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ABSTRACT Rotation and scale estimation of images are fundamental tasks in image registration. The
conventional estimation method uses log-polar transform and 1D shift estimation to estimate rotation and
scale regardless of the shift of images. However, this transform requires interpolation of the frequency
components, which causes estimation error. We propose a rotation and scale estimation algorithm based
on the Radon transform and sub-pixel shift estimation. The Radon transform can estimate the rotation
independent of the shift and can reduce the influence of interpolation error. In addition, sub-pixel shift
estimation using a linear approximation of the phase component improves the precision of 1D shift estimation
and achieves accurate rotation estimation. The proposedmethod was evaluated on test images, and the results
demonstrate that the proposed method has higher accuracy compared with the log-polar transform.

INDEX TERMS Image registration, rotation estimation, scale estimation, phase only correlation.

I. INTRODUCTION
With the recent advancements in hardware technology, pro-
cessing huge volumes of image and video data has become
common. Image registration, which matches two or more
images, is an important technology. These images are taken
from, for example, video frames, different cameras, or dif-
ferent viewpoints, and image registration can be used in
many applications, such as medical image analysis, object
recognition, and industrial vision.

The fundamental task in image registration is to esti-
mate the shift, scale, and rotation between two images.
Conventional approaches for rotation and shift estima-
tion are categorized by phase-only correlation (POC)
approaches [1]–[5], intensity-based registration [6]–[9], and
feature-based registration [10]. The intensity-based image
registration is proposed by Thevenaz and Unser [6] and
Thevenaz et al. [7]. A typical intensity-based algorithmmax-
imizes Mattes’ mutual information [8] using step gradient
descent or a one-plus-one evolutionary algorithm [9].

The feature-based approach extracts the speeded-Up robust
features (SURF) [11] or binary robust invariant scalable
keypoints (BRISK) [12] and estimates a transform matrix
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using existing methods [10], [13], [14]. The intensity-based
approach compares two images by plain and achieves high
precision if the rotation angle is small and the scale is close
to 1. However, to estimate a large angle or scale, the num-
ber of iterations required to calculate the optimization prob-
lem increases, and an incorrect estimation may be obtained
because of a local solution. The feature-based approach
depends on the number of features extracted from the images
and the precision of the point-to-point estimation of features.
Therefore, the precision of the feature-based approach is
reduced when a small number of feature points are extracted
or incorrect matching occurs in point-by-point estimation.

POC is a common method for image shift estimation [2]
that calculates the cross-power spectrum of two images.
The image shift is represented as the peak of this spec-
trum, and shift estimation is achieved by searching this
peak. Searching the peak of the POC produces large error.
Therefore, some methods propose estimating the sub-pixel
shift directly from the phase component of the cross-power
spectrum [1], [15]–[18]. In this case, phase wrapping ambiq-
uity appears on the phase component to deal with. Hoge’s
method [15] applies rank-1 approximation using SVD to
reduce errors of the unwrapping operation. Tong et al. [17]
combine Hoge’s SVD and unified random sample consen-
sus (RANSAC) to improve the precision. Dong et al. [18]
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model an additional noise component as a mixture of
Gaussian and reduce an effect of the noise. However, these
methods are sensitive to the spectrum aliasing.

In order to estimate the image rotation, the rotation is
converted into the geometrical translation and estimate the
translation by an algorithm such as POC. The combination
of log-polar transform and 1D POC is one of these meth-
ods [3], [19], [20]. The method translates the frequency of
the image into a polar coordinate. The image rotation is
represented as a horizontal dimensional shift in this coordi-
nate. Note that the amount of shift does not depend on the
scaling or spatial shift of the image. On this basis, the rotation
estimation is achieved by estimating the horizontal shift by
the 1D POC. However, log-polar transformmust approximate
the frequency components using an interpolation algorithm,
and the approximation precision deteriorates significantly in
high-frequency components, which results in low precision
for the estimated rotation. In order to reduce the effect of
interpolation error, the new transforms are proposed such as
MLFFT [21] or MPFT [22]. These methods still suffer from
interpolation error.

Wan and Wei [23] proposed the rotation estimation algo-
rithm based on Radon transform. This method converts
the rotation into the geometrical shift and estimate the
shift by the phase correlation method which is robust
to noise. However, the precision of the phase correla-
tion method is limited to integer precision. Therefore
there is the limitation of the precision of the rotation
estimation.

We improve the accuracy of the rotation estimation by
introducing a new algorithm based on Radon transform
and sub-pixel estimation in the phase domain. In the pro-
posed method, the frequency component of input images
are transformed by Radon transform. As well as log-polar
transform, the rotation of the image is represented as a
horizontal shift. On this bases, we estimate the degree of
rotation by estimating the shift on the transformed images.
Radon transform sums all pixels along the specified angle,
which reduces the error caused by interpolating the image
pixels.

Furthermore, we introduce a high-accuracy shift estima-
tion based on the linear approximation of the phase compo-
nent. Conventional algorithms search the peak of the POC by
fitting a model function. In the estimation of discrete images,
the precision of this search is limited to the integer. The pro-
posed approach estimates the shift by linear approximation of
the phase component. This method enables estimation of the
non-integer part of the shift, which improves the precision of
the sub-pixel shift.

We present an evaluation of the proposed method using
standard images with different rotations and scales. The com-
parison of the estimation errors demonstrates that the pro-
posed method achieves correct shift estimation for the degree
of the scale and rotation. In addition, the results indicate that
the proposed method is robust compared to feature-based and
intensity-based approaches.

II. PREVIOUS ALGORITHM
A. ROTATION AND SCALE IN LOG-POLAR TRANSFORM
We define image XF (x, y) and its translation XG(x, y) using
scale factor S, shift (δx , δy), and rotation angle θ0 as follows:

XG(x, y) = XF (Sx cos θ0 − Sy sin θ0 − δx ,

Sx sin θ0 + Sy cos θ0 − δy). (1)

Both the images are translated to the frequency domain by
Fourier transform.

FG(ωx , ωy) =
1
S2

FF

(ωx
S

cos θ0 −
ωy

S
sin θ0,

ωx

S
sin θ0 +

ωy

S
cos θ0

)
e−j(ωxδx+ωyδy) (2)

Here FF and FG denote the 2D Fourier transform of XF and
XG respectively. Log-polar transform is defined as the coor-
dinate translation of expressions FF and FG to log distance
ρ and angle θ . In other words, ρ and θ are defined by ωx and
ωy as follows:

ρ = log
(√
ω2
x + ω

2
y

)
, θ = tan−1(ωx/ωy). (3)

We express F(ρ, θ) as the log-polar transform of |FF | and
G(ρ, θ) as the log-polar transform of |FG|. |FF | is the mag-
nitude of FF and |FG| is the magnitude of FG. Using these
expressions, the relationship of the scaling and rotation (2) is
rewritten by the shift in the ρ and θ directions respectively.

G(ρ, θ) =
1
S2
F(ρ − log S, θ + θ0) (4)

B. SHIFT ESTIMATION USING PHASE-ONLY CORRELATION
On the basis of the relationship given by (4), the image
scale and rotation are obtained by estimating the 1D shift. To
estimate the rotation θ0, S is assumed to be 1 and ρ is fixed to
0. Here, we useF(θ ) andG(θ ) to expressF(ρ, θ) andG(ρ, θ),
respectively, with fixed ρ. Note that rotation θ0 satisfies the
following relationship:

G(θ ) = F(θ + θ0). (5)

The major shift estimation algorithm uses POC. The POC of
F(θ ) and G(θ ) is calculated as follows:

R(θ ) = F−1
(

F(F(θ )) ◦ F(G(θ ))∗

|F(F(θ )) ◦ F(G(θ ))∗|

)
. (6)

Here, F(·) denotes the 2D Fourier transform of the matrix,
F−1(·) is the inverse 2D Fourier transform, ◦ is element-wise
matrix multiplication (division is also calculated in an
element-wise manner), and F(G)∗ is the complex conjugate
of F(G).
POC R(θ ) has a peak according to the shift of the images.

Figure 1 (a) shows the POC characteristics, where the blue
line represents the POC with a peak according to the shift
(the yellow line). To search the best location of the peak, POC
R(θ ) is fitted to a shift of the sinc function as follows:

R(θ ) '
c
π
sinc

(
c(θ − θ0)

π

)
. (7)
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FIGURE 1. Peak expression in the POC and its approximation by sinc
function. (a) Phase only correlation. (b) Fitting POC to the sinc function
around the peak.

The approximation result of the sinc function is shown as the
red line in Fig. 1 (b). In addition to the rotation, scale S can be
estimated by fixing θ and fitting the 1D POC between F(ρ)
and G(ρ).

In practice, log-polar transform is conducted on the dis-
crete image; therefore, the value of angle θ is quantized into
the multiply of the step θstep. In the discrete expression, the
precision of the non-integer shift is limited if the estimation
is given by fitting the POC to the model function because
the true peak of the POC may not appear in the discrete
expression and the peak of the model function does not match
the peak of the POC.

III. PROPOSED METHOD
Log-polar transform is the translation of image frequency
FF (ωx , ωy). This transform requires interpolation of the
image frequency to obtain the specified frequency compo-
nent F(ρ, θ); however, interpolation of the frequency compo-
nent causes a large error, particularly in the high-frequency
component. To suppress this interpolation error, we pro-
pose a new rotation estimation algorithm using Radon
transform.

The proposed method applies Radon transform to the fre-
quency domain and the spatial domain of images. From the
Radon transform of the frequency response of the images, we
can obtain the rotation estimation regardless of the shift. From
the Radon transform of the spatial images, we can obtain the
scale estimation. After compensating the rotation and scale
of an image, we can match two images by estimating the 2D
shift. The whole process of the proposed method obtaining
rotation, scale and shift is described in Fig. 2. Section III-
A describes the method to estimate rotation by Radon trans-
form, section III-C describes the scale estimationmethod, and
section III-D describes the 2D shift estimation.

A. ROTATION ESTIMATION BASED ON RADON
TRANSFORM ON THE FREQUENCY DOMAIN
The Radon transform F(ρ, θ) of the Fourier transform∣∣FF (ωx , ωy)

∣∣ of the image is calculated by summing all pixels
along angle θ :

F(ρ, θ)=
∫
∞

−∞

|FF (ξ cos θ−ρ sin θ, ξ sin θ+ρ cos θ )| dξ.

(8)

FIGURE 2. The whole process of the proposed method to estimate
rotation, scale and shift.

Similarly, Radon transform G(ρ, θ) is calculated from∣∣FG(ωx , ωy)
∣∣. In Radon transform F , G, scaling S, and the

rotation θ0 become

G(ρ, θ) = S · F
(
1
S
ρ, θ + θ0

)
. (9)

This equation means that the rotation of two images is
expressed as the 1D shift for the θ direction. Using this
feature, we estimate rotation θ0 using the 1D shift estimation
algorithm. Note that the shift (δx , δy) is cancelled because we
take an magnitude of FF and FG before calculating Radon
transform. We obtain F(0, θ) and G(0, θ), as shown in Fig. 4.
If we express F(0, θ) and G(0, θ) as F(θ ) and G(θ ) respec-
tively, the rotation estimation can be expressed as follows:

G(θ ) = F(θ + θ0). (10)

Figure 5 shows a comparison of the two transforms for rota-
tion estimation. Radon transform adds all pixels along the
specified angle θ . This operation reduces the influence of
interpolation error that occurs in the points that are distant
from a pole.

In the case of processing real images, (ωx , ωy) or (ρ, θ)
have only discrete coordinates. In other words, if we define
m, n as an integer value and ρstep, θstep as the precision of
the transform, the coordinates (ρ, θ) is defined as follows. In
the experiment, we set ρstep = 1 and θstep = 1◦ for each
transform precision:

ρ = mρstep, θ = nθstep. (11)

For calculating the Radon transform of FF , we assume ξ has
the discrete value ξ = qξd and sum all pixels in the range
of q ∈ [qmin, qmax]. qmin and qmax are the smallest/largest
value where the coordinate (qξd cos θ − ρ sin θ, qξd sin θ +
ρ cos θ ) is in the range of FF . Using these expressions,
the Radon transform F(ρ, θ) can be calculated from the
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FIGURE 3. Calculating the discrete radon transform for FF .

FIGURE 4. Rotation estimation using radon transform for the frequency
responses.

following expression:

F(ρ, θ) =
qmax∑
q=qmin

|FF (qξd cos θ

− ρ sin θ, qξd sin θ + ρ cos θ ) · ξd |. (12)

The step of ξ is set to ξd = 0.25. Figure 3 shows the methods
to calculate F(ρ, θ) from FF . The Radon transform F(ρ, θ)
is the sum of the values indicated by purple dots.

B. SUB-PIXEL SHIFT ESTIMATION BY LINEAR
APPROXIMATION OF THE PHASE COMPONENT
As discussed in Section II-B, the precision of the non-integer
part of shift θ0 given by POC is uncertain. To improve the
estimation of the non-integer shift, we introduce a non-integer
shift estimation based on linear approximation of the phase
component. We express the phase component of the correla-
tion of F(θ ) andG(θ ) as C(k). k is the axis of the transformed

FIGURE 5. Comparison of log-polar transform and radon transform.

FIGURE 6. Linear approximation for the phase of non-integer shift.
(a) Wrapped phase components with integer shift. (b) Unwrapped phase
component and its linear approximation.

domain of θ .

r(k) =
F(F(θ )) ◦ F(G(θ ))∗

|F(F(θ )) ◦ F(G(θ ))∗|
(13)

C(k) = tan−1
=(r(k))
<(r(k))

(14)

<(·), =(·) denote the real and imaginary parts of the content,
respectively. The correlation C(k) can be approximated by
the following linear expression:

C(k) ' a · k (15)

Thus, the coefficient a can be estimated by the following
linear regression.

a = argmin
a

∑
k

(C(k)− a · k)2 (16)

However, the output range of tan−1 in (14) is limited to
the range [−π, π]. As a result, C(k) becomes the wrapped
form shown in Fig. 6 a. To address this issue, we split phase
component C into an integer component C ′ and a decimal
component C ′′.

C ′(k) ' a′k, C ′′(k) ' a′′k (17)

C(k) = C ′(k)+ C ′′(k) (18)

A diagram of the shift estimation splitting the integer and
non-integer components is shown in Fig. 7. First, we esti-
mate integer component a′ by searching the peak of the
conventional POC. Then, we subtract the phase of the integer
shift from C(k). We then obtain the phase of the decimal
component C ′′(k).

C ′′(k) = C(k)− a′k (19)
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FIGURE 7. Sub-pixel shift estimation for the radon transformed axis.

Note that this expression does not contain the wrapping effect
as shown in Fig. 6 b. By modifying the minimization (16) to
the estimation of the non-integer part, we obtain the mini-
mization of a′′ as follows:

a′′ = argmin
a

∑
k

(
C ′′(k)− a · k

)2 (20)

By combining integer shift a′ and non-integer shift a′′ from
(20), we obtain image rotation θ0 as follows:

θ0 = aθstep = (a′ + a′′)θstep (21)

C. RADON-TRANSFORM-BASED SCALE ESTIMATION
Using the rotation estimation described in the previous
section, we obtain the scale estimation. For this purpose,
we use Radon transform for the spatial images XF and XG.
The Radon transform F(ρ, θ) of spatial image XF (x, y) is
calculated by summing all pixels along angle θ .

F(ρ, θ) =
∫
∞

−∞

XF (ξ cos θ − ρ sin θ, ξ sin θ + ρ cos θ ) dξ

(22)

Similarly, Radon transform G(ρ, θ) is calculated from
XG(x, y). In the real case, ρ, θ, ξ have the discrete value and
Radon transform of the discrete image XF can be calculated
in the same manner with the section III-A. Using expressions
(1) and (22), the relationship of Radon transform F , G, shift
(δx , δy), scaling S, and the rotation θ0 becomes the following
expression:

G(ρ, θ) =
1
S
F
(
Sρ −

√
δ2x + δ

2
y

sin
(
θ − tan−1

δy

δx

)
, θ + θ0

)
. (23)

Then we adjust the rotation by the estimated value θ0.

G′(ρ, θ) = G(ρ, θ − θ0) (24)

G′(ρ, θ) is expressed by F(ρ, θ) as follows:

G′(ρ, θ) =
1
S
F
(
Sρ −

√
δ2x + δ

2
y

· sin
(
θ − tan−1

δy

δx

)
, θ

)
. (25)

Using this expression, we can obtain scale factor S by calcu-
lating the ratio of coordinates whose values exceed a spec-
ified threshold. In other words, we express ρF1 as the first
coordinate whose value F(ρF1, θ) exceeds the threshold t1
and ρF2 as the last coordinate where F(ρF2, θ) exceeds the
threshold t2. Similarly, we express ρG1, ρG2 for the coordinate
of G(ρ, θ). The estimate of the scale is obtained as follows:

S '
ρG1 − ρG2

ρF1 − ρF2
(26)

To reduce interpolation error and calculation cost, we use
the ρ-axis of the Radon transform in θ = 0◦ and θ =
90◦. In other words, the proposed method calculates Sθ=0
from F(ρ, 0) and G(ρ,−θ0), and Sθ=90 from F(ρ, 90) and
G(ρ, 90 − θ0). Then, the proposed method obtains the esti-
mated scale S as follows:

S =
1
2
(Sθ=0 + Sθ=90) (27)

The precision of the scale estimation is improved by taking
the average of the two transform axes. Note that we selected
transform angles θ = 0◦ and θ = 90◦ because Radon
transform can be calculated with less interpolation error with
these angles.

D. IMAGE MATCHING USING 2D SUB-PIXEL SHIFT
ESTIMATION
After obtaining the rotation θ0 and scale S, we can match
two images XF (x, y) and XG(x, y) by fixing rotation and scale
from XG. If we define X ′G(x, y) as a rotated and scaled image
from XG, X ′G has a 2D shift from XF as follows:

X ′G = XF (x − δx , y− δy). (28)

In order to estimate the 2D shift of XF and X ′G, we extend a
shift estimation algorithm in III-B from 1D estimation to 2D
estimation. We calculate the phase component of the correla-
tion of XF and X ′G as C(k, l) by the following expression:

r(k, l) =
F(XF (x, y)) ◦ F(X ′G(x, y))

∗∣∣F(XF (x, y)) ◦ F(X ′G(x, y))
∗
∣∣ , (29)

C(k, l) = tan−1
=(r(k, l))
<(r(k, l))

. (30)
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TABLE 1. Comparison of rotation estimation errors [degrees].

TABLE 2. Comparison of average errors of rotation estimation for all images.

Here, F denotes 2D Fourier transform and (k, l) are the
two axes of the transformed domain. This correlation can be
approximated by the following linear expression.

C(k, l) ' δxk + δyl. (31)

Thus, the coefficients (δx , δy) are approximated as follows:

{δx , δy} = argmin
{δx ,δy}

∑
k,l

(C(k, l)− δxk − δyl)2 (32)

C(k, l) has the wrapped form because of the output range of
tan−1. To address this issue, we split phase component C into
an integer component C ′ and a decimal component C ′′.

C ′(k, l) ' δ′xk + δ
′
yl, C ′′(k, l) ' δ′′x k + δ

′′
y l (33)

C(k, l) = C ′(k, l)+ C ′′(k, l) (34)

The integer shift (δ′1, δ
′

2) is estimated by the conventional 2D
POC and subtracted from C(k, l) to obtain decimal compo-
nent C ′′(k, l).

C ′′(k, l) = C(k, l)− δ′xk − δ
′
yl. (35)

This expression does not have the wrapping effect. Therefore
we obtain the non-integer part (δ′x , δ

′
y) by the following min-

imization:

{δ′′x , δ
′′
y } = argmin

{δ′′x ,δ
′′
y }

∑
k,l

(C ′′(k, l)− δ′′x k − δ
′′
y l)

2 (36)

We combine the integer shift (δ′x , δ
′
y) and non-integer shift

(δ′′x , δ
′′
y ) to obtain the shift with sub-pixel precision:

δx = δ
′
x + δ

′′
x , δy = δ

′
y + δ

′′
y . (37)
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FIGURE 8. Rotation errors for the rotation estimation of lenna image (scale 0.6).

TABLE 3. Comparison of rotation estimation errors for noisy images with a standard deviation of 20 [degrees].

The amount of the estimated shift (δx , δy) strongly depends on
the location of the centroid of rotation. Therefore we cannot
compare the precision of shift estimation.

IV. EVALUATION
A. EXPERIMENTAL SETTINGS
To evaluate the proposed algorithm, we compared rotation
and scale estimation for standard images. The images were
rotated, scaled and shifted with a specified angle, scale value
and shift value. Then, the estimation algorithm was applied,
and the error between the estimated and ground-truth val-

ues was calculated. In this evaluation, we used 14 images
with size 256 × 256 and 11 images with size 512 × 512.
To compare the precision of the rotation estimation algo-
rithm, images were rotated from 0◦ to 45◦ at steps of 0.2◦.
In addition, scales of 0.6, 0.8, and 1.0 were tested. When
we compare scale estimation precision, the input rotation
was fixed at 35◦ and the input scale was varied from 0.6 to
1.0 at a step of 0.01. To evaluate estimation robustness, white
Gaussian noise was added to the fixed and shifted images.
The standard deviation of the Gaussian noise was σ = 0
(no noise), σ = 10, and σ = 20. We compared the
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TABLE 4. Comparison of average errors of rotation estimation for noisy images with a standard deviation of 20.

TABLE 5. Comparison of scale estimation errors for images rotated by 35◦.

proposed algorithm to the conventional estimation algorithm,
two feature-based algorithms, i.e., SURF [11] and BRISK
features [12], the intensity-based algorithm using Mattes’
mutual information [8], and the POC-based algorithm using
log-polar transform [3].

B. ROTATION ESTIMATION ERROR
Table 1 lists the rotation estimation errors for all images.
Here, the results for the different input scales (0.6, 0.8,
and 1.0) are averaged. ‘‘N/A’’ means that there were few
BRISKs in the image and rotation estimation was unavail-
able. The proposed method outperformed the log-polar trans-
form. Table 2 shows the rotation estimation errors for each
scale. Note that the errors of all images are averaged. The
proposed Radon-based method yielded higher precision, par-
ticularly with small-scale images. The results demonstrate

that the proposed method can estimate rotation regardless of
scale.

The rotation estimation errors for the Lenna image (scale
0.6) are shown in Fig. 8. As can be seen, BRISK features
achieve the higher estimation precision than SURF features.
However, the number of BRISKs tend to be small, and esti-
mation fails if the number of keypoints is less than three.
The intensity-based method estimates with the lower error
under 15◦; however, estimating larger angles is difficult, and
an inappropriate local solution produces a large estimation
error.

Tables 3 and 4 compare the rotation estimation errors for
the noisy images (standard deviation σ = 20). As can be
seen, the proposed method achieves rotation estimation that
is robust against noise, and feature-based methods return
large estimation errors or ‘‘N/A’’ values because of the small
number of feature points.
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FIGURE 9. Comparison of errors of scale estimation for milkdrop image with rotation angle 35◦.

TABLE 6. Comparison of execution times for rotation and scale estimation.

C. SCALE ESTIMATION ERROR
The scale estimation errors for each images rotated by 35◦ are
compared in Table 5. These results demonstrate that the pro-
posed Radon-based transform can estimate the image scale
with less error compared to feature-based and intensity-based
methods, particularly when the image size is 256. The pro-
posed method takes the average of two scale estimations
using (27) to reduce the estimation error, which improves
estimation precision for images of size 512. Figure 9 com-
pares the scale estimation errors for the Milkdrop image. The
proposed algorithm demonstrates higher estimation precision
when the input scale is in the range of 0.6 to 0.7. In this range,
it is difficult for the feature or intensity-based methods to
estimate the scale value accurately.

D. EXECUTION TIME
We compared the comparison of the execution times of the
rotation and scale estimation algorithms. All angles were
evaluated from 0◦ to 45◦ in 0.2◦ steps, and the results were
averaged. The rotation and scale estimation for each image
size (256 and 512) and for each scale (0.6 to 1.0) are com-
pared in Table 6. For all image sizes and scales, compared to
the conventional methods, the proposedmethod demonstrates
a faster execution time because the Radon transform calcula-
tion is limited to three axes, and each estimation is processed
in 1D signals.

V. CONCLUSION
In this paper, we have proposed a rotation and scale esti-
mation algorithm based on Radon transform and sub-pixel
shift estimation. Radon transform can reduce the influence
of interpolation error because it is applied to a spatial image
rather than the frequency. The number of ranges of Radon

transform can be limited to ρ = 0, θ = 0◦, and θ =
90◦, therefore, the proposed method has an advantage rel-
ative to execution time. As well as introducing the Radon
transform, we have proposed a sub-pixel shift estimation
method that uses linear approximation of the phase com-
ponent, which enables an accurate non-integer shift. In the
proposed method, we have combined the conventional POC
method for the integer part of the shift and linear approxi-
mation for the non-integer part. Evaluations using test image
demonstrate that the proposed method accurately estimates
rotation compared to other POC-based approaches regardless
of the degree of the input rotation, scaling, and shifting. In
particular, the proposed method realizes robust estimation
when the input scale differs from 1 or noise is added to the
images.
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