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ABSTRACT Real-time underwater monitoring has been widely applied in many applications of underwater
wireless sensor networks (UWSNs). Due to the long acoustic communication delays, the real-time data
collection in UWSNs is challenging. Moreover, the underwater acoustic transmission faces the problem of
high data loss rate, which causes a longer delay time due to the need for packet retransmissions. To address
these problems, we propose a recurrent neural network (RNN)-based underwater monitoring framework
with the consideration of delay, energy, and data quality. We drop the automatic retransmission mechanism
applied in the MAC protocols to reduce the long end-to-end delay and energy cost. Facing high data loss,
we propose an efficient RNN learning model, LSTM-Decay, to analyze the raw data with the time-related
decay weights features and predict the missing values. The experiments with the real-world underwater
sensing datasets show that our learning model can achieve an accurate estimation with different degrees of
missing rates and can provide better performance compared with the non-RNN and RNN baselines.

INDEX TERMS Underwater wireless sensor networks, real-time monitoring, missing values, RNN.

I. INTRODUCTION
The demand for real-time monitoring in underwater sensor
networks is gradually increasing in various applications, such
as monitoring for pollution detection, disaster warning, oil
industry, aquaculture [1], [2]. Figure 1 illustrates a typical
underwater scenario where sensor nodes are deployed for
continuous monitoring. Multiple nodes are deployed under-
water to sense data and transmit data by AUVs or relay nodes
to sink nodes. Then sink nodes transmit data to the monitor-
ing center by radio links. However, the requirement for real
time in UWSNs is challengeable compared with terrestrial
wireless networks.

On one hand, the long propagation delay caused by the
low sound speed compound the difficulty of real-time data
collection [3]. It is known that the propagation speed for an
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acoustic link is about 1,500 meters/sec, which is five orders
of magnitude lower than that of a radio link. There have
been plenty of works about dedicated transfer protocols for
underwater acoustic networks [4], [5]. In these protocols,
retransmissions are used to address the packet error but data
retransmissions cause longer delay and extra energy cost.
Especially in the multi-hop network, the increased number
of hops further aggravates the propagation delay [6]. On the
other hand, underwater data transmission is prone to high-
frequency data loss due to harsh underwater environments.
Figure 1 shows that data transmission may be influenced
by several reasons, such as complex ambient noise, packet
collision, hardware failure [7]–[9]. Missing values may imply
rich information that affects the quality of collected data and
cause failure prediction or analysis [10]. Hence, it’s essential
to handle missing values to assure the desired data quality.

To reduce the end-to-end delay and improve the mon-
itoring quality, we focus on the design of low-latency
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FIGURE 1. Illustration of data transmission in UWSN.

monitoring framework while ensuring the quality of col-
lected data. In the framework, we first drop the automatic
retransmission mechanism applied in transmission protocols
for real-time underwater monitoring. Data loss caused by
packet errors is traded off to reduce the long delay and energy
consumption. Since higher rates of packet loss will degrade
the quality of collected data, we move the compensation for
larger data loss to the data center. When faced with varied
and high-frequency missing rates in UWSNs, we propose an
RNN-based data learning model to efficiently process data
loss.

Commonly used imputation methods include smoothing,
regression, interpolation, and K-nearest neighbor (KNN)
methods. The main idea of these methods is to compute the
missing value according to a discrete set of known data points.
These methods are efficient for single static datasets but are
not suitable for complex data sets. In some cases, the con-
secutive observation on sensor nodes brings time series data.
Moreover, most environmental data are multidimensional and
time series. For instance, in environmental monitoring appli-
cations, several environmental parameters such as tempera-
ture, salinity, conductivity, all need to be collected for water
quality measurement. To handle missing data, we need to
consider the effects of variable correlations and time series.
As shown in Figure 2, the Pearson correlation coefficients
between environmental parameters illustrate variable corre-
lations. In feeding monitoring applications, the water quality
affects the fish growth and the combinational analysis of
environmental parameters can be used to predict the feeding
process [2].

As the prevalence of the incorporation of WSNs into the
IoT, extensive research explored efficient data processing
methods by leveraging the computation capability of the
cloud computing services [11], [12]. The feature of multi-
variate time series inspires us to import Machine Learning
(ML) model, Recurrent Neural Networks (RNNs), to cap-
ture complex patterns for data imputation and prediction.
Instead of two-step imputation-prediction process, we build

FIGURE 2. Pearson correlation coefficients between parameters of water
quality.

learning model to make prediction taking missing val-
ues into account. With the cloud resource, we use an
RNN-based model to train features of missing values with the
input. RNNs provide superior ability to exploit the long-term
temporal dependencies and variable correlations [13]. The
prediction result can further reduce the size of data and the
number of data packet transmission so as to achieve energy
saving.

RNNs, such as Long Short-Term Memory (LSTM) [14]
and Gated Recurrent Unit (GRU) [15], have been widely
applied in many applications with time series or sequential
data. In our paper, we design amodified LSTMmodel, named
LSTM-Decay to train multivariate environment parameters.
To assure the prediction performance, we import a time-
related decay weight for missing values. The modified model
concatenates time-related missing features with variable cor-
relations to train sensing data. Hence, the learning model
cannot only capture correlations between time series data
but also exploit the impact of missing values. Considering
specific applications in UWSNs, the RNN-based learning
model is able to analyze spatial- and variable-related data
where data can be unsampled or sampled.

Our contributions of this paper are as follows:
(1) We propose a delay-guaranteed underwater monitoring

framework. In the framework, the processing of data loss
caused by packet collisions is migrated to the data center.
Data retransmissions in transfer protocols are dropped to
satisfy the constrained delay for real-time monitoring.

(2) Then an RNN-based model, LSTM-Decay, is pre-
sented to estimate multivariate time series data with different
types of missing values. When considering missing values,
we model input variables and import a trainable time-related
decay weight for each correlated variable. The proposed
RNN-based network both considers the training of spatial and
multivariate sensor data collected in UWSNs.

(3) Simulations are conducted to assess the perfor-
mance of dropping data retransmission. Then experiment
results on real-world ocean datasets show that the proposed
RNN-based model can provide better performance with dif-
ferent degrees of missing rates compared with Non-RNN and
RNN baselines.
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The remaining of the paper is organized as follows.We give
an overview of our proposed framework and present a delay
guaranteed transmission method in Section II. In Section III,
We introduce the LSTM structure and present a modified
LSTM and discuss data imputation for spatial and multivari-
ate sensor data in UWSNs. The RNN-based data estimation
framework is proposed in Section IV. Experimental results
are shown in SectionV and SectionVI discusses relatedwork.
We conclude the paper in Section VII.

II. OVERVIEW FOR THE DELAY-GUARANTEED
FRAMEWORK
We consider the application scenarios where the delay of
data transmission is constrained. The aim of the frame-
work is to make low-latency data collection while ensur-
ing the quality of data. Hence, we consider both the delay
time and data quality in the framework. To achieve the low
delay time, the designed monitoring network first makes a
change based on existing transmission protocols, such as
Slotted FAMA [4]. Then we focus on quality-guaranteed
data processing with missing values in the data collection
terminal.

The efficiency of underwater acoustic communications
is constrained by high latency and low transmission qual-
ity. In our framework, we first design a delay guaranteed
transmission method to reduce the delay time and energy
consumption of packet transmission. Based on our observa-
tion and investigation, massive data transmissions cause the
longer propagation layer. We mainly aim to reduce the extra
latency caused by data retransmission applied in networking
protocols.

To illustrate the method, we use a commonly used MAC
protocol, Slotted FAMA as an example. The protocol requires
each packet (RTS, CTS, DATA or ACK) has to be transmitted
at the beginning of one slot. An ARQ technique was added to
acknowledge the data reception by ACK or NACK packets.
When a terminal receives the NACK packet, it must wait long
enough for data retransmission and a new ACK or NACK has
to be sent. In our method, we drop the automatic retransmis-
sion mechanism. The data packet will be sent after receiving
a CTS packet and we don’t confirm whether the packet was
transmitted successfully. In this case, the delay time will
be reduced and the extra energy cost of retransmission is
avoided.

For a network scenario with multiple hops, the source
node transmits packets to the sink node by one or several
relay nodes as shown in Figure 1. The increased communi-
cation nodes bring more serious packet loss. The simulation
results in Section V-B validate the significant improvement
on the average end-to-end delay and energy consumption
when dropping retransmission in a multi-hop network. When
setting a 3-hop network shown in Figure 8(a), the average
end-to-end delay is 3.95, 53% less than that with retransmis-
sions. The proposed method can be seen as an improvement
on existing communication protocols and it can be used on
other protocols including multi-channel protocols [6].

FIGURE 3. The illustration of the general LSTM model.

However, it’s obvious that dropping retransmissions may
cause high packet loss rates. Then we adopt an RNN-based
model that is applicable for missing value estimation even
with high missing rates. Owing to the limited power of sen-
sor nodes, more applications move time/resource-consuming
tasks to the cloud computing platform that can provide signif-
icant computation resources (e.g., CPU, memory). The use of
cloud resources motivates us to conduct in-depth data analy-
sis to extract valuable knowledge and provide cost-efficient
suggestions. Inspired by clinical data analysis [13], we use the
LSTM model to explore how to predict missing underwater
data with the quality guarantee.

III. LSTM-BASED DATA PREDICTION WITH MISSING
VALUES
In this section, we first introduce the basic learning model,
LSTM and modify the model to train the input with missing
features.

A. LSTM MODEL
Figure 3 shows a LSTM structure that is equipped with
several memory cells. These memory cells are used to store
previous experiences to capture long-term time dependencies.
A LSTM is a sequence of units that share the same parameters
across all time steps [16]. Formally, given a series of sensing
data x1, . . ., xT , xt ∈ RD represents the t-th vector of
all environmental parameters. Here, T denotes the length of
variables and D denotes the input dimension. xdt denotes the
t-th observation for the parameter d . Let st ∈ R denote the
time stamp when xt is observed. The LSTM model contains
three memory cells: input, forget and output gates, denoted
as i, f , o, respectively. The learning process updates these
gates to train datasets. We first introduce how to update
functions of LSTM:

it = σ (Wixt + Uiht−1 + bi) (1)

c̃t = φ(Wcxt + Ucht−1 + bc) (2)

f t = σ (Wf xt + Uf ht−1 + bf ) (3)

ot = σ (Woxt + Uoht−1 + bo) (4)

ct = f t � ct−1 + it � c̃t (5)

ht = φ(ct )� ot (6)

where σ represents an element-wise sigmoid function that
has the value in (0,1), φ represents an element-wise
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FIGURE 4. An example of data vector (5-dimensional input variables: conductivity, temperature, pressure, salinity and oxygen
concentration) and the data instance has different types of loss patterns; time stamp T , Time interval δ.

tanh function and� is the Hadamard (element-wise) product.
Wi,f ,o,c ∈ RH×D, Ui,f ,o,c ∈ RH×H , are the coefficient
matrix for input nodes and hidden states. Vectors b ∈ RH

are constant parameters where H refers to the number of
hidden units. For each hidden layer, we use the function to
train these model parameters for all gates. The input vector x
corresponds to environmental parameters and ht is the output
of the hidden layer. In the model, ct−1 reflects the effect of
time series factor, which denotes the result of the previous
moment stored in the memory. Eq.(3) is used to measure the
extent of memorizing previous experiences, which is a weight
of ct−1 in Eq.(5). Eq.(5) estimates the new memory state that
is updated based on a weighted previous memory ct−1 and
the new input xt with a tanh activation.
If to predict environment parameters at each time step,

we can stack Softmax layer on top of the last LSTM [17]. The
stacked layer uses a soft-max activation function to compute
the next value where the hidden layer output hi is the input:
ŷi+1 = softmax(W>p hi + bp).

B. MODELING INPUT DATA
To address the issue ofmissing values, we import time-related
decay weights for the input variables [13]. Then the weights
are trained along with the input.

Figure 4 shows a data instance that records values of
five environmental parameters measured by Ocean Networks
Canada [18]. The distance depicts several typical data loss
patterns in WSNs. The first rows show element frequent loss
in row. The second and third rows show element random loss.
The fourth row shows successive elements loss in row. These
patterns have been detailed in [19]. In real world, datamissing
always happens as a combination of these loss patterns.When
considering the effect of missing data, we import a binary
indicator variable mdt ∈ {0, 1}, where m

d
t = 1 if xdt is

observed and mdt = 0 denotes xdt is missing or noisy. With
the indicator variable, we have

xdt = mdt x
d
t + (1− mdt )x̂

d
t (7)

where x̂ denotes the substituted value. If replaced with the
mean value x̄d , x̂dt =

∑T
t=1 m

d
t x

d
t /

∑T
t=1 m

d
t . If replaced with

the last measurement x̂t , that is x̂dt = xdt ′ .
Besides, a time-related vector δdt for each variable b stores

the time interval from the last observation to t-th record.

FIGURE 5. The modified LSTM model that considers the preprocessing of
input variables with time decaying parameters. Sometimes, to model the
influence of external intervention, the modified LSTM can also add the
replenishment vector pt in the gate functions, for instance, adding in the
input and output gate.

The continuous data missing will increase the time interval.
With the stored time stamps, the time interval can be com-
puted as follow:

δdt = st − st−1 + (1− mdt )δ
d
t−1, δ1 = 0 (8)

where δ in Eq.(8) is to label the effect of time series on
missing data. Figure 4 also shows the corresponding time
interval matrix of the data instance. The frequent or continu-
ous data loss causes a larger value for δ that reflects the time
effect on missing features. For simplify, the straightforward
method is to fill in the input with common imputation meth-
ods described in Section IV-A. To explore the missing pattern
during the training process, we import the decay parameters
and modify the LSTM unit as shown in Figure 5. First,
we define a vector of decay rate for each variable, denoted
as rt ∈ RD. The setting of rt depends on the value of the time
interval. According to Newton’s Law of cooling [20], rt can
be expressed as

rt = e−(Wr δt+br ) (9)

Eq.(9) specifies a negative exponential rate to monotonically
decrease rt with the increase of time interval since we con-
sider the influence of input variables is time-decayed. Model
parameters ar , Wr , br will be obtained through training.
Then, we use the time decaying parameter to concatenate the
forward and mean imputation methods.

x̂dt = rdt x
d
t ′ + (1− rdt )x̄

d

H⇒ xdt = mdt x
d
t + (1− mdt )(r

d
t x

d
t ′ + (1− rdt )x̄

d )

(10)
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FIGURE 6. The delay-guaranteed monitoring framework with LSTM-Decay.

With the modified input setting, we need to add the indica-
tor variable m, the decay rate rx for the input node. Hence,
we can modify the structure of the LSTM unit as shown
in Figure 5. The modified LSTM adds time decaying weights
into the training model.

In practical scenarios, data may be influenced by some
external factors, such as human intervention. During training
data, it is required to consider the influence to assure an
accurate prediction model. To achieve this, we can quantize
the factor and add it to the gate function, which can be imple-
mented by modifying the memory cell. The choice of the
modified gates depends on specific scenarios. For instance,
in feeding process monitoring, the initial design of LSTM is
to model the correlation between environmental parameters
and fish feeds. When training the LSTM model, we can add
the intervention of feed replenishment as shown in Figure 5.
Let us denote a replenishment vector pt ∈ RH that records
the information of feed replenishment. When mapped to the
model, the vector pt ∈ RH affects the result of input gates and
cell states.

IV. RNN-BASED DATA ESTIMATION FOR UWSNs
Combined with the modified LSTMmodel, we next detail the
RNN-based data estimation framework designed for under-
water sensor data.

A. RNN-BASED DATA PREDICTION WITH MISSING VALUES
Wefirst introduce several simple imputationmethods that can
be applied to fill in the missing values for those input sets:
zero-, mean- and forward-filling strategies.
• The zero-filling approach is simply to set the missing
value xdt = 0 if xdt is missing, but it has not good
performance especially when the missing rate is high.

• The mean-filling approach imputes the missing data
with the mean estimated by all observations in the train-
ing data, denoted as x̄d .

• The forward-filling approach assumes the value of miss-
ing data is the same as its previously observed measure-
ment. In this case, we set the missing value xdt = xdt ′ .

We can use LSTM or GRU to train datasets where
missing values are filled with these methods. In this case,
we do not need to modify the LSTM network architecture.

However, simple imputation cannot be well combined with
next-step prediction model. The insufficient exploration of
missingness greatly affects the performance of the training
model, especially for large-scale data loss [10]. In WSN,
it’s common that collected data from different nodes are
spatial or variable correlated [21]. So we can utilize this
supplementary information to improve the accuracy of data
estimation.

B. RNN-BASED NETWORK ARCHITECTURE
Figure 6 illustrates the process of the delay-guaranteed under-
watermonitoring framework that includes themodification of
data communication and the design of RNN-based learning
model. Considering the difference of specific application sce-
narios, we consider the following two types of data collected
in UWSNs:

1) SPATIAL SENSOR DATA
Spatial data corresponds to a scenario where several sensor
nodes are deployed in different locations to measure one
parameter. For instance, underwater environmental moni-
toring will deploy multiple temperature probes or turbidity
meters at different locations of a region to measure tempera-
ture or turbidity. In this case, multiple sensor nodes comprise
a sensor network. When to impute missing values, we can
leverage the spatial correlation of nodes to build the learn-
ing model. Before training, we first select the information
of k-nearest neighbors (KNN) as inputs. Assume there are
n nodes deployed to measure n sets of temperature values,
denoted as T1, · · · ,Tn. Owing to the uncertain of underwater
environment mentioned above, it’s possible that each node
has different degrees of data loss. If we consider to fill Ti,
we first select k neighbor nodes with temperature values
Ti+1, · · · ,Ti+k . With the proposed model, we can construct
{Ti,Ti+1, · · · ,Ti+k} as input variables. The input variables
are modeled by Eq.(10). Based on training values, we can
predict values for the k + 1 groups of data. When extending
a single node from the entire network, the network can be
divided into several clusters using the k-means algorithms.
Sensor data in a cluster can be seen as a set of input variables
in a training processwherewe exploit the spatial and temporal
relationship among nodes in the same cluster.
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2) MULTIVARIATE SENSOR DATA
As we have exemplified above, there are lots of applications
that need to collect multivariate data to make synthesis anal-
ysis. In this case, we consider attribute-related parameters.
Training data with the modified LSTM can use the correla-
tions to exploit the missing patterns for time series prediction.
To further reduce the training cost, we can select the most
relevant parameters as input variables, which can be imple-
mented by Pearson correlation coefficients. For instance,
Figure 2 plots different Pearson correlation coefficients
between several representative parameters for water quality.
The result shows that pressure values have no significant
effect on other parameters. We can train the RNN model
with principal correlated parameters: conductivity, tempera-
ture, salinity, and oxygen. Before training, the preprocessing
is to find the most relevant parameters. Besides, we can
also combine the neighbor information with other correlated
parameters to provide more comprehensive information for
model training.

It’s also common that sensing data are collected in a com-
bination of the two discussed data types. Based on the dis-
cussion, we propose an RNN-based data estimation network
as shown in Figure 6. A preprocessing operation is added
before training the LSTM model. For different applications,
we can select neighbors or attribute-related parameters as the
input. Then we need to model missing values by setting time-
related decay weights. Before using LSTM, we also need to
preprocess time series data where we need to convert the
time series prediction to a supervised learning scheme. The
conversion makes preparation for data training. On the top of
LSTM models, a softmax function is stacked to predict the
next value based on hi. The instance of water quality moni-
toring explains how to make the basic RNNmodel applicable
to real scenarios and the same network can be used for other
applications with application-specific modification.

Our proposed RNN-based network structure is also suit-
able for training data that may be compressed on the sender.
Since energy saving in UWSNs is significant for reducing
resource consumption and extending their lifetime, it’s com-
mon that the collected data have been preprocessed using
some data reduction methods (e.g., sampling) [11], [22].
In this case, the collected data is compressed and we can use
the LSTM model to train these sampled datasets.

V. EXPERIMENT
In this section, simulations are conducted to show the effi-
ciency of dropping retransmission. Then we use real datasets
to train the proposed RNN-based model.

A. SETTINGS
1) SIMULATION SETTINGS OF UWSN
To assess the performance of dropping the automatic retrans-
mission mechanism, we operate the numerical simulation
of the data packet transmission using Java. The underwater
network can be seen a grid topology (a 5Km ∗ 5Km area)

referring to [6]. The transmission range is 1Km and the speed
of sound in water is 1500m/s. The data packet size is set
to 1024 bits. The control packet size is 50 bits and the bit
rate is set to 1000 bits per second. The power consumption
in transmitting, receiving state are 10W and 80 mW. Simu-
lations are conducted to compare the change of delay time
and energy cost when adding and dropping the retransmission
mechanism.

2) LSTM SETTINGS
Then we apply the modified LSTM model to train datasets
collected for water quality monitoring, which is a common
and important application in underwater sensor networks.
With real-world datasets, the performance of LSTM-Decay
is evaluated and compared with several common data impu-
tation or prediction methods. We also vary missing rates for
different variables to explore the impact of different variables
on learning results. The structure of the RNN model refers
to Figure 6. Our LSTM training models have 2 hidden lay-
ers with 50 LSTM cells, recurrent dropout of 0.5. We train
on 60% of data, 20% each for validation and testing. The pre-
diction performance is evaluated using two metrics, RMSE
and R-square.

B. ANALYSIS OF DELAY AND ENERGY COST
Figure 7(a) shows the average end-to-end delay while varying
the number of sensor nodes. Here we compare the average
time of each sensor node spent on sending data packets to its
sink node in a 2-hop scenario. The comparison curves val-
idate that abandoning retransmission can effectively reduce
the delay time. In our settings, the number of sink nodes
increases in proportion to the total node number, which can
help to relieve the increase of average delay time. Hence,
the average delay will be reduced as the increase of the node
number where nodes are denser. Figure 7(b) shows the com-
parison of the total energy consumption. In a network with
450 nodes, the energy saving is up to 30% when dropping
retransmission. The cost difference between retransmission
and no retransmission represents the extra communication
cost of retransmission caused by packet collisions.

To evaluate the effect of the multi-hop network scenario,
we simulate the process of data transmission with increasing
hops from single-hop to 4-hop. In the multi-hop network,
the source node needs to forward packets to its relay node.
Figure 8(a) shows the end-to-end delay time becomes longer
as the increase of hops because of the growth of the trans-
fer path. The efficiency of dropping retransmission is more
prominent in the multi-hop transmission due to the increase
of the data collision probability. From Figure 8(b) we can also
see how data retransmission affects the total energy consump-
tion. The simulation results show that we can accelerate data
collection by appropriately dropping packet retransmission
for those applications with constrained delay requirements.

We also compute the packet delivery ratio (PDR) as
shown in Figure 8(a). The lower the packet delivery ratio
is, the higher the degree of missing data is. In the setting
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FIGURE 7. Comparison of delay time and energy consumption. (a) Average end-to-end delay. (b) Total energy consumption.

FIGURE 8. Comparison of delay time and energy consumption. (a) Average end-to-end delay. (b) Total energy consumption.

with 250 nodes, the packet delivery ratio with and without
retransmission are 0.933 and 0.826, respectively. For these
missing data, our proposed RNN-based learning model can
assure efficient estimation.

C. PERFORMANCE OF LEARNING MODEL
1) DATA
The real-world datasets used to evaluate the RNN-based
learning model come from the Ocean Networks Canada
Data Archive [18]. Ocean Networks Canada deploys different
types of sensors (e.g., Temperature Sensor, pH sensor) to
monitor ocean properties and assess marine environmental
conditions. We select datasets collected in Barkley Canyon,
Northeast Pacific Ocean. Two types of datasets are used in
our experiments:
(1) Spatial sensor data. We collect a temperature array

measured by temperature probes located at depth 870m
(126.1o W, 48.3o N). The datasets record temperatures
of a region deployed with 8 sensor modules.

(2) Multivariate sensor data. We collect datasets mea-
sured by CTD devices and oxygen sensors located at
depth 643m. The datasets store measurement of several
environmental parameters collected from June 2018 to
Nov 2018. Environmental parameters include conduc-
tivity, temperature, pressure, salinity and oxygen con-
centration.

Figure 2 plots Pearson correlation coefficients between
parameters in the multivariate dataset. We can use the pro-
posed model to learn missing patterns for efficient prediction.
Figure 9 shows the results of data statistics for these param-
eters. In the test, we set different missing rates for different
parameters to validate LSTM-Decay can mine the variable
relationship with missing data.

2) EVALUATION METRICS
The performance of RNN models for predicting parameter
values can be evaluated by two commonly used metrics,
RMSE and R2:
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FIGURE 9. Data statistics of 5-dimensional environmental parameters measured for water quality monitoring. Different parameters are
labeled as a form of parameter(unit) in each subfigure.

a: ROOT MEAN SQUARED ERROR (RMSE)
RMSE can reflect the magnitude of error. We use it to mea-
sure the difference between values predicted by RNNs and
observed values. The computation of RMSE is defined as:

LossRMSE =

√√√√ 1
T

i=T∑
i=1

(yi − ŷi)2 (11)

b: COEFFICIENT OF DETERMINATION (R2/R-SQUARE)
R2 is used to measure howwell observed values are replicated
by the prediction model.

LossR2 = 1−

∑
i(yi − ŷi)

2∑
i(yi − ȳi)2

(12)

where the closer the value R2 is to 1, the more accurate the
prediction is.

3) EVALUATION RESULTS
To test the performance of LSTM-Decay model, we compare
the prediction result with Support Vector Regression (SVR)
and several baseline methods introduced in Section IV-A:

• SVR. SVR is a popular non-linear regression method
employed for time series prediction [23]. In our test,
we use SVR with the RBF kernel function.

• RNN baselines. We respectively implement LSTM
models with zero, mean, forward imputation methods.
Thesemethods are named as LSTM-Zero, LSTM-Mean,
LSTM-Forward.

Besides, we also compare the performance of SVR and
LTSM by combining the KNN imputation method, named
SVR-KNN, LSTM-KNN, respectively. The two methods are
suitable for spatial sensor data. We evaluate these methods
on CTD and temperature datasets. Since these datasets are
nearly complete, we need to manually generate datasets with
missing values when randomly given a missing rate. To con-
struct missing values, we first set the missing rate of each
input parameters as 0.2 to compare the accuracy with baseline
methods. The missing rate can also be set other values in the
range [0,1] and we will test the impact of different rates on
prediction performance.

a: PERFORMANCE COMPARISON WITH BASELINE
METHODS
With LSTM-Decay, Figure 10 plots the training and test
results for spatial andmultivariate sensor data where we show
the result of conductivity prediction as a representative of
environmental parameters. The result intuitively interprets
the proposed model can efficiently predict the change of time
series data when modeling inputs with missing values.
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FIGURE 10. Comparison of train and test result with the proposed LSTM-Decay model. (a) Spatial sensor data. (b) Multivariate sensor data.

TABLE 1. Performance comparison of different models by RMSE and R-square.

Table 1 shows the estimation performance using SVR and
LSTMmodels with simple imputation methods (Zero, Mean,
Forward), KNN-based imputation, respectively. We also
make the prediction on original complete datasets as a
comparison. The accuracy estimation with RMSE and
R-square indicates that RNN-based models outperform the
SVR method. When existing missing values, the advantage
of RNN-based methods is more prominent. Moreover, our
proposed model, LSTM-Decay, obtains higher accuracy than
those LSTM models with simple imputation methods since
we consider the time effect on missing values during data
training. The training process not only learns correlations
between parameters but also exploits the influence of missing
values with time steps.

b: PERFORMANCE WHEN VARYING MISSING RATES
We respectively vary the missing rate of each parameter to
evaluate the impact of different missing rates on prediction
results. The missing rate varies from 0.2 to 0.8 each for an
environment parameter. Figure 11 shows the performance

comparison of conductivity prediction measured by R2. The
results on different parameters further indicate the superiority
of the LSTM-Decay model. When increasing the missing
rate from 0.2 to 0.8, the prediction performance of models
with simple imputation methods is significantly reduced,
especially with high missing rate (≥ 0.6). This is because
these imputation methods cannot efficiently fill datasets with
high missing rates. The filled data have a large deviation with
no-missing datasets, which causes performance degradation
of predicting environmental parameters. The prediction per-
formance with LSTM-Decay has a little reduction but is
almost stable since it can recognize missing values with our
input model. With LSTM-Decay, we can find the prediction
accuracy when setting missing rates for salinity is lower
than other parameters. When setting the missing rate to 0.6,
LSTM-Decay with missing data for salinity has an R2

of 0.8515 while for other parameters the values of R2 are
0.8847, 0.8744, 0.8664. The reason is that the correlation
between salinity and conductivity is highest, which help the
training process to mine variable correlations.
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FIGURE 11. (a) Temperature. (b) Pressure. (c) Salinity. (d) Oxygen. The impact of setting different missing rates for each parameter on prediction
performance.

Then we evaluate the performance of LSTM-Decay when
simultaneously varying missing rates for 0.1 to 0.4 for all
parameters. Figure 12 shows the performance of prediction
models with simple imputation methods decreases signifi-
cantly as increasing missing rates. Our proposed shows a
better prediction performance and the advantage is more
prominent when the missing rate is high.

c: PERFORMANCE ON SAMPLED DATASETS
Due to the limited energy and long transmission delay,
the most common method for communication cost reduction
is to sample/compress data in the data sending terminal.
In this case, the collected data in the monitoring center is
sampled and we also need to consider predict parameters on
sample data. Next, the prediction performance is evaluated
under different sampling intervals. As shown in Figure 13,
we test the model performance when setting sampling inter-
vals from 10s to 60s in a dataset with an average missing rate
of 20 %. We find that the larger sampling interval causes the
degradation of prediction accuracy. LSTM-Decay performs
the best performance among these methods. The result of

the prediction model also provides a guideline that we can
make efficient data reduction when given an error bound. The
proposed model can be used to train sampled data with good
performance.

In the experiments, we first simulated the scenario of data
packet transmission to validate the efficiency of dropping
retransmission mechanism. When mapping to real datasets,
we then preprocessed environmental data with different data
missing rates and then use the processed data to train the
performance of our proposed LSTMmodel. We use the com-
bined evaluation results to simulate the execution process of
our proposed delay-guaranteed framework.

VI. RELATED WORK
We have observed that UWSNs have been attracting increas-
ing attention for its potential for (nearly) real-time data
collection [1]. There have been a variety of communica-
tion protocols designed for underwater sensor networks [4],
[5]. Generally, underwater acoustic communication has two
characteristics: lossy in space and inconsistent in time [6].
Unstable data transmission brings high-frequency data loss
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FIGURE 12. Varying the missing rate for all parameters from 0.2 to 0.8.

FIGURE 13. Performance comparison when setting different sampling
intervals.

in network space. Multiple factors may cause the missing
of data values, such as the malfunction of sensor nodes,
packet collision, drop readings for saving cost [24], [25]. The
received data may be inconsistent in time since the long delay
of the update messages causes the received data may be the
retransmission of legacy data instead of fresh data. Hence,
data itself collected from acoustic communication networks
is incomplete. The quality of collected data directly affects
the results of subsequent data processing, analysis.

Data imputation for lossy data is important for making
accurate decisions, especially in real-time underwater mon-
itoring. Existing data mining algorithms classify common
imputation methods into two categories. One is to directly
fill missing values with substituted values that may be
mean or most frequently observed values, or we can build
learning models to estimate missing data [26].

There have been a number of imputation methods
employed to fill in missing values in WSNs. Simple impu-
tation methods include interpolation, expectation maximiza-
tion, linear regression, etc [27], [28]. However, these methods
are not suitable if data loss is not random (there is continu-
ous data loss), which is frequently in underwater networks.

In WSNs, sensor nodes are deployed to measure a region.
By leveraging spatial information of neighbors, K-nearest
neighbors (KNN) are used to estimate missing data [21], [29].
However, KNN is efficient in a dense sensor network where
we can find available non-missing neighbor data to estimate
missing values. In UWSNs, the deployment of sensor nodes is
much sparser than that in terrestrial WSNs. It’s possible that
the reference values obtained from neighbor nodes cannot
represent missing values or the data collected from neighbors
are missing.

By exploiting the time and spatial correlation, more com-
plex methods have been developed for better estimation.
Reference [30] utilizes association rules to mine temporal and
spatial correlations. Reference [31] estimates missing values
based on the temporal and spatial correlation by assigning
different weights for these two dimensions. However, the cor-
relation information may be unknown if data are incomplete,
which constrains the use of these methods. Reference [19]
models WSN-specific data loss patterns for massive data
loss. With the spatial, temporal and low-rank features, they
reconstruct massive missing values based on compressive
sensing.

Another type of data imputation methods is to build learn-
ing models to estimate missing data. Existing researches
include Principal Component Analysis (PCA), random
forests, etc [32]–[34]. But these methods need a lot of extra
time to train hyperparameters to fill missing values. As the
prevalence of machine learning in IoTs, deep learning meth-
ods have been applied to exploit implicit information from
unaware environments [35], [36]. RNNs, such as LSTM, have
shown strong prediction performance for multivariate time
series data. Reference [37] proposed an improved LSTM-
based network to predict future sea surface temperature val-
ues. The network includes one fully connected LSTM layer
and one convolution layer. RNNs can not only store previous
experiences by memory cells to exploit the long-term tempo-
ral dependencies, but also explore correlations between vari-
ables. Hence, we consider the usage of RNN-based models
to mine more information with incomplete datasets. Instead
of a two-step imputation-prediction procedure, the learning
model directly combines the exploration of missing features
and sensing data prediction where the missing feature is
modeled and trained along with inputs.

VII. CONCLUSION
Real-time monitoring in UWSNs is difficult limited by the
long delay time and frequent data loss. Inspired by these prob-
lems, we proposed a delay-guaranteed monitoring frame-
work while ensuring the quality of collected data. To achieve
the constrained delay, we drop the automatic retransmis-
sion mechanism applied in transfer protocols and migrate
the processing of data loss to the data center. To assure
the quality of collected data, we utilized an RNN-based
model, LSTM, to exploit long-term temporal dependencies
to perform efficient missing data estimation. We proposed a
modified model, LSTM-Decay, to train the multivariate time
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series sensing data with the exploration of missing features.
The missing feature with a time-related weight is trained
along with inputs in the LSTM architecture. The proposed
RNN-based learning model both considers the training of
spatial and multivariate sensor data collected in UWSNs.
Experiment results with real-world ocean datasets show that
the estimation performance with LSTM-Decay shows good
performance both on unsampled or sampled datasets when
setting different degrees of missing rates.
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