature selection algorithms on different data sets.

BA BBO CSA DA GA GWO PSO SBO EGWO AGWO GWOCSA
D1 0.9594  0.9623  0.9606 0.9626 09597 0.9603 0.9609 09674 09617  0.9606 0.9720
D2 0.9397 0.9453 0.9460 09385 09488 0.9375 0.9378 09425 09474  0.9340 0.9621
D3 0.8328 0.8782 0.8798 0.8541 0.8697 0.8580 0.8549 0.8748  0.8487  0.8555 0.8844
D4 0.9493  0.9539 0.9514 09487 09423 0.9463 0.9465 0.9578 0.9464 0.9478 0.9564
D5 0.9229 0.9367 09330 09318 0.9413 0.9327 09235 09505 0.9431  0.9358 0.9633
D6 0.6948 0.7540 0.7664 0.7481 0.7306  0.7249  0.7471 0.7340  0.7536  0.7576 0.9904
D7 0.7016  0.6924 0.6908 0.7007 0.6940 0.6929 0.6959 0.7096  0.6988  0.6956 0.7460
D8 0.7630  0.7822 0.7822 0.7773  0.7867 0.7768  0.7788  0.7926 ~ 0.7615  0.7970 0.8326
D9 0.8807  0.8807 0.8943 0.8708 0.8938  0.8682  0.8803 0.8989 0.8636  0.8932 0.9148
D10 0.8990 0.9374 09079 09269 09215 09143 09200 09362 09272 0.9163 0.9549
D11 0.7752  0.8000 0.7919 0.7793  0.8164 0.7629  0.7906 0.8182  0.7663  0.7919 0.8703
D12 0.8212  0.8804 0.8560 0.8293 0.7988  0.8272 0.8425 0.8632 0.8704  0.8780 0.9960
D13 0.8487 0.8162 0.8054 0.8268 0.6721 0.8341 0.8140 0.8432 0.7568  0.8541 0.8595
D14 09684 0.9719 0.9676 09721 09757 09671 0.9676 09769 0.9686  0.9709 0.9767
D15 0.8212 0.8712 0.8538 0.8506 0.8750 0.8622 0.8667 0.8942  0.8615  0.8827 0.9058
D16 0.7716  0.7985  0.7925 0.8000 0.8097 0.7846  0.7841 0.7985 0.8045 0.8134 0.8164
D17 0.7203  0.7683  0.7649 0.7564 0.7609  0.7537 0.7518 0.7683  0.7712  0.7628 0.7996
D18 0.9293 09173  0.9213 09227 09333 09196 0.9258 09347 0.9027  0.9200 0.9480
D19 0.6904 0.7254 0.7139 0.7154 0.6921 0.7096 0.7192 0.7207 0.7165  0.7174 0.7293
D20 0.9348 0.9663 09618 09551 09536 0.9476 09521 0.9685 0.9663  0.9573 0.9820
D21 09133  0.9373 0.9333 09359 09294 0.9525 0.9451 09686 0.9686 0.9686 0.9686
Average 0.8446 0.8655 0.8607 0.8573 0.8526 0.8539 0.8574 0.8723 0.8574  0.8672 0.9061

where x;*(r) indicates the position of i search agent at
iteration ¢ in k" dimension.

As in K-cross-validation, the testing and validation are
performed using k — 1 folds and k™ fold is used for testing.
The evaluation for each data set is performed K x M times.
Each data set is divided into three parts: training, validation
and testing. The classifier is trained using the training part
of the data set and then the performance of the classifier is
assessed using the validation part of the data set. Finally,
the evaluation of the selected features is performed using the
testing data set. In the training process, each searching agent
is moved to select a feature subset. The proposed feature
selection methods have been compared to the various feature
selection methods including BA, BBO, CSA, DA, GA, GWO,
PSO, SBO, EGWO and AGWO.

C. FITNESS FUNCTION

In this research work, every solution is characterized as a
single dimensional vector in which the length of the vector
depends on the number of features/attributes in the data set.
Every cell of the vector can contain two values, i.e., 1 or 0,
where value 1 depicts that the corresponding feature/attribute
is chosen whereas value 0 represents that the feature/attribute
is not selected. Every solution is assessed by the proposed
fitness function which relies on KNN classifier [74] in order
to calculate its classification accuracy on the basis of selected
features. Keeping in mind the end goal which is to find the
balance between the number of attributes and classification
accuracy, the fitness function in Eq. (16) is employed in all
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the optimization algorithms in order to evaluate the solutions.

Fitness = ayr(D) + ﬂﬂ
IN|
where yg(D) is the classification accuracy of KNN classifier.
Furthermore, |R| represents the cardinality of the selected fea-
ture subset and |N | represents the total number of features in
the original dataset, & and § are two parameters correspond-
ing to the importance of classification quality and subset
length, @ € [0, 1]and B = (1 —«) adopted from [23] and [46].
Each search agent is evaluated using a fitness function and
then, its position is updated. This process is done iteratively
until the maximum number of iterations is reached.

Table 11 outlines the results of BA, BBO, CSA, DA,
GA, GWO, PSO, SBO, EGWO, AGWO and the proposed
GWOCSA algorithm in terms of classification accuracy. The
best results are highlighted in bold. As it may be observed,
GWOCSA performs superior to other metaheuristics in terms
of classification accuracy on 19 data sets, except D4 and D14.
The proposed approach obtains the highest classification
accuracies on high-dimensional data sets such as D4 and D13.
Moreover, GWOCSA demonstrated superior performance on
data sets having smaller sample size such as D11, D13,
D20 and D21. The reason of the better performance is the
enhanced exploration capacity of GWOCSA in comparison
to other algorithms. It is worthwhile to mention here that the
conventional GWO, classical CSA, EGWO and AGWO do
not outperform the proposed GWOCSA over any data set.
Overall, the average classification accuracy of GWOCSA is
the highest and this superior performance proves the compe-

(16)
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TABLE 12. Average feature length of the proposed GWOCSA vs other feature selection algorithms on different data sets.

BA BBO CSA DA GA GWO PSO SBO EGWO AGWO GWOCSA

D1 6 7.6 6.4 6.27 6.1 6.9 5.7 6.6 6.6 52 5

D2 15.6 26.8 14.4 20 12.2 19 18.33 26.2 20.4 19.2 13.8

D3 90 153 85.2 109.67 98.9 109.6 104.93 148.6 117 93 85

D4 78.8 152 84.6 100.4 94.1 106 109.4 138.2 84.6 103 86.2

DS 8.6 13 8.8 10.87 7.1 9.8 10.8 9.6 11.2 9.8 5

D6 7.4 11.2 8.6 10.53 8.1 12.07 9 11.4 9.2 10.8 6.4

D7 6.4 11.2 6.8 8.67 7.1 7.53 9.4 8.8 9.8 7.4 4.6

D8 7.6 11.2 8.4 9.6 6.6 8.8 9.07 11.2 8.2 8.6 5

D9 18.2 29.8 15.6 18 13.5 17.33 19.2 26 21 22.6 13

D10 18 31.6 18.4 28.6 18 31.6 25.6 324 26 27.4 18.6

D11 8.2 14.8 10 12.53 8.9 11.8 11.73 14.2 11.6 10.4 8

D12 6.4 10.8 8.4 12.13 7.68 11.27 10.87 11.2 11.2 10.2 6.4

D13 160.8 283.6 157.8 175.2 153 162.8 183.33 260.6 177.4 158.6 165.8

D14 133.4 245.6 141.6 193 149.4 203.6 171.6 248.8 194 187.8 142

D15 28 53.2 30.2 40.6 30.3 41.6 37.6 52.4 41.6 47 29.6

D16 10.2 20 11.8 14.67 7 13.2 12.07 15.2 12 17.8 8

D17 5 9 6.6 7.2 5.8 7.53 6.73 8 7.6 7.8 5

D18 6.8 13.4 6.8 8.87 5.8 8.47 9.33 11.6 8.8 9.2 4.6

D19 23 36 22.4 36 30.4 36.6 35.8 38 35.2 34.6 18.4

D20 8.2 114 8 9.53 6.73 10.73 10.07 104 9.6 10.6 6.4

D21 8.8 12.6 8.2 11.47 5.35 12.4 11.8 12.4 12.8 11.2 5.2

Average 31.21 55.13 31.86 40.18 32.48 40.41 39.16 52.47 39.80 38.68 30.57
TABLE 13. Statistical mean fitness measure of the proposed GWOCSA vs other feature selection algorithms on different data sets.
BA BBO CSA DA GA GWO PSO SBO EGWO AGWO GWOCSA

Dl  4.68E-02 4.58E-02 4.11E-02 4.07E-02 4.56E-02 4.70E-02 4.51E-02 3.96E-02 4.52E-02 4.48E-02  3.33E-02
D2 6.50E-02 6.31E-02 5.83E-02 6.76E-02 5.48E-02 6.82E-02 6.77E-02 6.57E-02 5.89E-02 7.17E-02  4.21E-02
D3 1.71E-01 1.30E-01 1.24E-01 1.51E-01 1.34E-01 1.47E-01 1.50E-01 133E-01 1.57E-01 1.49E-01 1.22E-01
D4  5.49E-02 5.48E-02 5.32E-02 5.68E-02 6.21E-02 5.96E-02 5.96E-02 5.01E-02 5.82E-02 5.79E-02 4.84E-02
D5 8.17E-02 7.08E-02 7.18E-02 7.43E-02 6.26E-02 7.27E-02 8.24E-02 5.51E-02 6.33E-02 6.97E-02 3.95E-02
D6  3.08E-01 2.52E-01 2.38E-01 2.57E-01 2.70E-01 2.82E-01 2.57E-01 2.72E-01 2.51E-01 2.48E-01 1.44E-02
D7 3.00E-01 3.13E-01 3.11E-01 3.03E-01 3.08E-01 3.10E-01 3.08E-01 2.94E-01 3.06E-01 3.07E-01  2.55E-01
D8 2.41E-01 2.24E-01 2.23E-01 2.28E-01 2.16E-01 2.28E-01 2.26E-01 2.14E-01 2.42E-01 2.08E-01 1.70E-01
D9 1.23E-01 1.27E-01 1.09E-01 1.33E-01 1.09E-01 1.36E-01 1.24E-01 1.08E-01 1.41E-01 1.12E-01  8.82E-02
D10 1.05E-01 7.07E-02 9.63E-02 8.03E-02 8.27E-02 9.37E-02 8.63E-02 7.22E-02 7.93E-02 9.05E-02  4.98E-02
D11 2.27E-01 2.06E-01 2.12E-01 2.25E-01 1.87E-01 2.41E-01 2.14E-01 1.88E-01 2.38E-01 2.12E-01  1.33E-01
D12 1.82E-01 1.27E-01 1.49E-01 1.78E-01 2.05E-01 1.80E-01 1.64E-01 1.44E-01 1.37E-01 1.29E-01 9.04E-03
D13 1.55E-01 1.91E-01 1.98E-01 1.77E-01 1.29E-01 1.69E-01 1.90E-01 1.63E-01 2.46E-01 1.49E-01 1.44E-01
D14 3.63E-02 3.71E-02 3.74E-02 3.49E-02 2.90E-02 4.02E-02 3.85E-02 3.22E-02 3.84E-02 3.59E-02  2.85E-02
D15 1.82E-01 1.36E-01 1.50E-01 1.55E-01 1.28E-01 1.43E-01 1.38E-01 1.13E-01 1.44E-01 1.24E-01 9.82E-02
D16 2.31E-01 2.09E-01 2.11E-01 2.05E-01 1.92E-01 2.19E-01 2.19E-01 2.06E-01 1.99E-01 1.93E-01 1.85E-01
D17 2.83E-01 2.39E-01 2.40E-01 249E-01 243E-01 2.52E-01 2.53E-01 2.38E-01 2.35E-01 243E-01 2.04E-01
D18 7.42E-02 9.02E-02 8.21E-02 8.21E-02 6.96E-02 8.49E-02 7.93E-02 7.19E-02 1.02E-01 8.50E-02  5.44E-02
D19 3.12E-01 2.81E-01 2.89E-01 2.91E-01 3.10E-01 2.97E-01 2.87E-01 2.86E-01 2.89E-01 2.88E-01 2.73E-01
D20 7.08E-02 4.21E-02 4.40E-02 S5.18E-02 5.12E-02 6.02E-02 5.52E-02 3.92E-02 4.08E-02 5.04E-02  2.27E-02
D21 9.14E-02 7.00E-02 7.11E-02 7.06E-02 7.32E-02 5.48E-02 6.17E-02 3.88E-02 3.91E-02 3.81E-02 3.43E-02

tency of the proposed approach to efficiently find the optima
in the search space.

Table 12 shows the average feature length using GWOCSA
in comparison to the other algorithms. GWOCSA demon-
strates much better performance by selecting less number
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of features as compared to other approaches. According to
the results reported in this table, GWOCSA performed better
on majority of the data sets, except D2, D4, D12, D14,
D15 and D17. It is worthwhile to mention that in comparison
to the original number of features in the data set, there is
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TABLE 14. Statistical standard deviation of the proposed GWOCSA vs other feature selection algorithms on different data sets.

BA BBO CSA DA GA GWO PSO SBO EGWO AGWO GWOCSA
D1  837E-03 6.21E-03 4.61E-03 1.10E-02 5.00E-03 1.10E-02 8.00E-03 4.70E-03 6.19E-03 7.59E-03  1.46E-03
D2  9.46E-03 6.30E-03 5.64E-03 1.00E-02 3.00E-03 6.00E-03 6.00E-03 5.70E-03 7.07E-03 1.38E-02  1.72E-03
D3  2.18E-02 5.32E-03 1.33E-02 2.10E-02 8.00E-03 1.90E-02 2.60E-02 1.05E-02 1.95E-02 1.07E-02 1.25E-02
D4 4.11E-03 3.25E-03 2.57E-03 3.80E-02 1.36E-01 5.10E-02 6.70E-02 4.01E-03 3.32E-03 5.20E-03  1.34E-03
D5 4.15E-03 3.28E-03 593E-03 2.20E-02 1.10E-02 1.30E-02 1.90E-02 7.01E-03 1.14E-02 1.09E-02  5.56E-03
D6  1.22E-01 3.42E-02 7.24E-02 2.80E-02 2.00E-02 2.30E-02 2.90E-02 2.93E-02 9.26E-02 9.66E-02 1.52E-02
D7 1.72E-02 9.94E-03 148E-02 1.50E-02 1.20E-02 2.20E-02 2.30E-02 5.81E-03 2.79E-02 145E-02 3.08E-03
D8 191E-02 1.08E-02 290E-02 1.40E-02 3.80E-02 2.00E-03 4.50E-02 9.31E-03 2.89E-02 1.92E-02 2.11E-02
D9 3.89E-02 1.59E-02 2.21E-02 4.10E-02 1.60E-02 3.00E-02 2.80E-02 3.54E-02 2.25E-02 8.90E-03 2.49E-02
D10 4.74E-02 1.93E-02 1.57E-02 1.80E-02 5.40E-02 3.00E-02 5.80E-02 9.21E-03 1.41E-02 9.11E-03  3.54E-03
D11  4.82E-02 221E-02 6.82E-03 2.30E-02 1.30E-02 4.00E-02 290E-02 3.64E-02 3.60E-02 4.12E-02  2.24E-02
D12 8.77E-02 5.45E-02 2.46E-02 3.00E-02 1.60E-02 3.10E-02 2.70E-02 1.54E-02 3.55E-02 5.49E-02 5.88E-03
D13 4.85E-02 7.17E-02 3.46E-02 2.30E-02 6.00E-03 2.60E-02 3.40E-02 1.11E-01 4.16E-02 6.43E-02  3.49E-02
D14 4.15E-03 1.09E-02 7.02E-03 1.90E-02 &.00E-03 2.90E-02 1.90E-02 1.86E-03 6.76E-03 1.64E-03  4.60E-03
D15 3.62E-02 3.93E-02 1.81E-02 9.00E-03 3.00E-03 1.20E-02 1.20E-02 2.24E-02 3.18E-02 1.28E-02  1.70E-02
D16 3.56E-02 4.75E-02 1.25E-02 1.30E-02 1.10E-02 3.30E-02 1.20E-02 4.58E-02 1.37E-02 3.12E-02  3.08E-02
D17 5.79E-02 291E-02 1.99E-02 3.70E-02 1.50E-02 4.70E-02 5.00E-02 2.64E-02 1.67E-02 1.99E-02 1.15E-02
D18 1.93E-02 1.30E-02 1.28E-02 1.80E-02 9.00E-03 2.20E-02 2.80E-02 2.69E-02 2.34E-02 1.44E-02  3.17E-03
D19 1.44E-02 7.93E-03 9.23E-03 3.00E-03 4.00E-03 2.00E-03 1.00E-03 7.73E-03 7.92E-03 5.94E-03  5.33E-03
D20 2.68E-02 8.20E-03 6.26E-03 7.70E-02 1.80E-02 4.60E-02 7.70E-02 1.42E-02 2.19E-02 1.69E-02  1.23E-02
D21 3.48E-02 2.60E-02 7.05E-02 3.00E-03 1.00E-03 5.00E-03 2.00E-03 1.66E-02 2.90E-02 2.70E-02  5.10E-02

a significant reduction in the number of features selected
by the proposed approach. For instance, the actual num-
ber of features in D3 and D4 data sets is 166 whereas the
number of features selected by the proposed GWOCSA is
85 and 86.2 respectively. This indicates that the proposed
GWOCSA is able to reduce the number of features as well
as has the ability to locate the most relevant optimal fea-
ture subset. The strength of the proposed hybrid algorithm
lies in the enhanced exploration and exploitation capability
which allows it to eliminate redundant attributes and then
search the high-performance regions of the feature space
intensively.

In Tables 13 and 14, the statistical measures (mean, and
standard deviation) obtained on different runs of the algo-
rithms on all the data sets are presented. It can be observed
from Table 13 that GWOCSA performed better in mean
fitness measure on almost all of the data sets whereas in
standard deviation fitness measure GWOCSA has shown
competitive performance in comparison to other algorithms
as shown in Table 14.

Table 15 reports the p-values of GWOCSA in comparison
to other metaheuristic algorithms obtained using Wilcoxon’s
rank sum test. The test is conducted in order to deter-
mine whether the difference between the results of proposed
GWOCSA and other algorithms’ results is significant or
not. Specifically, a p-value is returned and if the value of
p-value is smaller than 0.05 then it indicates that the results
achieved by GWOCSA are significantly different than those
of the compared algorithms whereas p-value greater than 0.05
indicates that there is no significant difference exists between
results of GWOCSA and the compared algorithms. The worst
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results of p value where p greater than 0.05 are underlined.
It can be easily observed that in most of the comparisons,
the p-values obtained using the rank sum test are smaller
than 0.05 which prove that the superiority of GWOCSA is
statistically significant. These results are consistent with the
acquired results from Tables 13 and 14.

The superior results do not mean that the proposed
approach GWOCSA can tackle all the optimization problems
efficiently. As per the NFL theorem, all optimization algo-
rithms demonstrate identical performance when employed to
solve all classes of optimization problems [52]. Undoubtedly,
there are some limitations of the proposed algorithm; the
first limitation of the GWOCSA is that the calculation of
the adaptive balance probability p and control parameter @
adds an overhead to the computational time of GWOCSA.
Second limitation is that a search agent updates its position
to a random place in solution space which decreases the
performance of the proposed algorithm. Thirdly, the trans-
fer function which is utilized in this study to convert the
continuous value to discrete value is of non-time-varying
nature which means it cannot adapt the exploration behav-
ior at the beginning of the optimization process when it
is required to deal with challenging feature spaces. This
will refrain the algorithm to further explore some promis-
ing regions inside the feature space. Since the proposed
GWOCSA demonstrated competitive performance on func-
tion optimization problems as well as feature selection prob-
lems, therefore, we suggest GWOCSA to researchers in
different fields. The proposed hybrid GWOCSA has a high
potential to demonstrate very promising and/or superior
results.
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TABLE 15. p -values obtained from the rank-sum test on different data sets (p > 0.05 are underlined).

BA BBO CSA DA GA GWO PSO SBO EGWO AGWO
D1 431E-02 431E-02 431E-02 2.25E-01 4.31E-02 422E-02 431E-02 7.96E-02 422E-02 4.31E-02
D2 431E-02 431E-02 431E-02 431E-02 431E-02 431E-02 431E-02 422E-02 431E-02 4.31E-02
D3 431E-02 2.25E-01 6.86E-01 4.31E-02 7.96E-02 431E-02 431E-02 225E-01 431E-02 4.31E-02
D4 431E-02 431E-02 431E-02 431E-02 431E-02 431E-02 431E-02 5.00E-01 4.31E-02 4.31E-02
D5 431E-02 431E-02 431E-02 431E-02 431E-02 7.96E-02 431E-02 431E-02 431E-02 4.31E-02
D6 431E-02 431E-02 431E-02 431E-02 431E-02 431E-02 431E-02 431E-02 431E-02 4.31E-02
D7 431E-02 431E-02 431E-02 431E-02 431E-02 431E-02 431E-02 431E-02 431E-02 4.31E-02
D8 431E-02 422E-02 431E-02 431E-02 431E-02 431E-02 431E-02 422E-02 431E-02 7.96E-02
D9 431E-02 431E-02 2.25E-01 431E-02 7.82E-02 4.31E-02 2.25E-01 4.31E-02 7.96E-02 1.38E-01
D10  431E-02 1.38E-01 431E-02 4.31E-02 4.31E-02 4.31E-02 4.31E-02 4.22E-02 4.31E-02 4.31E-02
D11 422E-02 431E-02 431E-02 4.31E-02 431E-02 4.31E-02 4.31E-02 4.31E-02 4.31E-02 4.22E-02
D12 431E-02 431E-02 431E-02 4.31E-02 4.31E-02 4.31E-02 4.31E-02 4.31E-02 4.31E-02 4.31E-02
D13 6.86E-01 4.31E-02 4.31E-02 4.31E-02 2.25E-01 7.96E-02 4.31E-02 4.31E-02 4.31E-02 8.93E-01
D14  431E-02 2.25E-01 4.31E-02 4.31E-02 1.38E-01 4.31E-02 4.31E-02 4.31E-02 4.31E-02 4.31E-02
D15 431E-02 431E-02 431E-02 4.31E-02 431E-02 7.96E-02 4.31E-02 4.31E-02 4.31E-02 4.31E-02
D16  431E-02 4.31E-02 4.31E-02 4.31E-02 2.25E-01 7.96E-02 4.31E-02 4.31E-02 3.45E-01 6.86E-01
D17  431E-02 1.38E-01 4.31E-02 7.96E-02 4.31E-02 4.31E-02 4.31E-02 4.31E-02 4.31E-02 4.31E-02
D18  7.96E-02 4.31E-02 4.31E-02 4.31E-02 4.22E-02 431E-02 431E-02 431E-02 431E-02 4.22E-02
D19 431E-02 4.31E-02 4.31E-02 7.96E-02 4.31E-02 4.31E-02 7.96E-02 4.31E-02 4.31E-02 4.31E-02
D20  4.31E-02 4.31E-02 431E-02 4.22E-02 4.22E-02 4.31E-02 4.31E-02 4.31E-02 4.31E-02 4.31E-02
D21  431E-02 431E-02 431E-02 431E-02 1.36E-01 6.86E-01 4.31E-02 5.00E-01 5.00E-01 6.86E-01

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, a hybrid algorithm based on Grey Wolf Opti-
mizer with Crow Search Algorithm is proposed to solve
function optimization as well as feature selection problem.
In order to overcome the limitations of GWO, it is hybridized
with CSA which allows the proposed hybrid algorithm to
effectively explore the search space. In order to fully utilize
the strengths of both the algorithms, an adaptive balance
probability is proposed which allows the proposed GWOCSA
algorithm to achieve acceleration throughout early steps of
optimization process whereas in the later stages of opti-
mization promising solutions will possess a high probability
to be exploited. Moreover, in the proposed algorithm the
values of control parameter @ are selected using a nonlin-
early decreasing approach rather than a linearly decreasing
approach which enhanced the search capacity of the proposed
hybrid algorithm. In order to test the efficiency, the results of
the hybrid algorithm on 23 benchmark functions and 21 data
sets as a feature selection algorithm are compared with ten
metaheuristic algorithms, i.e., ALO, CSA, FPA, GA, GWO,
PSO, SHO, AGWO and IGWO. The test results based on
the benchmark functions demonstrate that the proposed algo-
rithm has a better function optimization ability and a faster
convergence speed, and can obtain more satisfactory opti-
mization results in less iterative times. As a feature selection
algorithm, the results of the proposed GWOCSA algorithm
demonstrate superiority in terms of classification accuracy
and the number of optimal features selected compared to
other feature selection algorithms. Additionally, the results
of Wilcoxon’s test and Friedman’s test also indicate that
the results of the proposed hybrid algorithm are statistically
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significant compared to the other metaheuristics. In future,
the proposed hybrid algorithm can be applied to more practi-
cal problems in real-life world scenarios. Furthermore, utiliz-
ing the hybrid algorithm as a filter feature selection approach
seeking to evaluate the generality of the selected features will
be a valuable contribution.

APPENDIX

For feature selection problem, the following performance
metrics are utilized to compare the performance of each
feature selection approach.

1) CLASSIFICATION ACCURACY

It is one of the major classification metrics that represents the
number of instances which are correctly classified by using
a particular set of features. The mathematical formulation of
this metric can be defined as:

M N
1 1
Avg_performance = M El N El match(C;, L;), (17)
Jj= i=

where M is the number of times the optimization algorithm
has been run, N denotes the number of test set points, C; is
output class label for particular data point i, L; is reference
class label for i and match is the comparison function that
gives output 0 when input labels are different and 1 if the
input label matches with each other.

2) STATISTICAL MEAN

It is the average of the fitness values acquired after running
all the iterations of the optimization algorithms as given in
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the following equation:

| M
_ *I
Mean = m E g

i=1

(13)

where g*i represents the best solution in the i’ run.

3) STATISTICAL STANDARD DEVIATION

The variability of different solutions from the mean value
can be computed using one of the measures of dispersion
called standard deviation. Standard deviation will be low if
the solution forms a highly dense clustered and vice-versa and
can be formulated as follows:

1 ) 5
Std_dev = \/ﬁ Z (g** — Mean)

where g*/ represents the best solution in the i run.

(19)

4) AVERAGE FEATURE LENGTH

It characterizes the average length of the selected features to
the total number of features. The mathematical formulation
for the same is given below:

M
1 .
Avg_feature_length = m Z size(g*") (20)

i=1
where size(x) represents the number of features selected in
the testing data set.

5) WILCOXON RANK SUM TEST

It is a nonparametric statistical test used to check whether
the results of the proposed approaches are statistically dif-
ferent from other algorithms [71]. This statistical test returns
a parameter called p-value which is utilized to verify the
significance level of two algorithms.
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