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ABSTRACT New tools have been created to allow a superconducting design flow for schematic design,
verification, and optimization. These tools integrate with the Cadence design environment. In single flux
quantum superconducting electronics, individual component values, such as wire inductances, Josephson
junction critical currents, and bias currents, must be optimized to allow for maximum deviance from the
designer value, which is also known as the device margin. One tool is used to create a description of the
proper circuit behavior. Included with this tool is the ability to automatically create the description from a
Cadence netlist. The other tool is an automated device margin circuit schematic verification and optimization
tool, which widens device margins while maintaining proper circuit behavior derived from the first tool.
Additionally, this optimization tool can automatically correct the circuit schematic using the proper circuit
behavior description. In this paper, the functionality of the language used to create the description of the
proper circuit behavior is presented. Several circuits are then verified and optimized based on their correct
behavior.

INDEX TERMS Circuit verification, circuit optimization, Josephson junctions, RSFQ circuits, single flux
quantum (SFQ), superconducting electronics.

I. INTRODUCTION
Historically, the state of CAD tools available to the supercon-
ducting electronics (SCE) design community has been both
outdated and not suitable for complex designs [1], [2].

These CAD tools were only suitable for the design of
chips of a modest complexity due to ‘‘their lack of dis-
cipline and volume’’ [3]. Major improvements to the cur-
rently available CAD tools are needed in order to increase
the density, complexity, and performance of SCE chips [3].
While some work has been accomplished in this area [4],
this is an improvement upon the old CAD tools and not a
novel approach to the SCE optimization problem.With a new
version of the hierarchical Single-Flux-Quantum Hardware
Description Language (hSFQHDL), known as the hierarchi-
cal Single-Flux-Quantum Hardware Description Language
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in Cadence (hSFQHDLC), and a new single flux quantum
circuit analysis and optimization tool, a novel approach to
the problem of circuit optimization is presented. This tool
targets the Rapid-Single-Flux-Quantum (RSFQ) [5] family
of technology, where the presence or absence of a single
quantum of magnetic flux is used to represent the ones and
zeroes for logic operation, can operate at several tens of GHz
speed with very low power consumption [6] and has been
shown to be a contender for future energy-efficient large-
scale computing systems [7]. This can be attributed to fun-
damental advantages SFQ circuits possess in low energy and
high speed switching [8]. Success has been demonstrated
in the field [9]–[11], including the development of RSFQ
microprocessors such as SCRAM2 [12] and the CORE1 [13]
series.

New energy-efficient versions of RSFQ, such as ERSFQ,
eSFQ [14], [15] and LV-SFQ [16], have further reduced
power consumption for systems built on this technology.
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These new additions to the SFQ family show great promise,
and success has already been demonstratedwith these energy-
efficient technologies as well [17]–[20].

However, the design of large Single-Flux-Quantum (SFQ)
based circuits becomes challenging very quickly as circuit
complexity scales compared to traditional CMOS based
circuits. The switching action of each of the Josephson
junctions (JJ), which is seen as a 2π change in quantum
phase, within the circuit needs to be analyzed across the time
domain of the simulation in order to verify proper operation
of the circuit. SFQ circuits are also extremely sensitive to
deviations from the ideal design values and the circuit must
have the margins of each component maximized to increase
the chances of a successful fabrication run. By verifying the
switching action of all JJs within a circuit, the designer can
than optimize the critical currents of the junctions, along with
the values of other circuit components, and thus maximize the
chances of a successful fabrication run.

Traditionally, the Single Flux Quantum Hardware
Description Language (SFQHDL), parameter optimization,
and circuit verification have been handled by the Personal
Superconductor Circuit ANalyzer (PSCAN) [21] or, more
recently, PSCAN2 [4]. The new hSFQHDLC integrates with
the Cadence design suite, allowing for features such as
automatic compilation from a Cadence netlist, structural
netlist to hSFQHDLC conversion, and integration with a new
optimization tool. Using a Cadence environment will offer the
enhanced maintainability offered by a commercial EDA tool
base, as well as allowing the designer to perform automated
place and route, verification, and optimization all within the
same tool suite. Any Cadence enhancements or improve-
ments leading to increased program efficiency or accuracy
would then be immediately available to the designer.

One piece of a modern integrated circuit (IC) design
workflow is the schematic verification and optimization.
A Cadence based SFQ circuit design workflow that addresses
this functionality using hierarchical Single-Flux-Quantum
Hardware Description Language in Cadence consists of the
following steps (see Fig. 1). First, a netlist of the circuit under
test is passed to Cadence Spectre, which is the tool used
to perform the transient time-domain simulations. The same
netlist is passed to the hSFQHDLC Automated Generation
Tool, which uses the information contained in the netlist
to automatically generate a hSFQHDLC description of the
circuit under test. This hSFQHDLC description is then passed
to the hSFQHDLC compiler, which generates a description of
the correct circuit behavior. As Spectre simulates, the switch-
ing action of each junction is compared to the description of
the correct circuit behavior in order to determine if the circuit
operates correctly. This is done automatically using the new
single flux quantum circuit analysis and optimization tool that
is presented in this paper.

If the circuit passes this analysis, the margins of the circuit
are calculated and then the parameters of the circuit can be
modified in order to optimize the circuit margins. This can
either be done manually by the designer or automatically

FIGURE 1. Design flow for superconducting circuit verification.

by using a tool such as the new single flux quantum circuit
analysis and optimization tool, COWBoy [22], xopt [23],
or MALT [24]. This new circuit is then analyzed again to ver-
ify that it still matches the previously established description
of the correct circuit behavior. This process is repeated until
the optimal circuit is achieved.

If the circuit fails the analysis, the circuit must be corrected
until it meets the provided circuit description. While previ-
ously the designer was expected to do this manually, with
the new single flux quantum circuit analysis and optimization
tool, SFQ circuits which do not meet the initial circuit behav-
ior description will have their component values intelligently
changed by the program to create a working circuit.

As circuit complexity scales a cell-based [25] design
approach can be used. Individual cells are optimized to have
as little static interaction between each other in connection
as possible. However there is still some interaction between
cells, and so it is beneficial to the designer to optimize as large
of a circuit as possible. By introducing a new, parallelized
optimization tool that leverages Cadence Spectre for simu-
lation larger circuits may be optimized than were previously
possible.

This design flow seen in Figure 1 allows for fast and
reliable verification of SFQ circuits in a Cadence design
environment. In this paper hSFQHDLC and its functionality
will be presented in Section III. The circuit analysis and
optimization tool will then be used to analyze and optimize
a circuit in Section IV. The ability of this tool to correct
a circuit that does not meet its initial description will also
be demonstrated in this section. Comparison will be given
to an existing optimization tool in Section V and it will be
shown how hSFQHLDC translates from a Structural Netlist
in Section VI.

II. COMPONENT VALUES AND THE EFFECT ON
CIRCUIT FUNCTIONALITY
The value of a component in a SFQ circuit may deviate from
what the designer intended when creating a circuit layout.
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This can be due to fabrication tolerances or the designer not
drawing the layout to perfectly match the schematic. In order
to prepare the circuit for layout and fabrication, each com-
ponent value must be optimized to have the widest possible
margin. This will allow each component to deviate from the
schematic value and still produce a working circuit.

In order to move from one point to another, an SFQ pulse
must propagate down a wire. In superconducting technology,
a wire is an inductor and must be treated as such.
Raising or lowering an inductance by changing the
width or length of awire can affect the operation of the circuit,
even causing a complete failure of the circuit as a whole.

Figure 2 shows the optimized circuit schematic for a
splitter [5]. This schematic uses the symbol ‘‘X’’ for a
Josephson junction and those junctions are biased with cur-
rent sources. Current sources are used as this is an RSFQ
logic scheme. In layout, resistors would be used in place of
the current sources to bias the circuit.

FIGURE 2. Splitter; Values: X0 = 300uA, X1 = 250uA, X2 = 250uA,
L1 = 3p, L2 = 3p, L3 = 3p, I1 = 250uA, I2 = 187.5uA, I3 = 187.5uA.

In Figure 3, an SFQ pulse labeled ‘‘IN’’ is input into a
splitter which creates two identical SFQ pulses at two dif-
ferent output terminals. The schematic for this design can
be seen in Figure 2. By changing the inductance of the wire
labeled ‘‘L2’’ the operation of the splitter can be modified to
the point of failure.

FIGURE 3. Simulation of splitter correct operation.

In Figure 3, the value of ‘‘L2’’ is 3pH. By simply increasing
this value to 8p H, failure is seen in the circuit when the

second output ‘‘OUT1’’ no longer outputs an SFQ pulse
(Figure 4). Likewise, by decreasing ‘‘L2’’ to 0 pH failure
is seen when ‘‘OUT2’’ no longer produces an SFQ pulse
(Figure 5). This failure due to decreasing ‘‘L2’’ is only
possible due to the fact that the junctions in this circuit
are underbiased. The robustness of this inductor is affected
by the values of the other components in the circuit. Thus,
by optimizing the circuit the upper and lower bounds of the
inductor ‘‘L2’’ will increase allowing for greater variance
from the circuit values during manufacturing and layout.

FIGURE 4. Simulation of splitter, increased inductance.

FIGURE 5. Simulation of splitter, decreased inductance.

III. HIERARCHICAL SFQHDLC
For SFQ circuits, it is not always easy to perform manual
circuit verification via waveform or quantum phase analysis
for complex circuits. As such, a tool is needed to automate
circuit analysis. This tool will need to be provided with a
description of the proper behavior of the circuit in order to
verify the circuit functionality. SFQHDLwas first introduced
in 1991 [21] and later updated in 1996 [22] to include provi-
sions for hierarchical constructs, i.e. circuits containing sub-
circuits. This language allows the designer to describe the
behavior of a circuit in terms of the switching of the junctions
within that circuit. This circuit is then passed to a simulator,
such as Cadence Spectre [26], and the output of the circuit is
compared to the description by a separate optimization and
analysis tool. While PSCAN [22], JSIM [27], WRspice [28],
or another simulator [29] could also be used, the simulator
would have to be adapted to use hSFQHDLC.
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Hierarchical SFQHDLC has many benefits over input/
output checking, automated or manual. By describing the
circuit in terms of the switching of each junction, the designer
now has access to a high level of detailed information about
their SFQ circuit. Checking junction switching events instead
of inputs and outputs allows for detection of more circuit
errors. For example, while a malfunctioning circuit may have
produced a correct output, it may not have reset correctly
to the base state, leading to corrupt output at a much later
time. It also allows the designer to know exactly where in
the circuit the problem occurred, speeding up the debugging
process. This information can also be passed to a computer
program, which can then be used to fix the circuit instead of
the designer.

A. THE N-FUNCTION
A Josephson junction consists of two superconductors cou-
pled by a weak link. The superconducting bound-electron
pairs, known as Cooper pairs [30], tunnel though this insula-
tor and the supercurrent is uninterrupted. These Cooper pairs
will continue to tunnel though the insulator until the critical
current of the junction, determined by the critical current
density and size of the junction [31], is reached. At this
point, the junction will oscillate in time and experience an
AC voltage. Each pulse of voltage generated by the junction
at this point also corresponds to the quantum phase across the
junction rotating by 2π . This is known as a junction ‘‘switch’’
or ‘‘flip’’.

As hSFQHDLC relies on the switching action of each of
the junctions to describe the circuit, it is important that this
behavior is reported accurately and without false positives.
This switching action is reported using an integer valued
hysteretic function as seen in [22], known as the N-function.
The N-function relates the number of flux quanta that have
penetrated the junction to the quantum phase across the junc-
tion and reports this as an integer valued number. Effectively,
this function reports the number of times the junction has
switched.

The N-function allows for the creation of two more
functions unique to hSFQHDL and hSFQHDLC, the INC
and DEC [22] functions. These two functions return 1 at
the moment that the N-Function increments or decrements,
respectively. A small positive or negative change in the quan-
tum phase will not trigger INC or DEC, only a 3/2π or greater
phase change. At all other times the output of these functions
is zero.

The functionality of the old hSFQHDL language has been
recreated and improved upon to accommodate large-scale
circuit verification. Hierarchical SFQHDLC has new syntax
that is comparable to the Verilog Hardware Description
Language.

B. RULE STATEMENTS
Themost basic construct of the language is the rule statement,
which is used to describe the correct behavior of a set of
junctions which make up a circuit. A rule combines operators

and operands to produce a result that is a statement that the
circuit must obey. The operators and operands available in
hSFQHDLC can be seen in Table 1.

TABLE 1. hSFQHDLC operators.

An hSFQHDLC description of any circuit is, at its most
basic, a list of rules, otherwise known as a ‘‘rule deck’’.
Together, this rule deck makes up a description of the proper
behavior of a SFQ circuit.

C. RULE CONSTRUCTION
By combining the operators and operands in Table 1,
the designer can create a set of rules for any SFQ circuit.
A rule statement is written as follows:

RULE name (cause) effect : time;

The three main parts of this statement are the cause,
the effect, and the time operator. The cause is the event which
activates a rule statement, while the effect is the event which
must occur to maintain normal operation of the circuit. The
time operator specifies the amount of time that the effect has
to occur after the cause takes place in order for the rule to be
considered valid. The timing operator can be left blank if the
user wishes to specify no timing failure.

To clarify, consider as an example the 2-stage Josephson
Transmission Line (JTL) [5] in Figure 6. A RULE statement
to describe the proper operation of this circuit could be writ-
ten as:

RULE GO (INC(A)) INC(B) : 5p;

In English, this statement would be read as ‘‘If the
quantum phase across the junction A increments, then the
quantum phase across the junction B must increment within
5 picoseconds’’. GO is simply the name of the rule designated
by the designer and ignored by the compiler. This rule is
then passed to the analysis tool, which compares it to the
quantum phases across the junctions to verify the circuit
functionality.
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FIGURE 6. 2-Stage Josephson transmission line.

D. INTERNAL STATES
An important feature in hSFQHDLC is the ability to keep
track of the internal states of different cells. This is done
through the use of the N-function described in Section III.A.

Consider as an example a DFF [5], seen in Figure 7. This
cell has two states, and the switching order of the junctions
changes depending upon the state of the cell. Hierarchical
SFQHDLC handles these states through the use of relational
logic and N-functions.

FIGURE 7. D flip-flop.

In the DFF, the state of the flip flop is stored in the rela-
tionship between the states of junctions X1 and X2.When the
N-functions of the two junctions are equal, then the flip flop
is at state ‘‘0’’. When the N-function of junction X1 is greater
than that of junction X2, the flip flop is in state ‘‘1’’, or the
storage state.

As an example, there are two actions that can take place
upon the arrival of a clock pulse, depending upon the state of
the flip flop. If the flip flop is in the ‘‘0’’ state, junctionX3will
increment. Quantum phase is measured across the terminals
of the junction model, thus the orientation of the model deter-
mines if the quantum phase across the junction increments or
decrements. That rule would be written as follows:

RULE ((CLK) &&(N(X1) == N(X2))INC(X3);

This rule activates on the arrival of the clock input if
and only if the N-function of junction X1 is equal to the
N-function of junction X2. If the flip flop is in the ‘‘1’’
state instead, junction X2 will increment and an output will

be produced. This is one way that this rule can be written:

RULE ((CLK) && (N(X1) == N(X2) + 1) INC(X2);

This rule activates on the arrival of the clock input if
and only if the N-function of junction X1 is equal to the
N-function of junction X2 plus one. A greater than sign could
be used if the designer wished.

E. MULTIPLE EFFECTS
Not all causes have a single effect. In some cases, the switch-
ing order of the junctions may be neither clear nor relevant.
In these cases, the switch of a single junction can cause multi-
ple junctions to switch in any order. Take for example a binary
decision diagram (BDD) [32] steering element constructed
from a D2 flip-flop [33], as seen in Figure 8.

FIGURE 8. BDD steering element.

In this schematic, the arrival of a SFQ Pulse at the ‘‘Root’’
input will trigger the switching of the junction X0. In this
case, the switching of X0 will then cause the switching of
the junctions X1, X7, and X3 in any order. This would be
written as:

RULE (INC(X0)) DEC(X3) && INC(X1) && DEC(X7);

If the designer cared about the order of the switching of
junctions X1, X7, and X3 the multiple rule statements would
be used instead. This would be written as:

RULE (INC(X0)) DEC(X3);

RULE (DEC(X3)) INC(X1);

RULE (INC(X1)) DEC(X7);
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F. MULTIPLE QUANTUM PHASES
Another scenario which designers will encounter while
designing SFQ circuits are junctions which generate multi-
ple pulses. The simplest example of this is the SFQ to DC
converter [5] seen in Figure 9.

FIGURE 9. SFQ to DC converter.

In the SFQ toDC converter, a DCoutput is produced by set-
ting the state of the internal T Flip-Flop [5] to ‘‘1’’ by increas-
ing the N-function of junction X4 over that of junction X3.
This initial setting action is accomplished through the arrival
of a pulse at the input of the cell. While producing a DC out-
put, junctions X6 and X8 will continuously switch until the
state of the T Flip-Flop is reset to ‘‘0’’ by the arrival of
a second input. This produces the DC output at the output
terminal of the cell.

The rules for this are written by forming a loop, with the
decrementation of junction X6 causing the incrementation of
junction X8, which in turn would cause the decrementation
of junction X6. The designer’s initial attempt to represent this
may look something like the following:

RULE (INC(X8) && (N(X4) = N(X3)+1)) DEC(X6);

RULE (DEC(X6) && (N(X4) = N(X3)+1)) INC(X8);

Which would be incorrect due to the fact that it would form
an infinite loop. Any loop written in hSFQHDLC will need
an exit case, which is accomplished through signer can create
a set of eration seen in Table 1. As the ‘‘1’’ state (DC Output)
of the internal T Flip-Flop is exited by incrementing the
junction X3, this is used as the exit case. This results in the

following rules:

RULE (INC(X8) &&!INC(X3) && (N(X4)

== N (X3) + 1)) DEC(X6);

RULE (DEC(X6) &&!INC(X3) && (N(X4)

== N(X3)+1)) INC(X8);

IV. USING hSFQHDLC FOR OPTIMIZATION
Section II showed that SFQ circuit functionality can be sensi-
tive to component values and deviation from these schematic
values can cause failure in circuit functionality. Hierarchical
SFQHDLC can be combined with an optimization tool to
maximize the margins of each component within a circuit.

A. D FLIP FLOP
The D Flip Flop seen in Figure 10 was created in Cadence
Virtuoso using a JJ model created by the authors in Verilog-A.
This model contains an extra output node to report the results
of the N-Function discussed in Section III-A.

FIGURE 10. D flip flop with parasitic inductors (LP).

Cadence ADE was used to compile the Virtuoso schematic
into a netlist and the netlist was simulated using Cadence
Spectre. The initial simulation results reported by Cadence
Spectre for the D flip flop are seen in Figure 11. The
corresponding N-functions for this simulation are seen in
Figure 12.

FIGURE 11. Simulation of a D flip flop in cadence spectre - pulses.
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FIGURE 12. Simulation of D flip flop in cadence spectre - N functions of
junctions.

The setting pulse to the flip flop can be seen in arriv-
ing first, labeled D, followed by the release pulse, labeled
Release. The arrival of the release pulse causes the appear-
ance of a pulse at the output of the flip flop, labeled OUT.
The x-axis represents time in nanoseconds and the y-axis
represents voltage in microvolts.

For optimization, the Cadence generated netlist for a
schematic containing the D Flip Flop cell was passed to
the Analysis and Optimization (AAO) tool, which added
the appropriate DC to SFQ converters to the netlist. This
netlist was then input to the hSFQHDLC automated gen-
eration tool. The automated generation tool links the user-
generated hSFQHDLC descriptions from the designer’s
Cadence library to the netlist calls to produce the hSFQHDLC
description. This description was then compiled into a list of
rules by the hSFQHDLC Compiler.

This is done by a recursive flattening of the hierarchical
Cadence netlist into a Cadence netlist where none of the cells
contain other cells. The compiler then pulls the designer writ-
ten SFQHDLC descriptions of each cell from the Cadence
library and creates the circuit description, automatically link-
ing inputs and outputs of cells appropriately. This creates a
SFQHDLC file, which is then compiled into a list of rules.
A flowchart showing this algorithm can be seen in Figure 13.

This rule list and the corresponding netlist were then
passed back to the AAO tool. The AAO tool runs a time
domain simulation within Cadence Spectre and verifies the
results of the simulation against the supplied hSFQHDLC
rule list. Test vectors are currently specified by the user and
read in by the AAO tool via a separate text file.

When the ‘‘D’’ pulse arrives at the beginning of Figure 11,
the analyzer recognizes the arrival as an input and detects the
switching of junction I0.J2 at 139.3ps. The junction I0.J2 can
be read as the junction J2 within the instance I0, where
in this case the instance I0 is a D Flip Flop. When the
‘‘Release’’ pulse then arrives at 209.2ps, junction I0.J4 is
then seen to switch, causing the output to appear. Another
‘‘Release’’ pulse is then seen to arrive at 413.9ps. Since the
flip flop has not been set and there is nothing to release,
the pulse that arrives on this input is rejected and junc-
tion I0.J3 switches. This happens again with the arrival of

FIGURE 13. Automated Generation tool algorithm overview.

the next ‘‘Release’’ pulse. Lastly, two ‘‘D’’ pulses are seen
to arrive. As the flip flop has already been set at the arrival of
the second ‘‘D’’ pulse, this second ‘‘D’’ pulse is rejected and
junction I0.J1 switches.

Since the simulation ran to completion without any junc-
tion switches out of order, e.g., I0.J2 incrementing without a
‘‘D’’ pulse arriving, any rules left uncompleted, or any timing
failures, the circuit is said to have passed. The AAO tool
currently reports this to the user via the system command
prompt’s text output: ‘‘Initial simulation is OK’’.
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With the initial simulation having satisfied the rule deck,
the AAO tool enters the mode where it begins to optimize
the components of the circuit. The initial values of the com-
ponents can be seen in Table 2, corresponding to Figure 10.
The lower margin is the percent that a component value may
decrease and the circuit will still work. The upper margin
is the amount that a component value may increase and the
circuit will still work.

TABLE 2. D flip flop starting values.

The AAO tool is a new automated multithreaded critical
and global margin optimization tool using Cadence Spectre.
Global margin optimization has the largest impact on circuit
yield [24], while critical margin optimization is still important
for compensating for layout variation and fab errors. The
AAO tool can maximize both global and critical margins
in a circuit with no user interaction beyond initial setup.
A flowchart showing the algorithm of the AAO tool can be
seen in Figure 14.

Altered component values are tested in Spectre, and the
AAO tool uses hSFQHDLC as well as input/output pulse
verification to determine if the circuit operated correctly. The
new global margin optimization algorithm maximizes the
range that all inductors, bias currents, and critical currents
can deviate from nominal values by user set margin targets
while still resulting in a properly functioning circuit. The
global margin is calculated for a component type by sweeping
all component values of that type up and down by the same
fraction from the nominal values. Critical margins are the
upper and lower bound at which the circuit will still operate
properly as each component’s value is swept up and down
individually, while all other components are held at nominal
values. The AAO tool user specifies in a setup file critical and
global margin targets for each component class.

The AAO tool’s critical and global optimization algo-
rithms are centered around the failure data provided by the
hSFQHDLC rule set, which provide starting points in the
circuit for the tool to work with. When calculating margins,
after maximum and minimum margins of a component or

FIGURE 14. Optimization tool overview.

component type are found, all junction failures that occur
just beyond the operating margins are recorded. This includes
junctions with required quantum phase changes that were not
completed and junctions that had unexpected quantum phase
changes at the time of circuit failure, determined by checking
the simulation results against the hSFQHDLC. This typically
is 1-3 junctions. These junctions provide a starting point for
the AAO Tool to begin altering component values to look for
margin improvement. The optimizer will begin by first only
altering the values of this starting group of junctions, but over
time will expand this failure list to also include all directly
connected components, including those that are not junctions.
Whenmargin improvement is found, the list of components to
be altered is set to whatever junctions functioned incorrectly
according to the hSFQHDLC rules in the new improved cir-
cuit. The component type for global optimization is selected
automatically based upon which group has the lowest global
margin. Individual components are selected for critical mar-
gin optimization based upon how close the component’s mar-
gins are to the minimum margin. Multiple components can
be selected for optimization, and the component values from
their failure lists will all be modified as a group.

The results seen in Table 3 include parasitic induc-
tors between a Josephson junction and the ground plane
of .132p F. JTLs were present on all inputs and outputs.

B. PHASE DETECTOR
One common issue that a designer can run intowhen perform-
ing analysis and optimization on a circuit is that once a circuit
is verified as having failed to have matched the provided
description, the designer must then fix the circuit manually in
order tomake the circuit match the description provided to the
verification tool. This can prove to be a very time consuming
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TABLE 3. D flip flop optimized values.

process, especially in larger and complex circuits. The AAO
tool has a new and novel feature in which it will automatically
take steps to change the component values to bring the circuit
into compliance with the supplied hSFQHDLC rule list.

Consider the circuit seen in Figure 15, which represents
a portion of the SFQ equivalent of a Bang-Bang style phase
detector. This cell is made of two resettable D Flip-Flops, four
splitters, and two JTLs [5].

FIGURE 15. Phase detector schematic.

This Cadence generated schematic for this circuit was
input into the hSFQHDLC automated generation tool, which
generated the hSFQHDLC description of the circuit. The
hSFQHDLC compiler then automatically compiled that
hSFQHDLC description into a hSFQHDLC rule list.

This rule list and the corresponding Cadence netlist were
then passed to the AAO tool. The AAO tool failed in its time
domain simulation when it detected a failure on a rule with
the DFFR labeled I7. The arrival of the ‘‘Release’’ pulse is
supposed to cause the incrementation of junction I7.J4 and
then junction I7.J6. This failure can be seen in Figure 16,
which shows the arrival of the ‘‘D’’ pulse, the arrival of
the ‘‘Release’’ pulse, and the appropriate N-function of the
DFFR. The AAO then began to modify the circuit automati-
cally to create a circuit which matched the provided circuit
description. The optimizer uses the hSFQHDLC rules to
determine the points of failure within the circuit by forming a

FIGURE 16. Incorrect action of the DFFR I7.J5 should not increment.

list of JJs with active hSFQHDLC rules when circuit failure
was identified. Any JJ which failed to activate by having a
required INC orDEC effect at the time of failure is considered
to be a point of failure. The optimizer will then randomize the
component values of all JJs within the points of failure list.
The optimizer considers the circuit to be improved when the
number of successful JJ INCs andDECs is greater than that of
the unmodified circuit. Once improvement is found, the list
of points of failure is cleared, and new points of failure are
identified based upon the improved circuit. Component value
randomization is now continued on this new list of points of
failure.

If circuit improvement cannot be found, the list of random-
ized component values will spread to also include all compo-
nents currently directly connected to those components which
were already being randomized. This list of components are
expanded slowly over time in the same manner until a circuit
improvement is found.

The optimizer was able to progressively improve the circuit
by making it further down the hSFQHDLC rule chain with
successive simulations. The optimizer was able to identify
that the critical current for the junction on the release input
of the DFFRs needed to be slightly raised in order to correct

TABLE 4. COWBoy D flip flop starting values.
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for the rule failure. This created a circuit which matched the
circuit description, allowing the circuit to be optimized. This
corrected action of the DFFR can be seen in Figure 17.

FIGURE 17. Correct action of the DFFR I7. I7.J5 does not increment.

C. 32 BIT BDD ADDER
To further showcase the scalability and hierarchical capabil-
ities of this tool, a 32 bit Binary Decision Diagram Adder
(Figure 18) was created using two sixteen bit BDD Adders.
Each sixteen bit adder was constructed from two eight bit
adders. Each eight bit BDD Adder was in turn constructed
from two four bit BDD Adders. Two different four bit adders
were constructed, one from three BDD Adder [33] cells and
one BDD Half Adder [33] cell. The other four bit adder cell
was constructed from four BDD Adder cells.

This structure contains a total of 3592 junctions and five
levels of hierarchy. The only cells in this structure with
designer defined hSFQHDLC rules are the BDD, confluence
buffer, splitter, and JTL. These cells are contained within the
lowest level of the hierarchy. All rules for the upper level
structures, such as the four; sixteen; and 32-bit adders, were
automatically generated by the hSFQHDLC compiler. After
compilation, the rule deck for this circuit contained 2518 rules
that described the behavior of the circuit.

FIGURE 18. 32 Bit BDD adder constructed from two 16 bit BDD adders.

V. COMPARISON TO EXISTING OPTIMIZATION TOOLS
One of the main SFQ optimization tools currently being used
is COWBoy using the PSCAN or PSCAN2 circuit simu-
lator. COWBoy was run on the circuit seen in Figure 10
using PSCAN, which produced the initial margin table seen
in Table 4. Results should not vary using COWBoy with
PSCAN or PSCAN2.

This initial margin table pretty closely agrees with the
initial margin table produced by the AAO tool presented in

TABLE 5. D flip flop optimized values comparison.
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FIGURE 19. Multiplexer structural netlist.

FIGURE 20. Multiplexer hSFQHDLC rule list.

FIGURE 21. 4-Bit adder structural netlist.

this paper, showing that these two tools agree on the point
of starting margins. COWBoy was then allowed to optimize
the margins of the circuit, the results of which can be seen
in Table 5.

FIGURE 22. 4-Bit adder hSFQHDLC rules.

This table shows that the margins calculated by the AAO
tool presented in this paper are superior for this test case.
COWBoy was not run on the circuit presented in Figure 15,
as COWBoy does not have the ability to modify circuits that
fails to match the provided hSFQHDL.

VI. TRANSLATION FROM STRUCTURAL NETLIST
It is possible to convert a structural netlist to hSFQHDLC.
In an automatically placed and routed circuits, this is useful
due to the lack of a Cadence netlist or schematic but the
availability of a structural netlist, also known as structural
Verilog. This hSFQHDLC description can then be compiled
into a description of the correct circuit behavior for that
circuit.
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A. MULTIPLEXER
As an example of structural netlist to hSFQHDLC conversion
take the structural netlist seen in Figure 19, which represents
a SFQ multiplexer. The SFQ multiplexer was constructed out
of 8 splitters, 4 NAND gates, 2 OR gates, and 2 NOR gates.

The multiplexer has the following structural netlist:
This netlist was input into a program which automatically

converts a structural netlist to a hSFQHDLC rule list. The
hSFQHDLC rule list can be seen in Figure 20.

This rule list, containing a total of 149 rules, is a compre-
hensive description of the correct behavior of the SFQ multi-
plexer circuit. Rules can be seen that correspond to instances
in the structural netlist, such as RULE SPLIT0 which corre-
sponds to the splitter I9. This rule then activates rules RULE
LINK0 and RULE LINK1. These rules then activate further
rules. In this manner the complete behavior of the structural
netlist in Figure 17 is described.

B. 4 BIT ADDER
A BDD based differential 4 bit adder netlist can be seen
in Figure 21. This circuit was constructed from 14 JTLs,
6 confluence buffers, 4 BDDs, and 8 splitters.

This adder has the following structural netlist:
This netlist was input into the program and automatically

converted to a hSFQHDLC rule list containing 98 rules. The
hSFQHDLC rule list can be seen in Figure 22.

VII. CONCLUSION
Hierarchical SFQHDLC provides several new features that
have not been previously seen in SFQ design. These include
conversion from a structural netlist, compilation from a
Cadence netlist, and integration with a new and improved
optimization tool. The margin optimization tool is a novel
approach to circuit optimization with new features such as
parallelization, optimization of circuits that do not match the
provided rule list, and leverages Cadence Spectre as a simula-
tion tool. When this is combined with hSFQHDLC, designers
can quickly and accurately generate a list of rules for any
circuit in a Cadence design environment. This combination
of tools allows verification with much higher accuracy than
simple input/output checking. If failure does occur, the exact
point and reason of failure is reported back to the designer and
the tool attempts to create a working circuit without designer
effort.
FUTURE WORK: The RPI AAO Tool which utilizes

hSFQHDLC is in the process of being expanded.Margin opti-
mization is being improved to offer better optimization results
with larger circuits. Cadence SKILL code is being written for
optimizer setup and run commands, directly integrating into
the Cadence graphical user interface (GUI).
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