
Received January 20, 2019, accepted February 3, 2019, date of publication February 15, 2019, date of current version March 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2899761

Real-Time System Modeling and Verification
Through Labeled Transition System Analyzer
YILONG YANG 1, QUAN ZU1,2, WEI KE3, MIAOMIAO ZHANG2, AND XIAOSHAN LI1
1Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macau 999087, China
2School of Software Engineering, Tongji University, Shanghai 201804, China
3Macau Polytechnic Institute, Macau 999087, China

Corresponding author: Xiaoshan Li (xsl@umac.mo)

This work was supported in part by the Macau Science and Technology Development Fund (FDCT) under Grant 103/2015/A3, in part by
the University of Macau under Grant MYRG 2017-00141-FST, and in part by the National Natural Science Foundation of China (NSFC)
under Grant 61562011 and Grant 61472279.

ABSTRACT Model checking as a computer-assisted verification method is widely used in many fields to
verify whether a design model satisfies the requirements specifications of the target system. In practice, it is
difficult to design a system without the sophisticated requirements analysis. Unlike other model checking
tools, the labeled transition system analyzer (LTSA) not only can specify the property specifications of the
target system but also provides a structure diagram to specify the system architecture of the requirements
model, which can be further used to design the target system. In this paper, we demonstrate the abilities of
LTSA shipped with the classic case study of the steam boiler system. In the requirements analysis, the LTSA
can specify the cyber and physical components of the target system and interactions between the components
and the safety properties of the target system. In system design, the LTSA can automatically generate a
start-up design model as the finite state process from the requirements model, and then a design model can
be further accomplished by system architects and developers. Finally, the LTSA can automatically verify
whether the design model meets the requirements specifications. Our work demonstrates the potential power
of model checking tools can be applied and useful in software engineering for requirements analysis, system
design, and verification.

INDEX TERMS LTSA, model checking, steam boiler, UML.

I. INTRODUCTION
Real-time computing [1] describes hardware and software
systems depending not only on the logical correctness of
computation but also on the time constraints. The critical
real-time systems must be dependable because any failure
of the system could cause an economic disaster or even
loss of human lives. The safety properties of such systems
must be verified in the design stage as well as the test-
ing stage of development before any deployment. Formal
methods [2], [3] provide promising approaches to verify the
safety properties of system. The papers [4]–[7] provide the
case studies of general train control system, pacemaker, and
cell phone, to illustrate how to verify the safety properties
of the real-time systems [8], [9]. Model checking [10], [11]
is a promising approach of formal methods, which can
automatically verify the safety and liveness properties by
exploring the state space of the target system. Compared with
other formal methods, it has threefold strengths: a) Model

The associate editor coordinating the review of this manuscript and
approving it for publication was Roberto Pietrantuono.

checking is a systemic and algorithmic methodology which
can be fully automated without the assistance of verification
experts. b) Model checking can be applied at different stages
of software engineering from requirements modeling system
design, to system implementation. c) Model checking is
particularly well suited for finding concurrency bugs and
proving their absence, based on the algorithmic exploration
of large state space.

In this paper, we use the model checking tool: Labeled
Transition System Analyzer (LTSA), to model real-time sys-
tems and verify the properties of the system [12]. Because it
has many good features: 1) LTSA provides both graphic and
textual models to describe the target system. 2) LTSA can
automatically generate state machines from textual process
models. 3) LTSA provides structure diagrams to describe
system architectures for requirements modeling and analy-
sis [13]. 4) LTSA can automatically generate the skeleton of
textual process model from system architectures for the next
round fine-grained design [14].

Although LTSA has many good features, there are few
examples of real-time systems modeling through LTSA.

26314
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-0099-344X

Y. Yang et al.: Real-Time System Modeling and Verification Through LTSA

The steam boiler [15], [16] is a classic case study for real-
time system modeling in many studies. The steam boiler is
the minimal real-time system that contains all the essential
parts of a real-time system: a controller and a controlled
object with the sensors and the actuators. The controller can
periodically sample the state of the controlled object by the
sensors, then strategically change the state of the controlled
object through the actuators to guarantee the safety of the
whole system. All the components of the real-time system
are synchronized through time. In the physical world, time
is implicitly contained in the physical phenomenon; e.g.,
the current temperature of the water was determined by the
heating power and the heating time. Therefore, when mod-
eling the real-time system, the time should be considered
as inside of physical law of the controller object. However,
for abstraction of the physical world and easy understanding,
many studies explicitly model the time as a component of the
system named timer, and then use that timer component to
synchronize with other components of the system.

A. RELATED WORK
As a classic real-time system, the steam boiler has been
widely studied. The paper [17] presents a formalization of
the steam boiler problem using Circus, which is a unified
theory of Z and CSP. It utilizes the strength of Z notation to
describe the specifications of the system and their refinement,
the strength of CSP to describe and reason about concurrency.
Using Timed Automata to solve the steam boiler problem
is mentioned in [18], which describes time constraints in
the model with clocks and certain safety requirements can
be guaranteed under the described assumptions and failure
model. The paper [19] adopts Mean Value Calculus to model
the steam boiler, which could be used to specify and reason
about time and logical constraint of the real-time system. The
paper [20] uses SPIN to model and verify the steam boiler
system and generate the PROMELA source code. Signal-
coq [21] combines the programming language SIGNAL and
Coq proof assistant to model and verify the steam boiler
system. It demonstrates that Signal-coq is well-suited and
practical approach for the validation of reactive systems.
Action System [22] is an approach to the specification of con-
trol programs based on action systems and refinement, which
is demonstrated through steam boiler system. PLUSS [23]
combines algebraic specification with a notion of implicit
state to model and verify steam boiler system. FOCUS [24]
demonstrates the usefulness of FOCUS by its application of
the requirements specification of a steam boiler. LOTOS [25]
presents a technique for the automated verification of an
object-oriented language OBject LOGic (OBLOG) through
the steam boiler case study.

Although the steam boiler problem has been elabo-
rately studied, all case studies above have the following
defects: 1) They directly present a design model from the
description of the target problem without the sophisticated
requirements modeling and analysis, which is not the case
of the practical projects. 2) They do not describe the system
architecture, that will make it hard to elicit the components

from the target problem. 3) They do not illustrate the differ-
ences between the implicit timer and explicit timer, and the
relationship between the physical world timer and timer in
the real-time modeling.

B. CONTRIBUTIONS
Although most model checking tools support system model-
ing and verification, to our best knowledge, there is no one
that involves all stages from requirements modeling, system
design, and verification. The contributions of our paper are:

1) Demonstrating LTSA for requirements modeling and
analysis, and then generate the high level of design
model from the structure diagram.

2) Discussing how to model the explicit and implicit timer
in the real-time system, and the relationship of time
between the system modeling and physical world.

3) Demonstrating LTSA requirements modeling, system
design, and verification abilities for real-time system
shipped by a classical steam boiler problem.

The remainder of this paper is organized as follows: Section 2
is preliminary of FSP specification and overviews the steam
boiler problem. Section 3 shows the requirements modeling
and analysis. Section 4 presents how to archive the design
model of the steam boiler in LTSA, especially for the time
modeling. And then Section 5 shows requirements verifica-
tion. Finally, Section 6 concludes this paper and puts forward
the future work.

II. PRELIMINARY
LTSA adopts FSP as textual model to describe the system.
To make this paper self-contained, we present the specifica-
tion of FSP and the brief introduction of steam boiler problem
in this section. The more details of FSP could be found in the
textbook [12].

A. THE SPECIFICATION OF FSP
Finite State Process (FSP) is CSP syntax-liked formal lan-
guage for modeling concurrency system [12], it uses concept
of Primitive Process to define the component of the system
which contains the sequences of actions. Component com-
position could be defined as Composited Processes in which
concurrent executions of actions could be synchronized or
interleaved. The requirements of system could be captured
as the Properties of FSP. Once both properties and processes
of the system are defined, LTSA can check the satisfiability
of properties for a particular system. The brief summary of
FSP specification is provided as follows:

1) PRIMITIVE PROCESS
A primitive process is the execution of a sequential program.
The state of primitive process is transformed by executing
actions. We use primitive process to define the component
of the system. Like any programming languages, primi-
tive process may contain control flow such as choice and
condition.
• Action Prefix ->: (a -> P) describes a process
which engages in the action a and then behaves as
described by P.

VOLUME 7, 2019 26315

Y. Yang et al.: Real-Time System Modeling and Verification Through LTSA

• Choice |: (a -> P | b -> Q) describes a process which
initially engages in either of the actions a or b. After the
first action has been performed, the subsequent behavior
is described by P if the first event was a, or by Q if the
first event was b.

• STOP: It is sometimes (if rarely) necessary to specify
a primitive process which terminates. Consequently,
a local process STOP is predefined which engages in
no further actions.

• Alphabet Extension +{}: Each primitive process has an
alphabet consisting of the actions it may take part in.
A process may only engage in the actions contained in
its alphabet although the converse does not hold. It is
sometimes useful to extend the alphabet of a process
with actions that it does not engage in and conse-
quently actions that are not used in its definition. This
may be done to prevent another process executing the
action.

• Indexing: Both local process names and action names
may be indexed. Both local processes and actions may
have more than one index as illustrated by this example
(for actions). A process which outputs the sum of two
integers (in the range 0..N).

• Conditional: A conditional takes the form: if expr then
local_process else local_process.

• Guards: A guarded transition takes the form (when B
a -> P) which means that the action a is eligible when
the guard B is true, otherwise a cannot be chosen for
execution.

2) COMPOSITED PROCESSES
Parallel Composition ‖: (P ‖ Q) expresses the parallel com-
position of the processes P and Q. It allows all the possible
interleaving of the actions of the two processes. The shared
actions synchronize the execution of the two processes. If the
processes contain no shared actions then the composite state
machine will describe all interleaving.

3) SAFETY PROPERTIES
A safety property asserts that nothing bad happens. Infor-
mally, a property process specifies a set of acceptable behav-
iors for the system it is composed with. A system S will
satisfy a property P if S can only generate sequences of
actions (traces) which when restricted to the alphabet of P,
are acceptable to P.

4) PROGRESS PROPERTIES (LIVENESS)
A progress property asserts that it is always the case that
an action is eventually executed. We will define progress
to check the steam boiler is still work or not. Liveness and
progress are exchangeable concepts in the remains of this
paper.

B. STEAM BOILER PROBLEM
The steam boiler problem [15], [16] is one of the typ-
ical real-time system, which divides the system into

several components. It has a physical steam boiler, three
water/steam/pump sensors and pumps, and a controller which
could get the value from the sensors, make a decision, and
send orders of switching on/off to the pumps. The communi-
cation among components are through messages.

TABLE 1. The summary of constants and variables.

The summary of constants and variables are in Table 1.
The constants are as follows: Interval is the sample cycle
and delay of PumpOn action, C is the maximal capacity
of the steam boiler. M1 is minimal limit of water quantity,
M2 is maximal limitation, N1 is minimal limitation and N2 is
maximal limitation in normal mode, W is maximal quantity
of outcome steam, the increase rate of outcome steam are
defined by U1, the decrease rate of outcome steam is U2, the
number of pumps is 5, P is capacity of each pump. Those
constants satisfy:

0 < M1 < N1 < N2 < M2 < C

Variable q represents the quantity of water, v is the current
outcome rate of steam, p is the current throughput of pumps.
Those variables must be satisfied the following invariants:

0 ≤ q ≤ C

0 ≤ v ≤ W

0 ≤ p ≤ 5P

III. REQUIREMENTS MODELING AND ANALYSIS
In this section, we use LTSA to do requirements modeling
and analysis, which is shown in Figure 1.

1) We identity the components of system based on the
description of the steam boiler problem in the last section. The
steam boiler system contains a physical component - steam
boiler, three sensor components - pump, water, and steam
sensors, and a cyber-component - controller.

26316 VOLUME 7, 2019

Y. Yang et al.: Real-Time System Modeling and Verification Through LTSA

FIGURE 1. Requirements modeling through LTSA.

VOLUME 7, 2019 26317

Y. Yang et al.: Real-Time System Modeling and Verification Through LTSA

2) Based on the identified components, we further identify
the external interactions among the components in a com-
ponent sequence diagram. In which, the cyber component -
steam boiler controller periodically gets the values of steam
rate v, pump rate p, and water quantity q from the sensor com-
ponents - water, pump, and steam sensors, and then sends the
pump order to actuator component, the actuator will open or
close the pump of steam boiler based on the order. Moreover,
we specify the safety and progress properties in requirements
model. In steam boiler system, the interactions of components
must make the water quantity q kept between N1 and N2 in
normal mode, and between M1 and M2 in the rescue mode
when correct q cannot be obtained from thewater sensor. That
is called as safety properties in real-time system. Formally,
the safety properties of the steam boiler system are described
as follows:

REQNormalMode =̂ N1 ≤ q ≤ N2 (1)

REQRescueMode =̂ M1 ≤ q ≤ M2 (2)

Livelock-free and deadlock-free properties are describe as:

REQAllMode =̂ livelockfree(SteamBoiler) (3)

REQAllMode =̂ deadlockfree(SteamBoiler) (4)

Note that component sequence diagram is different from
sequence diagram, it is used to identify the external interac-
tions among the component as the parts of a design model.

3) From the identified interaction of component sequence
diagram, we can smoothly derive the FSP structure diagram.
This diagram connects components with their actions in the
system. The component STEAM BOILER represents the phys-
ical steam boiler, which is assumed to keep boiling (boiling
action) all the time. The state of STEAM BOILER includes the
quantity of water, the quantity of steam and the throughput of
the pumps, which are respectively denoted by the variables
p, v, q. They are measured in a fixed sampling cycle via
the sensors STEAM SENSOR, PUMP SENSOR and WATER
SENSOR by the actions getPumpRate, getSteamRate and
getWaterQuantity respectively. The state of STEAM BOILER
is changed according to the state of PUMP, which is con-
trolled by the actions pumpOn, pumpOff and keep. In each
sampling cycle, the control system CONTROLLER receives
the measures of p, v, q, according to which CONTROLLER
will decide the message (pumpOn or pumpOff or keep) sent
to PUMP through the channel pumpcontrollerchannel. Each
message triggers the corresponding action of PUMP.

IV. SYSTEM DESIGN
In this section, we generate high level design of FSP processes
and action sets from the FSP structure diagram by the ADL
plugin of LTSA - Darwin [13], then present the details of
design for each FSP component.

A. FSP GENERATION
LTSA with Darwin can automatically generate a FSP pro-
cess for each component from structure diagram and then

composite them as system design. Moreover, it can generate
an action set for each component. For example, steam boiler
component is included in structure diagram of steam boiler.
Darwin can generate action sets, which contain getSteam-
Rate, getPumpRate, getWaterQuantity, pumpOn, pumpOff,
and keep. From the FSP structure diagram in Figure 1,
SYSTEMDESIGN is generated as follows:

The sets of actions of each component are as follows:

We present the detail design of each component in remaining
subsections.

B. TIMER
Assume there is a start time denoted by t0. We use ti, i ∈ N,
to denote the time point which is elapsed i seconds since
the start time. Therefore, the trace of time is represented as
〈t0, t1, . . . , ti, . . . , tn〉 in the system. For example, since the
sample period is 5 seconds in this system, the next sampling
point will be ti+5 = ti + 5 if the previous sampling point
is ti. For q and v, they would be changed in every second.
For p, if sampling starts from time point ti, sampling period
is 5 seconds, it would only be changed in the time points
{ti+5j | j ∈ N}.

In order to model the time in the system, we use a com-
ponent TIMER that synchronizes with STEAM BOILER and
all the sensor components by the action tick. TIMER in FSP
form is:

where each tick represents the pass of one second. Note that
if the sampling period is identical with the delay of pumping,
which is the case in the steam boiler specification [15], we can
model the system in a time-implicit way. That is, we don’t
need a Timer component to explicitly specify the time pass-
ing. We compare these two different modeling methods in the
next subsection.

C. STEAM BOILER COMPONENT
The specification [15] specifies part of the behaviors in
the steam boiler system. For instance, after switching on
the pump, the water starts pouring into the boiler in 5 seconds.
But some details are not given, including the variation law of
the steam rate and the control strategy of the pump, which
is crucial in the real industrial case. We design a pump-
ing control strategy in next subsection. In this subsection,
we hypothesize a physical variation law for the steam rate
and show the model of the steam boiler in FSP.

26318 VOLUME 7, 2019

Y. Yang et al.: Real-Time System Modeling and Verification Through LTSA

1) QUANTITY OF WATER
We use qi, vi, pi to respectively denote the quality of water,
the value of steam rate, and the value of the pumping rate at
the ti time point. Then clearly we have the following equation:

qi+1 = qi + (pi − vi) ∗1t (5)

where 1t = 1.

2) STEAM RATE
The hypothesis of the law of the steam rate is based on the
fact that the steam rate is influenced by the quantity of the
water. Between N1 and N2, we add another two quantities of
water level B1 and B2, the best minimal limit and the best
maximal limit, which are used to construct the hypothesis.
We use VMINOUT to denote the minimal steam rate. It is
required that N1 < B1 < B2 < N2 and 0 < VMINOUT <

min{U1,U2} are hold. We use vi to denote the steam rate at
the ti time point. The law of steam rate is depicted in Fig-
ure 2 and Equation 6.

FIGURE 2. Steam rate.

If current water level is between N2 and C or between
N1 and 0, the steam rate is minimal, denoted by VMINOUT.
If current water level is between B1 and B2, the rate is
maximal, denoted by W . If current water level is between
N1 and B1 and it is increasing (pi − vi > 0), or if the
current water level is between B2 and N2 and it is decreasing
(pi − vi < 0), the steam rate will have an increment of U1.
If current water level is betweenN1 andB1 and it is decreasing
(pi − vi < 0), or if the current water level is between B2 and
N2 and it is increasing (pi − vi > 0), the steam rate will have

a decrement of U2.

vi+1 =

VMINOUT if N2 ≤ qi ≤ C or 0 ≤ qi ≤ N1

vi − U2 if B2 ≤ qi < N2 and pi − vi > 0

vi − U2 if N1 < qi < B1 and pi − vi < 0

vi + U1 if B2 ≤ qi < N2 and pi − vi < 0

vi + U1 if N1 < qi < B1 and pi − vi > 0

W if B1 ≤ qi ≤ B2
(6)

3) THROUGHPUT OF PUMPS
It is specified that, after switching on, the pump needs
5 seconds to pour the water into the boiler. That is, given the
action pumpOn is triggered at ti, the pumping rate pwill have
an increment of P at ti+ 5, assuming that there is at most one
pump opening in one second. We use a sequence of 5 bits to
represent the actions of pumping in the next 5 seconds. The
position of a bit represents a time point, where the rightmost
bit or the last one represents the current time point and the
leftmost one or the first one represents the 5th time point.
At the end of each second, the last bit will be checked, where
1 implies the pumping rate will increase and 0 implies no
action. In the meantime, each bit in the sequence will move to
right for one position, where the original last one is removed
and the new first one is set to 0. We use integer t to represent
the sequence of 5 bits, i.e., utilizing the binary representation
of the integer to represent the sequence of bits. Thus, when the
action pumpOn is triggered at a point, we increase t by 16,
which in binary is 10000, implying that there is a pumping
rate increment in 5 seconds. Note that due to the physical
features of the steam boiler, only the action pumpOn has
the 5 seconds delay for increasing the pumping rate but not
the case for the action pumpOff. The action pumpOff will
immediately decrease the pumping rate without any time
delay.

4) STEAM BOILER IN FSP
STEAMBOILER has two subcomponents STEAMBOILERUN
and PUMPDELAY. The sensors get the measures from the
steam boiler by the actions getPumpRate, getSteamRate and
getWaterQuantity. The steam boiler communicates with the
pump by the actions pumpOn, pumpOff and keep. If pumpOff,
the pump rate decreases immediately. If pumpOn, t is
increased by 16, which is 10000 in binary. The steam boiler
synchronizes with Timer by the action tick. In each second,
the quantity of the water is changing according to Formula 5
and the steam rate changes according to the law. The pump-
ing rate will be checked in PUMPDELAY. It firstly checks
whether the last bit is 1, representing current increment.
Then it moves the sequence one position to the right by the
division by 2. The following is part of the model.

VOLUME 7, 2019 26319

Y. Yang et al.: Real-Time System Modeling and Verification Through LTSA

5) THROUGHPUT OF PUMPS IN IMPLICIT TIME
In the case of the sampling period is identical with the
pumping delay time, we can use the implicit way to model
the system. For the function of p, when the action pumpOn
is triggered at ti, the fixed delay is required before p is
changed. Therefore, p is unchanged from the time point ti
to ti+4. The value of pi+5 is determined by the following
factors: 1) pi, 2) whether the last pump order lastpo ∈
{True,False} is pumpOn or not, 3) the previous order
actionp ∈ {pumpOn, pumpOff , keep}, and 4) the current
order actionc ∈ {pumpOn, pumpOff , keep} of the pump.

pi+5=

pi+P if lastpo = True and actionc = pumpOn
pi+P if lastpo = True and actionc = keep
pi if lastpo = True and actionc = pumpOff
pi if lastpo = False and actionc = pumpOn
pi if lastpo = False and actionc = keep

(7)

pi+1=

{
pi−P if lastpo = False and actionc = pumpOff
pi Otherwise

(8)

lastpo =

{
True if actionp = pumpOn
False if actionp ∈ {keep, pumpOff }

(9)

If the last order is pumpOn and current order is pumpOn,
pi+5 is pi plus P. If the last order is pumpOn and current order
is keep, pi+5 is pi plus P. If the last order is pumpOn, and
current order is pumpOff , pi+5 will not change. It is the same
case that if the previous order is not pumpOn and current order
is pumpOn or keep. pk+1 is pk minus P, if the last order is not
pumpOn and current order is keep. The reader may refer to
the details of the implicit model in our Github repository.1

D. SENSOR COMPONENTS
Sensors observe the state of the steam-boiler and the values
of the sensors are transmitted to the control system through
networks or cables. Sensor components are specified by FSP
as below:

1https://github.com/yylonly/LTSA

E. PUMP COMPONENT
The pump controller component is defined as:

Pump controller would do the action corresponding to the
order o ∈ {ON ,KEEP,OFF} received from pump controller
channel. Furthermore, the state machine of pump component
is shown in Figure 3.

FIGURE 3. Pump component in LTSA.

F. CONTROLLER COMPONENT
The controller is the key component in the steam boiler
system, and an appropriate strategy should make to keep the
quality of water q between a specific range. After receiving
the sensor measures q, v and p, the controller component will
do the action makedecision to generate an order o, then do
action pumpcontrollerchan.send[o] to send order o to pump
controller channel, the function o is defined as:

o =

ON if q < B1 + FTRD and p ≤ 3P
ON if q < B1 + FTRD and p = 4P

and lastpo = False
KEEP if q < B1 + FTRD and p = 5P
KEEP if q < B1 + FTRD and p ≤ 4P

and lastpo = True
KEEP if B1 + FTRD ≤ q ≤ B2 − FTRU
KEEP if q > B2 + FTRU and v ≥ 0 and p = 0
OFF if q > B2 + FTRU and (p− v) ≥ 0 and p > 0

(10)

Note that we introduce two integers FTRD and FTRU as
thresholds (0 ≤ FTRD ≤ B2 − B1, 0 ≤ FTRU ≤ B2 − B1)

26320 VOLUME 7, 2019

https://github.com/yylonly/LTSA

Y. Yang et al.: Real-Time System Modeling and Verification Through LTSA

with the integers B1 and B2 of Figure 2 to deal with the pump
delay in the steam boiler. If the water level is above B2 plus
FTRU, and the water level is not decreasing and the pump rate
is greater than zero, the decision OFF is made. If the water
level is under B1 + FTRD, and either throughout of pumps
is less than 3P or throughout of pumps is 4P without the
previous order pumpON, the decision is ON. The decision is
KEEP, if water level is between that two boundaries, or water
level is above B2 plus FTRU besides steam rate is great than
zero, throughput of pumps is zero, or water level is under B1
plus FTRD besides throughput of pumps is maximal or 4P and
previous order is pumpOn. The corresponding FSP design of
the controller component is:

V. MODEL VERIFICATION
This section verifies the designed FSP model against the
safety properties and the progress properties in LTSA. Safety
property checking guarantees that there is no deadlock in the
system and the water quantity level keeps in the specified
ranges. Progress property checking guarantees that there is
no local loop in the system state.

A. REQUIREMENT SPECIFICATIONS IN FSP
1) PROGRESS PROPERTY (LIVENESS)
The designed steam boiler system must be livelock-free
and deadlock-free. The system is livelock-free, only if all
the processes of system are progressing without any diver-
gence. For steam boiler system, it is livelock-free, only
if all the components are progressing without divergences.
LTSA use keyword progress to specify the progress prop-
erty for each component. The components includes the
steam boiler, steam sensor, pump sensor, water sensor,
pump, and controller. Therefore, we specify six progress
properties to verify livelock-free properties in the steam
boiler system, each progress property contains the actions
from the corresponding components, which are shown
as follows:

Note that LTSA does not require specifying deadlock prop-
erty explicitly, deadlock can be checked through the check
menu of LTSA in Figure 4.

FIGURE 4. Safety property verification.

2) SAFETY PROPERTY
For safety property checking, we define two propertiesBASIC
and NORMAL according to Requirement REQNormalMode and
REQRescueMode as follows:

Note that LTSA does not provide a mechanism for describ-
ing invariant directly, it uses action set with parameters
to describe those requirements. The Basic property is
described as getWaterQuantity[q:M1..M2], which requires
water quantity q between M1 and M2. The Normal property
as getWaterQuantity[q:N1..N2] requires water quantity q
between N1 and N2.

B. LTSA VERIFICATION
In this section, we use LTSA to verify the properties of the
steam boiler model. The experiment settings are as follows:
LTSA version 3.0, MacOS 10.14, 3.5 GHz Intel Core i5,
16GB 1600 MHz DDR3, and 512 SSD.2

1) LIVELOCK-FREE AND LOCKLOCK-FREE VERIFICATION
Livelock and deadlock can be directly verified in LTSA. The
checking result of the progress (liveness) property is:

The checking result of deadlock is:

2http://www.doc.ic.ac.uk/ltsa/

VOLUME 7, 2019 26321

http://www.doc.ic.ac.uk/ltsa/

Y. Yang et al.: Real-Time System Modeling and Verification Through LTSA

This result shows that the steam boiler model has no deadlock
and livelock issues.

2) SAFETY PROPERTY VERIFICATION
We defined two safety properties in the requirement specifi-
cations of steam boiler system. In the normal mode, the steam
boiler must not violate normal property. In the rescue mode,
the steam boiler must not violate basic property within the
constraint time, but not the normal property. LTSA use
composition to verify the safety properties. If the property
violates the designed model, the composition will be fail-
ure. To verify safety properties, we define the following
compositions:

BASICSYSTEM represent composite the designed system
with BASIC property and NORMALSYSTEM represent com-
posite the designed system with NORMAL property. Both of
compositions are passed without any failure. The composi-
tion result of NORMALSYSTEM is shown in Figure 4. All
the components of steam boiler are successfully compiled,
and they are composited withNORMAL property without any
violation. The composition contains 409 states and 870 transi-
tions. The composition spends 2236 ms and uses 1,150,233K
memory. Furthermore, the source files for themodel are made
available at Github for interested readers.3

VI. CONCLUSIONS AND FUTURE WORK
In this paper, a nontrivial case study is presented to demon-
strate how to use LTSA model and verify the real-time sys-
tem. In requirements modeling, we show how to archive the
structure diagram and generate the start-up design model.
Furthermore, we design a variation law for the steam rate.
We illustrate how to model the explicit and implicit timer
in the components of the steam boiler system. For the most
important effect of our paper, we show the potential power of
integrating UML with the model checking tools for require-
ment modeling of both software and hardware components,
system design and verification.

In the future, we consider to integrate LTSA with our
requirements modeling and validation tool - RM2PT [26] to
support formal verifying on the requirements model. Further-
more, we consider to generate prototype directly from the
verified FSP model. Hopefully, this paper should be useful
for in industry and academic worlds.

REFERENCES
[1] K. G. Shin and P. Ramanathan, ‘‘Real-time computing: A new discipline of

computer science and engineering,’’ Proc. IEEE, vol. 82, no. 1, pp. 6–24,
Jan. 1994.

3https://github.com/yylonly/LTSA

[2] T. Oda, K. Araki, and P. G. Larsen, ‘‘A formalmodeling tool for exploratory
modeling in software development,’’ IEICE Trans. Inf. Syst., vol. 100,
no. 6, pp. 1210–1217, 2017.

[3] S. Saeeiab and M. Saeki, ‘‘Method integration with formal description
techniques,’’ IEICE Trans. Inf. Syst., vol. 83, no. 4, pp. 616–626, 2000.

[4] E. Ahmad, Y. Dong, B. Larson, J. D. Lü, T. Tang, and N. Zhan, ‘‘Behavior
modeling and verification of movement authority scenario of Chinese train
control system using AADL,’’ Sci. China Inf. Sci., vol. 58, no. 11, pp. 1–20,
Nov. 2015.

[5] A. Platzer and J.-D. Quesel, ‘‘European train control system: A case study
in formal verification,’’ in Formal Methods and Software Engineering,
K. Breitman and A. Cavalcanti, Eds. Berlin, Germany: Springer, 2009,
pp. 246–265.

[6] M. Pajic, Z. Jiang, I. Lee, O. Sokolsky, and R. Mangharam, ‘‘From verifi-
cation to implementation: A model translation tool and a pacemaker case
study,’’ in Proc. IEEE 18th Real-Time Embedded Technol. Appl. Symp.
(RTAS), Apr. 2012, pp. 173–184.

[7] F. Calabrese, M. Colonna, P. Lovisolo, D. Parata, and C. Ratti, ‘‘Real-time
urban monitoring using cell phones: A case study in Rome,’’ IEEE Trans.
Intell. Transp. Syst., vol. 12, no. 1, pp. 141–151, Mar. 2011.

[8] Z. Hou, D. Sanán, A. Tiu, Y. Liu, and K. C. Hoa, ‘‘An executable for-
malisation of the SPARCv8 instruction set architecture: A case study for
the LEON3 processor,’’ in Proc. 21st Int. Symp. Formal Methods (FM),
in Lecture Notes in Computer Science, Limassol, Cyprus, vol. 9995,
J. S. Fitzgerald, C. L. Heitmeyer, S. Gnesi, and A. Philippou, Eds. Cham,
Switzerland: Springer, 2016, pp. 388–405.

[9] T. P. Khoo and J. Sun, ‘‘The miles before formal methods—A case study
on modeling and analyzing a passenger lift system,’’ in Proc. Int. Conf.
Formal Methods Softw. Eng. (ICFEM), J. Sun and M. Sun, Eds. Cham,
Switzerland: Springer, 2018, pp. 54–69.

[10] C. Baier and J. P. Katoen, Principles of Model Checking (Representation
and Mind Series). Cambridge, MA, USA: MIT Press, 2008.

[11] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Eds., Handbook of
Model Checking. Cham, Switzerland: Springer, 2018.

[12] J. Magee and J. Kramer, State Models and Java Programs. Hoboken,
NJ, USA: Wiley, 1999.

[13] J. Magee, N. Dulay, and J. Kramer, ‘‘Regis: A constructive development
environment for distributed programs,’’ Distrib. Syst. Eng., vol. 1, no. 5,
p. 304, 1994.

[14] J. Magee, J. Kramer, and D. Giannakopoulou, ‘‘Analysing the behaviour
of distributed software architectures: A case study,’’ in Proc. 6th IEEE
Comput. Soc. Workshop Future Trends Distrib. Comput. Syst., Oct. 1997,
pp. 240–245.

[15] J. R. Abrial, ‘‘Steam-boiler control specification problem,’’ in Formal
Methods for Industrial Applications. Springer, 1996, pp. 500–509.

[16] J. R. Abrial, E. Börger, and H. Langmaack, Formal Methods for Industrial
Applications: Specifying and Programming the Steam Boiler Control.
Springer, 1996.

[17] J. Woodcock and A. Cavalcanti, ‘‘The steam boiler in a unified theory of
Z and CSP,’’ in Proc. APSEC, Dec. 2001, pp. 291–298.

[18] G. Leeb and N. Lynch, ‘‘Proving safety properties of the steam boiler
controller,’’ inFormalMethods for Industrial Applications. Springer, 1996,
pp. 318–338.

[19] X. Li and J. Wang, ‘‘Specifying optimal design for a steam-boiler sys-
tem,’’ in Formal Methods for Industrial Applications. Springer, 1996,
pp. 359–378.

[20] S. Löffler and A. Serhrouchni, ‘‘Creating a validated implementation of
the steam boiler control,’’ in Proc. 3rd SPIN Workshop (SPIN), Apr. 1997,
pp. 1–13.

[21] M. Kerboeuf, D. Nowak, and J. P. Talpin, ‘‘Specification and verification
of a steam-boiler with signal-coq,’’ in Theorem Proving in Higher Order
Logics. Springer, 2000, pp. 356–371.

[22] M. Butler, E. Sekerinski, and K. Sere, ‘‘An action system approach to the
steam boiler problem,’’ in Formal Methods for Industrial Applications.
Springer, 1996, pp. 129–148.

[23] M.-C. Gaudel, P. Dauchy, and C. Khoury, ‘‘A formal specification of the
Steam-Boiler Control problem by algebraic specifications with implicit
state,’’ in Formal Methods for Industrial Applications. Springer, 1996,
pp. 233–264.

[24] M. Broy, F. Regensburger, B. Schätz, and K. Spies, ‘‘Streams of steam—
The steam boiler specification case study,’’ Dept. Fac. Inform., Tech. Univ.
Munich, Munich, Germany, Tech. Rep. 9202, 1998.

26322 VOLUME 7, 2019

https://github.com/yylonly/LTSA

Y. Yang et al.: Real-Time System Modeling and Verification Through LTSA

[25] P. J. Carreira andM. E. Costa, ‘‘Automatically verifying an object-oriented
specification of the steam-boiler system,’’ in Proc. 5th Int. ERCIM Work-
shop Formal Methods Ind. Crit. Syst. (FMICS), 2000, pp. 345–360.

[26] Y. Yang, X. Li, Z. Liu, and W. Ke, ‘‘RM2PT: A tool for automated
prototype generation from requirements model,’’ presented at the 41th
Int. Conf. Softw. Eng. (ICSE), Montreal, QC, Canada, May 2019.
Online. Available: https://2019.icse-conferences.org/event/icse-2019-
demonstrations-rm2pt-a-tool-for-automated-prototype-generation-from-
requirements-model

YILONG YANG received the B.S. degree in
computer science from the China University of
Mining and Technology, China, in 2010, and the
M.S. degree from Guizhou University, China,
in 2013. He is currently pursuing the Ph.D. degree
in software engineering with the University of
Macau. He has been a Fellow with United Nations
University - International Institute for Software
Technology, Macau. His research interests include
automated software engineering and machine
learning.

QUAN ZU received the Ph.D. degree from the
College of Electronics and Information Engineer-
ing, Tongji University, China, in 2016. He is
currently a Postdoctoral Research Fellow with
the Department of Computer and Information
Science, Faculty of Science and Technology, Uni-
versity of Macau. His research interests include
formal methods, model checking, and algorithm
design and analysis.

WEI KE received the Ph.D. degree in computer
applied technology from Beihang University,
in 2012. He is currently an Associate Profes-
sor with the School of Public Administration,
Macau Polytechnic Institute. His research interests
include programming languages, formal methods,
software engineering tool support, and software
implementation. He had successfully applied in
a couple of research projects funded by Macau
FDCT, including the areas of formal methods and
software engineering.

MIAOMIAO ZHANG received the Ph.D. degree
in automation from Shanghai Jiaotong University,
Shanghai, China, in 2001. She held a Postdoctoral
position with the Faculty of Computer Science,
Radbound University, Nijmegen, The Netherland,
from 2001 to 2004. Since then she joined the
School of Software Engineering, Tongji Univer-
sity, as an Associate Professor, and was a Full
Professor, in 2008. Her current research inter-
ests include model checking, real-time embedded
systems, and model learning.

XIAOSHAN LI received the Ph.D. degree from the
Institute of Software, Chinese Academy of Sci-
ences, Beijing, in 1994. He is currently an Asso-
ciate Professor with the Department of Computer
and Information Science, Faculty of Science and
Technology, University of Macau. His research
interests include formal methods, object-oriented
software engineering with UML, real-time spec-
ification and verification, and the semantics of
programming language.

VOLUME 7, 2019 26323

	INTRODUCTION
	RELATED WORK
	CONTRIBUTIONS

	PRELIMINARY
	THE SPECIFICATION OF FSP
	PRIMITIVE PROCESS
	COMPOSITED PROCESSES
	SAFETY PROPERTIES
	PROGRESS PROPERTIES (LIVENESS)

	STEAM BOILER PROBLEM

	REQUIREMENTS MODELING AND ANALYSIS
	SYSTEM DESIGN
	FSP GENERATION
	TIMER
	STEAM BOILER COMPONENT
	QUANTITY OF WATER
	STEAM RATE
	THROUGHPUT OF PUMPS
	STEAM BOILER IN FSP
	THROUGHPUT OF PUMPS IN IMPLICIT TIME

	SENSOR COMPONENTS
	PUMP COMPONENT
	CONTROLLER COMPONENT

	MODEL VERIFICATION
	REQUIREMENT SPECIFICATIONS IN FSP
	PROGRESS PROPERTY (LIVENESS)
	SAFETY PROPERTY

	LTSA VERIFICATION
	LIVELOCK-FREE AND LOCKLOCK-FREE VERIFICATION
	SAFETY PROPERTY VERIFICATION

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	YILONG YANG
	QUAN ZU
	WEI KE
	MIAOMIAO ZHANG
	XIAOSHAN LI

