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ABSTRACT The existing underdetermined speech blind identification (BI) algorithms can hardly possess
both high recovery quality and high efficiency. This limitation may lie in the neglection of the phase
extraction of speeches, which requires technical innovation of the phase-coherence identification. This paper
proposes a BI scheme characterized by a combination of the ratio-interpolation-based spectrum corrector
and a phase-coherence criterion (involving the operations of frequency merging, effective candidate pattern
screening, and single-active-source (SAS) pattern recognition). Its high recovery quality is due to the
combination that yields a set of SAS patterns with accurate harmonic parameters. Its high efficiency arises
from two aspects: first, the phase-coherence criterion condenses the original patterns into a small quantity of
SAS patterns; and second, an efficient density-based clustering algorithm is adopted to classify these SAS
patterns. Essentially, the performance enhancement owns to the fact that the sources’ phase information
can be effectively extracted from the observations by means of the above technique combinations. Both
the theoretical analysis and simulation verified that the proposed BI method outperforms the existing BI
algorithms in recovery quality, efficiency, and anti-noise performance, which presents a vast potential
in other harmonics-related BSS fields, such as mechanical vibration analysis, and channel estimation in

communication.

INDEX TERMS Underdetermined blind identification, phase coherence, spectrum correction, harmonics.

I. INTRODUCTION

Blind source separation (BSS) is to recover the sources from
the mixtures without the knowledge of the mixing system.
BSS is widely applied in speech signal processing, digital
communication, machinery diagnosis and so on [1]-[4]. For
a linear and instantaneous mixing system with N sources and
M mixtures, the BSS problem can be formulated as

x(t) = As(t) +n(r), (1
where x(r) = [x1(0), ..., xy()]T is the mixture vector,
s(t) = [s10),...,sy@®]F is the source vector, A =
[ai,...,an] is an M x N unknown mixing matrix, and
n(?) = [n1(0), ..., ny0)]7T is the additive noise vector. As is

known, it is more difficult to tackle the underdetermined BSS
problem (UBSS, requiring M < N) than the overdetermined
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or well-determined BSS problem (requiring M > N). Gen-
erally, the realization of BSS can be divided into 2 stages:
blind identification (BI) and blind recovery (BR) [5]. Blind
identification aims to obtain an accurate estimate of the mix-
ing matix from the mixtures x(¢), and blind recovery is to
recover the underlying sources s(¢) using the estimated result
of the BI stage. Hence, BI stage imposes direct influence
on the performance of the subsequent BR stage. This paper
addresses the underdetermined BI problem. If the proposed
BI method is combined with the existing BR algorithms
addressed in [6]-[9] etc., a high-performance BSS system
will be built up.

Blind identification of UBSS is mainly classified into
two categories: the statistical property based method and the
sparse representation based method [10]. They are based on
different assumptions of sources.

The statistical method is based on the premise that the
sources are independent and identically distributed and thus
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allows for the estimation of the mixing matrix in a prob-
abilistic framework [11], like the independent component
analysis (ICA) [12]-[14] does. However, ICA can only deal
with the overdetermined case. Constructing high-order ten-
sors is an effective approach to obtain feasibility for the
under-determined case. For example, the fourth order statis-
tics (FOOBI) algorithm achieves UBSS blind identification
through simultaneous matrix diagonalization associated with
fourth-order cumulant tensors [15]. Similar algorithms can
also be found in [16]-[18].

The sparse representation method is based on the premise
that each source exhibits a parsimonious distribution [19] in
a transform domain (such as fast Fourier transform (FFT),
short time Fourier transform (STFT), Wigner-Ville distribu-
tion (WVD)). To be specific, for any source, its energy tends
to concentrate in several small regions in this domain. If the
sparsity is sufficiently high, which was discussed in the sparse
component analysis (SCA) in [20], then UBSS blind identi-
fication is feasible. For example, Bofill and Zibulevsky [21]
adopted a potential function associated with the FFT rep-
resentation of two mixtures to estimate the mixing matrix.
However, since FFT is merely a 1-D transform which cannot
provide a sufficiently sparse representation of speech signals,
the blind identification can hardly reach a high accuracy.
Compared to FFT, time-frequency analysis (TFA) provides
a sparser 2-D representation in which the time informa-
tion smeared by FFT is preserved. Hence, a series of TFA
tools (such as STFT, WVD, Cohen distributions) have been
introduced to improve the accuracy of the estimated mixing
matrix [10], [18], [22]-[27].

In particular, due to the fact that a speech signal is char-
acterized with sparsity in time-frequency (TF) domain, the
sparse representation based method becomes the mainstream
of blind identification of speech UBSS systems. Specifically,
TFA based blind identification can be further classified into
two categories: non time-frequency masking method and
time-frequency masking method. However, they seem to suf-
fer from a high complexity or inaccuracy.

For the non time-frequency masking methods (such as Line
orientation separation technique (LOST) algorithm [19],
nonlinear  projection  column  masking (NPCM)
algorithm [28]), it is necessary to construct an objective func-
tion considering all the points covering the entire TF plane
(each TF position corresponds to an M x 1 mixture vector).
By means of some optimization techniques (such as parti-
cle swarming optimization [28], expectation-maximization
(EM) optimization [19]) on these vectors, the columns of
the matrix A can be determined one by one. However, these
enormous patterns lead the optimization to a high computa-
tional complexity. Moreover, improper initialization may also
prolong the optimization’s convergence time.

For the TF masking methods (such as degenerate unmixing
estimate technique (DUET) algorithm [22], [23], nondisjoint
sources based method [6], UBSS-FAS method [10]), blind
identification is divided into two steps: Firstly, pick out
those time-frequency points relevant to one active source
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to comprise a single-active source domain(SSD) [10]; Sec-
ondly, cluster those SSD-related patterns to acquire the final
estimate of the matrix A. Hence, the accuracy and efficiency
of blind identification depend on both the SSD recognition
criterion and the clustering technique.

On one hand, the accuracy of the TF masking
methods [6], [10], [22], [23] is affected by the neglection of
the phase information of a speech, which is hidden beneath
multiple TF points in an SSD. As is known, a speech
contains several harmonic-like voiced-sound components
[29], [30], and each component can be exactly described
by 3 parameters: frequency, amplitude and phase. Hence,
this paper attempts to take advantage of this ignored phase
information to improve the BI accuracy. As elaborated later,
affected by TFA tools’ inherent spectral leakage, a har-
monic component will evolve into multiple time-frequency
points. Hence, it is necessary to further condense the region
of an SSD [31]. Typically, some novel TFA tools such as
synchrosqueezed windowed Fourier transform (SWFT) [31]
and synchrosqueezed wavelet transform (SWT) [32] are able
to concentrate these TF SSDs. However, as [33] pointed
out, these two synchrosqueezed transforms do not seem to
imply better resolution properties and thus cannot provide
significant performance improvement.

On the other hand, the efficiency of the TF masking meth-
ods is affected by two facets. First, these methods have to
tackle numerous patterns, since each SSD includes multiple
TF points. Secondly, the existing blind identification schemes
generally adopt the k-means clustering technique, which actu-
ally lacks high efficiency. If this clustering method is replaced
by a better one, the complexity of blind identification will
surely be further reduced.

Considering the above analysis, this paper puts forward a
high-efficiency UBSS blind identification scheme based on
spectrum correction and phase coherence criterion. By means
of spectrum correction, a lot of consecutive TF points in an
SSD can be represented by a parametric triple (frequency,
amplitude and phase). Moreover, the phase-coherence crite-
rion can effectively pick out a small number of SAS patterns
from these SSD-related triples, while a large quantity of pat-
terns that may degrade the BI accuracy can be expelled. Also,
instead of the k-means clustering technique, the data-density
based clustering technique further enhances the BI efficiency.
Numerical results will verify that the proposed scheme con-
currently possesses high efficiency, high accuracy, strong
robustness to noise.

The remaining of this paper is organized as follows. In
Section II, we propose a harmonic parametric triple based TF
representation and introduce a spectrum corrector to achieve
this representation. In Section III, we propose a phase coher-
ence criterion to refine the single-active-source patterns from
these harmonic parametric triples. In Section IV, we employ
an efficient data density based clustering method to acquire
the source number estimate and the final BI result and give
a summary on the proposed BI procedure. In Section V,
we present several simulations to compare the proposed BI
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scheme with the existing BI algorithms. Finally, we come to
some conclusions in VL.

Il. HARMONIC PARAMETRIC TRIPLE BASED
REPRESENTATION OF TF POINTS

A. HARMONIC PARAMETRIC TRIPLE BASED
REPRESENTATION OF TF POINTS

Suppose that the time-frequency tool is ideal. Considering
the system model formulated in (1), if at a moment #y, only
the source s, is active and it includes a single component
with the instantaneous frequency wg, the amplitude dy and
the phase ¢o, then the ideal time-frequency analysis of M
mixtures is

X1(10, w) ain
Xa(10, w) azn i
) = .| doe?8(w — wo), 2
Xy (19, o) am .n
where n = 1,..., N and ‘6(-)’ is the dirac function. Thus,
the mixture vector [X;(tg, @o), . - . ., Xar(fo, wo)]¥ is paral-

lel to a,, i.e., this single point (fy, wp) in an ideal 2-D
time-frequency plane is sufficient to achieve the accurate
estimate of a,,, since amplitude uncertainty is allowed in BSS.

However, there always exists deviation between the ideal
time-frequency representation in (2) and the commonly-used
time-frequency analysis tools. As a result, an ideal TF point
will spread over several frequency positions in a single-active
source domain. The reasons are as follows.

Firstly, limited by the uncertainty principle [34], i.e., the
time resolution and the frequency resolution of any
time-frequency analysis tool cannot be high simultaneously.
Besides, affected by noise, it is impossible that the informa-
tion of a column of the mixing matrix is entirely concentrated
in a single time-frequency point, like (2).

Secondly, a mixture contains abundant components and the
interferences among these components inevitably expand the
TF covering region, also.

Thirdly, different types of time-frequency analysis tools
have distinct deficiencies. For example, the WVD is likely
to incur cross-term interferences. Although these cross-term
interferences can be removed by means of smoothing mea-
sures in ambiguity domain [35], it is at the cost of expanding
auto-term TF regions. As for the STFT, it is merely a trans-
lated and windowed Fourier transform, i.e.,

+00
Xn(t, w) = / Xm(TDh(T — De 7% d, (3)

—00
thus when STFT is practically implemented by translated
FFT, its inherent spectral leakage and picket fence effect will
degrade the spectrum quality.

This paper aims to improve the performance of
STFT-based BI. Thus it is necessary to investigate the STFT
time-frequency distribution influenced by FFT spectral leak-
age effect.

Example I. Consider a signal composed up of 3 harmon-
ics as x(t) = cos2mfit + 10°) + 3cosnufat + 60°) +
2cos(2rfzt + 90°), fi = 152Hz, o, = 2fi = 304Hz,
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f3 = 3f1 = 456Hz. Specify the sampling rate f; = 16kHz and
implement L-point FFT (L = 512 and thus the frequency unit
Af = fy/L = 31.25Hz). Hence, their fractional frequency
offsets 61 = fi/Af — [fi/Af] = —0.1360, 6, = fo/Af —
[2/Af1 = —0.2720, 83 = f3/Af — [f3/Af]1 = —0.4080,
(‘[-] refers to the rounding operation). The FFT amplitude
spectrum |X (k)| is illustrated in Fig. 1.

Jx ()| ‘ ‘ ] ‘_. 5,=-0.136, 5,=-0.272, 5,=0.408

b @

0-:’”?;.[,”,[ ITT[ TTT”’"";"M

0 100 200 300 400 500 600 700 800

FIGURE 1. Spectrum of x(t), §; = —0.136, = —0.272, §5 = —0.408.

Fig. 1 shows that, due to the effect of spectral leakage, each
component f; evolves into a cluster of FFT bins emerging
around f;. Clearly, the larger the frequency offset |§;| is,
the heavier the spectral leakage exhibits. Further, since each
cluster of spectral bins only corresponds to a single compo-
nent, there always exists a stronger unobservable spectral bin
(marked in red dotted line), which is ideally located at the
centrobaric position of this cluster. Therefore, it is desired to
recover these hidden ideal bins. In other words, each cluster
of FFT bins illustrated in Fig. 1 can be refinedly represented
by its ideal harmonic parametric triple (f;, d;, ¢;).

As [29] and [30] pointed out, a speech signal mainly con-
tains harmonics-like voiced sounds and noise-like unvoiced
sounds. In particular, voiced sounds occupy most of the
speech energy. Hence, voiced sounds can be easily distin-
guished from large-amplitude clusters of STFT spectrogram,
as Fig. 2 depicts (the sampling rate f;=16kHz and 50%
hanning window overlapping is considered).
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FIGURE 2. STFT spectrograms of two speech signals: (a) female; (b) male.

Fig. 2 presents the STFT spectrograms of two speech
signals from a female and a male. One can notice that, in both
sub-figures, there are a lot of conspicuous and almost parallel
flat stripes over some small time intervals. These flat stripes
actually refer to slowly varying spectrum of harmonics-like
voiced sounds. In fact, at some fixed moment of active voiced
sound, the vertical STFT spectrogram within a small fre-
quency band resembles the FFT spectrum illustrated in Fig. 1,
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in which the thickness of a flat stripe depends on the number
of the leaked FFT bins.

Hence, if each centrobaric position (i.e., the parametric
triple (fi, d;, ¢;) of the ideal harmonic illustrated in Fig. 1)
along the frequency axis of all these flat stripes can be esti-
mated, STFT representation will be greatly simplified, which
helps to develop a more efficient blind identification scheme.
This simplification can be effectively realized by means of
the technique of spectrum correction.

B. SPECTRUM CORRECTION BASED HARMONICS
EXTRACTION

The objective of spectrum correction is to accurately estimate
all the harmonic parametric triples of each mixture, which
helps to further recover ideal parametric triples (f;, d;, ¢;).

In the selection of spectrum corrector, two factors should
be considered. One is the windowing operation, which helps
to suppress the spectral leakage; The other is that the numbers
of consumed spectral bins should be as small as possible,
since harmonics exhibit a dense distribution in a speech spec-
trum (as Fig. 2 shows).

Here we employ a ratio-interpolation based spectrum
corrector [36], since it can accurately provide 3 corrected
parameters only consuming two hanning-windowed spectral
bins (the peak bin and its adjacent sub-peak bin).

Given the hanning-windowed STFT spectrograms of M
mixtures X, (fo, kAw), m = 1,...,M, Aw = 27 /L (denot-
ing X,(to, k) for simplicity), at some moment ¢t = ft,
the spectrum correction consists of the following steps:

Step 1 Collect all the large-amplitude peak indices k, of
X(to, k). For each index k), calculate the ampli-
tude ratio v, between X, (%, k,) and its sub-peak
neighbor, i.e.,

| Xim(t0, kp)|

Vp = .
P max{|Xom(to, kp — DI, [Xm(to, kp + DI}
)

Further, a variable u,, can be calculated as
tp = 2 = vp)/(1+ ). §)
Step 2 Estimate the aforementioned frequency offset 6, as

up, i [Xou(t0, ky + 1)

Sp = > | Xin(to, kp — DI (6)
—up, else,
then, the frequency estimate is &,, = (k, +
8p)2m /L.

Step 3 Acquire the amplitude estimate Elm,p and phase
estimate ¢, , as

~

dmp = 278,(1 — 82)|Xm(to, kp)|/ sin(wdy).  (7)
m(t0, kp)] — 7r3p(L - 1)/L, (8)

where ang(-) refers to the angle operation.

ém,p = ang[X
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FIGURE 3. Distribution of M mixtures’ frequency estimates and their
merged frequencies (note that: Tq <M,q=1,--.,Q).

After spectrum correction, the original enormous STFT
points are substituted with many harmonic parametric triples
(Dm,ps dm.p, ¢>m p)- If these parametric triples can be refined,
the efficiency of blind identification will be further enhanced.
The following refinement procedure based on phase coher-
ence criterion (involving the operations of frequency merg-
ing, candidate pattern screening and single-active-source
(SAS) pattern recognition) can achieve this goal.

Ill. PHASE COHERENCE CRITERION BASED PATTERN
REFINEMENT
A. REFINEMENT PROCEDURE
1) FREQUENCY MERGING
It should be noted that, due to the noise effect and interference
effect, even for a same component of a single active source, its
frequency estimates {&,,,} resulting from spectrum correc-
tion still exhibit tiny difference between different mixtures.
Hence, these frequency estimates should be merged.
Suppose the numbers of {&1,p},...,{@wm p} are Tq,..., Ty
If we put all these frequency estimates together and sort
them in an ascending order, the aforementioned frequency
estimates of tiny difference tend to form a cluster (marked
with a dashed box, as Fig. 3 illustrates). Assume altogether
Q clusters are formed (Q > Y,,,m = 1,..., M). Without
loss of generality, denote the ¢g-th (¢ = 1,..., Q) cluster
as {&)q,p/,p’ = 1,...,Ty} (e, I'; elements are included,
I'y <M).Then, we have Y1 +---+ Ty =1 +---+Tp.
For the g-th cluster, since its I'; frequency estimates are of
tiny difference, they can be merged by their average (as Fig. 3
depicts)), i.e.,

T

Wq = T. 2 :‘bq,p" ©)
q _
p'=1

2) EFFECTIVE CANDIDATE PATTERN SCREENING
Note that, although the Q merged frequencies w; ~ wg are
acquired from all mixtures’ frequency estimates, however,
as Fig. 3 depicts, for an individual merged frequency esti-
mate g, it is very likely that @, is not included by every
mixture.

In particular, in terms of the BSS model (1), as long as the
mixing matrix A does not contain zero element, any source
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component is bound to be incorporated by every mixture.
Hence, it is necessary to judge whether an individual merged
frequency @, belongs to all M mixtures (or only small devi-
ation exists). In other words, if the quantity I'; of the g-th
cluster {@q,pr,p’ =1,...,Iy} equals M, @, is regarded as
an effective candidate component.

Assume altogether Q components are effective candidates.
For mathematical simplicity, it does not matter to denote them
as

_211,,96/'?’]"’1

.., 0. (10)

Q1
Il
—_

Zé = am’(—{ejd)m,[[ s

_CAlM,z;ej";M*"’ |

3) RECOGNIZING SINGLE-ACTIVE-SOURCE PATTERNS

As [10] pointed out, only those mixture patterns correspond-
ing to a single active source make contribution to the estima-
tion of the mixing matrix A. The reason lies in: if only the
n-th source is active at some moment, the BSS model (1) can
be simplified as

XZA[Ov"' »Sny 50]T
= Spay, (11)

then, the mixture x is theoretically parallel to the n-th column
a, of A.

Furthermore, suppose that z7 is a single-active-source pat-
tern. Considering that the matrix A is real-valued, one can
conclude from (2) that the phases of X1 (ty, w), . .., Xy (to, ®)
(i.e., the M phases included in z;) originate from the same
phase ¢g of some component of the n-th source. Hence, the M
angles ) 1G> - - qu g included in zz have to uniformly point
to a same directlon (or allowing any two angles are in opposite
directions, since amplitude uncertainty is allowed in BSS).
In other words, the projection between any two angle-related
unit vectors should be close to 1, i.e.,

(efra, effiay — 1, (12)
where | <r,l <M,r # [ and ‘(-)’ represents inner product
operation.

Further, if all the combination cases of projection are taken

into account (altogether C/%/[ =M (M — 1)/2 cases), one can
calculate the average projection Py as

Po=—5 Y I, by, (13)

Thus, given a threshold ¢, z; can be regarded as an SAS
pattern if the following inequality holds

|P; — 1] < ¢. (14)
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Assume that altogether Q patterns are SAS patterns
denoted as

_al’;]e‘qu]"?

2= dpze®a |, G=1,...,0. (15)

Remind that the phases ¢A>1,,}, e ng,,} are of consistence.
Therefore, to construct real-valued SAS patterns, (lgl,q can
be utilized as a reference and thus a real-valued version
of z is

T
z3=[dg g - g o wgl,
where
S dm,z,v if cos(¢15 — Pmz) — 1 (16)
"4 —dm, g if cos(qB],gI — &m,g) - —1

Further, in the consideration that amplitude uncertainty is
allowed in BSS, z; needs to be normalized.

To achieve a complete and accurate estimate of the mixing
matrix A, it is necessary to implement the above refinement
procedure frame by frame. As a result, an SAS pattern set
Q ={z;,i=1,..., P} will be generated. Finally, the mixing
matrix A can be estimated by clustering these P SAS patterns,
as will be elaborated in the Section IV.

B. PERFORMANCE ANALYSIS OF PHASE COHERENCE
CRITERION BASED PATTERN REFINEMENT

The above procedure of phase coherence criterion based pat-
tern refinement possesses high efficiency, high noise robust-
ness, high anti-interference.

The high efficiency lies in the following aspects: Firstly,
frequency merging only requires sorting operation and aver-
aging operation; Secondly, constructing effective candidate
patterns only needs to collect those merged clusters with
M frequency estimates; Thirdly, it can be inferred from
(13)~(14) that the recognition criterion of SAS patterns is
also very simple, only involving several inner product and
averaging operations. Lastly, the above 3 steps gradually
reduce the quantity of patterns (i.e., 0 — Q — Q).

The high noise robustness lies in: In the process of con-
structing effective candidate patterns, it is almost impossible
that the noise can yield a conspicuous component occupied
by all M mixtures.

The high anti-interference lies in the follows: Compared
with large-amplitude components, small-amplitude compo-
nents tend to suffer from more serious interference. As a
result, this interference inevitably brings phase distortion
on these small-amplitude components. On the contrary, for
a large-amplitude component, it suffers from small phase
distortion and thus its M observation phases tend to exhibit
the coherence (i.e., satisfying (13) and (14)). In this way, its
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FIGURE 4. The STFT spectrograms of 3 mixtures (hanning windowed, 50% frame overlapping). (a) mixture 1. (b) mixture 2. (c)

mixture 3.

corrected amplitudes of multiple mixtures are sure to uni-
formly approximate the ideal amplitude, which also ensures
a high-accuracy BI performance.

C. EXAMPLE OF PATTERN REFINEMENT
We present an example to demonstrate the above procedure
of pattern refinement.

Example II: Consider a speech mixing system with N = 4
sources and M = 3 mixtures (speeches are chosen from
TIMIT). The normalized mixing matrix A is specified as

0.9356 0.6354 0.2813  0.2858
A=10.2433 0.2102 04571 09147 a7
0.2557 0.7430 0.8438  0.2858

The sampling rate of these speeches is fy = 16kHz and the
window length of STFT is L = 512 (hanning windowing,
50% frame overlapping, 219 time frames altogether). Fig. 4
illustrates the STFT spectrograms of the 3 mixtures. For each
mixture, Fig. 5 presents its vertical section (i.e., the FFT
spectrum) along the frequency axis at the 71-th time frame
(to = 1.14s), which corresponds to the black line in Fig. 4.
Tab. 1 lists the results of spectrum correction for Q = 5
effective candidate patterns (including Q = 2 SAS patterns,
the threshold ¢ is set as 0.0008).

From Fig. 4, one can find that, due to spectral leakage
and interference between components, the STFT spectrogram
of each mixture appears chaos and it is impossible to rec-
ognize any source. Meanwhile, there are a lot of peaks in
the 3 FFT spectra in Fig. 5. Following the procedure of the
ratio-interpolation based spectrum corrector summarized in
Section II-B and the frequency merging operation addressed
in Section III-A.1, one can acquire Q = 66 merged frequen-
cies. Further, following the screening procedure addressed in
Section III-A.2, among these 66 components, only Q = 5
components are eligible to construct the effective candidate
patterns, whose merged frequencies g, corrected amplitudes
cAil,g, ~ &'3@ and corrected phases ¢A>1,;, ~ ¢A>3,g, g=1,..., Q,
are listed in Tab. 1.

Next, following the procedure of recognizing single-
active-source patterns addressed in Section III-A.3, only the
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FIGURE 5. The FFT spectra of 3 mixtures at the 71-th time frame.

former 2 components are selected as the reliable SAS patterns
(in gray background), since their maximum phase differences
are about 1° while others range between 5° ~ 10°. Finally,
these two components’ corrected results listed in Tab. 1 are
combined to generate the following 2 vectors:

84.5548 ] [28.3142
71 = | 28.1076 |, zp=| 9.4284 |, (18)
97.8573 | | 33.6466
and their normalized versions are
0.6389 ] [ 0.6296
z, = | 02124 |, 1z, = | 0.2096 (19)
0.7394 | | 0.7481

Clearly, these two refined patterns z1, z, are very close to the
2-nd column of matrix A in (17).

Furthermore, as Tab. 1 lists, one can find that the above
refined two components are exactly the strongest two compo-
nents among Q = 5 candidates. The reasons are as follows:
For any component, not only it suffers from other compo-
nents’ interferences but also it will exert interferences over
other components. Thus, only those strong components tend
to be less influenced by others. As a result, M mixtures’
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TABLE 1. The effective candidate patterns and their corresponding parameters.

q 1 2 3 4 5
Merged frequencies | wz(Aw) | 18.6578  28.5477 38.1990 57.1885  66.5404
. dy q 84.5548 28.3142  9.9833 20.4351 8.5568
Mixture 1 L
017(°) | 744978 168.1535 44.6779 177.9293 334.3651
. do g 28.1076  9.4284 3.1117 6.9339 2.9455
Mixture 2 .
02.7(°) | 74.8359 168.6693 49.6109 179.9742 323.3826
. J&q 97.8573 33.6466 11.4650 24.2463 9.7226
Mixture 3 .
03.4(°) | 73.4826 169.5666 49.7044 1757009 342.2555

corrected phases of some strong component stemming from
a single active source are likely to be consistent (i.e., they
uniformly point to a same direction or opposite directions).
Therefore, the recognition criterion involved in (10)~(14) is
suitable to detect this phase consistency. In other words, this
recognition criterion is of high robustness to interferences.

What’s more, combining Fig. 4 with Fig. 5, we can find
that, in each STFT spectrogram, these Q = 5 candidate
components are individually located on different flat stripes,
which actually correspond to voiced sounds. As aforemen-
tioned, since the spectrum corrector is well suitable for
extracting harmonic information, the refined SAS patterns
arise from harmonic-like voiced sounds rather than noise-like
unvoiced sounds.

IV. DATA DENSITY BASED CLUSTERING FOR

SAS PATTERNS

A. CONSIDERATIONS IN THE SELECTION OF THE
CLUSTERING ALGORITHM

To effectively cluster the aforementioned SAS pattern set
Q = {z;,i = 1,..., P}, the following three points should
be considered.

Firstly, the clustering algorithm should have the ability to
determine the number N of categories, which is generally
unknown in the UBSS blind identification problem.

Secondly, the clustering algorithm should concurrently
possess high efficiency and high accuracy.

Thirdly, the clustering algorithm should be insensitive to
the initialization or other specified parameters.

Thus, we employ the data density based clustering algo-
rithm recently proposed in [37] rather than the mainstream
k-means algorithm [3], [6], [10], since the former is superior
to the latter in the above 3 aspects [37].

B. DATA DENSITY BASED CLUSTERING AND MIXING
MATRIX ESTIMATION
The data density based clustering algorithm takes full
advantages of the following two characteristics of sample
distributions [37]:

a) Cluster centers are surrounded by neighbors with lower
local density;
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b) Cluster centers are at a relatively large distance from any
points with a higher local density.

Hence, this clustering algorithm is able to determine the
source number N of a BSS system. The procedure is as
follows.

Step 1: Calculate the distances d; j of all pattern pairs, i.e.,

dij=|z—z|, 1<ij<P i#j (0

Step 2: Calculate each pattern point’s local data density p;,
1.e.,

pi= Y x(dij—d), @1
J

where d, is a given cutoff distance of neighbour-
hood and ‘x(-)’ is a threshold function as

I, <0
1) = - 22
x(®) 0. 150 (22)

Step 3: Sort pq, ..., pp in a descending order and thus
yield a subscript set {g;,i = 1, ..., P} satisfying
Pgi = Pgy = - = Pgps

Step 4: Calculate each pattern point’s characteristic dis-
tance §; defined as

max(dg, q), =1

5i=1"" . (23)
min(dg, 4), > 1.
qj,]<l ;

Step 5: Calculate the products y; = pié;,i = 1,..., P,
from which the number N of sources arises intu-
itively. In other words, there exists a subscript set
® = {q1,...,qn} satisfying v, = yg, = ... =
Yoy > Vj,J ¢ ©. Hence, the N cluster centers are
g1 Zgps v 0 ZgN -

Step 6: Based on these cluster centers z;,,n =1,...,N,

classify all the P patterns into N categories. Then,
take the average pattern of each category as the
estimate of a column of the matrix A.

In this procedure, only a threshold parameter d. needs to
be specified. Meanwhile, as [37] pointed out, this clustering
algorithm is insensitive to the choice of d..
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FIGURE 6. The flow diagram of the proposed blind identification algorithm).

To sum up, the proposed blind identification algorithm is
illustrated in Fig. 6.

V. SIMULATIONS

A. CONTRIBUTION OF THE SAS PATTERN RECOGNITION
In this section, both qualitative demonstration and quantita-
tive analysis are presented to investigate the contribution of
the SAS pattern recognition to the whole BI scheme summa-
rized in Fig. 6(the parameter d. is set as 0.05).

Consider the same speech signals involved in Example 2
and the same parameter settings. Besides, to verify the
SAS pattern recognition criterion’s robustness, the mixing
matrix A in Example 2 is substituted with a matrix containing
negative elements, i.e.,

0.9356 0.6354 0.2813  0.2858
A= —0.2433 —-0.2102 0.4571 0.9147
0.2557 —0.7430 —0.8438 0.2858

(24)

Following our proposed BI procedure in Fig. 6, we can
obtain the final matrix estimate A as

3 0.2832  0.2839 0.9349 0.6344
A= 0.4594 009146 —0.2459 —0.2106
—0.8416  0.2877 0.2556  —0.7435

(25)

1) QUALITATIVE DEMONSTRATION
The scatter diagrams of the patterns directly from STFT,
candidate screening and SAS recognition are illustrated
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in Fig. 7(a), Fig. 7(b) and Fig. 7(c), respectively (all the
patterns are normalized).

From the scatter diagram directly from STFT in Fig. 7(a),
one can see that there are numerous pattern points (altogether
(512/2 4+ 1) x 219 = 56283 ones) disorderly spread on the
spherical surface that it is impossible to observe any apparent
clusters, let alone their corresponding cluster centers. After
candidate screening, O = 911 patterns are preserved and
illustrated in Fig. 7(b), which exhibits a denser distribution
(besides several outliers) than Fig. 7(a) does. Further, among
these O = 911 candidates, only P = 190 SAS patterns satis-
fying the phase coherence criterion are illustrated in Fig. 7(c),
in which N = 4 clusters can be distinctly identified. More-
over, the SAS pattern recognition also makes these N = 4
cluster centers intuitively identified in the density-distance
plane (see red stars in Fig. 8).

Hence, the above illustrations show that, the redundancy
of time-frequency representation is greatly reduced and the
pattern distribution apparently gets denser, indicating that
the proposed phase coherence based refinement procedure
greatly improves the efficiency and the accuracy of BI.

2) QUANTITATIVE ANALYSIS

Here, to find out which part of our proposed phase coherence
criterion based pattern refinement algorithm is responsible
for the final result, we made a minor revision on our algo-
rithm. Specifically, we bypass the core SAS pattern recogni-
tion (i.e., the data density based clustering directly follows the
effective candidate pattern screening). Then, two quantitative
performance indexes (recovery SNR of the matrix estimate

21521



IEEE Access

X. Huang et al.: Underdetermined Bl Based on Spectrum Correction and Phase Coherence Criterion

‘0’. L4 ¥l e
0.5 0.5 0.5
\ .
0 0 . 0
.
-0.5 -0.5 o -0.5
Y & . .,
- - * L4 -
1 1 1
0 0 0
0 0 0

A -1

FIGURE 7. (a) Scatter plot directly from STFT, (b) Scatter plot from candidate screening, (c) Scatter plot from SAS recognition

(219 time frames, FFT size: L = 512).
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FIGURE 8. Distribution of the densities and distances of all SAS patterns
(dc = 0.05).

and averaged dispersion measure of N categories [38]) will
be compared between our proposed algorithm and this SAS
pattern recognition excluded version. 5

To calculate the recovery SNR of the matrix estimate A,
since order uncertainty is allowed in BSS (as (24) and (25)
exhibit), it is necessary to adjust A by taking into account all
the column re-arrangements, i.e.,

~ ~ o~

A =AM, (26)
where
M = arg min HA - AM” .
MeP
In (26), P is the set of all invertible real N x N matrices

where only one entry is nonzero in each column [28]. Hence,
the recovery signal to noise ratio (SNR) can be defined as

M N M N )
SNR =101g| Y "3 " ZZ(ai,j—&i,j)
i=1 j=1 i=1 j=1
27

where a; j and a;; are the elements of real mixing matrix A
and the adjusted matrix estimate A, respectively. The recov-
ery SNR values of the proposed BI scheme and its SAS
pattern recognition excluded version are listed in Tab.2.
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TABLE 2. Performance indices of two Bl schemes.

BI scheme Recovery SNR D
proposed BI 51.23 0.0167
SAS recognition excluded BI 37.57 0.0783

To evaluate the general dispersion of N clusters, it is nec-
essary to calculate an individual dispersion measure D,, as

R
1 n

Dy= |z 2=l n=1...N (8
mi=1

where ¢, is the center of the n-th cluster {z;,i = 1, ..., R,},
and R, is the element number of the cluster. Then, the average
dispersion measure D, i.e.,

1 X
D=ﬁ2a“ (29)
n=

reflects the clustering effect. In other words, the smaller the
D is, the denser the pattern distribution is, thereby leading to
a higher-quality BI. The specific values of D of these two BI
schemes are also listed in Tab.2.

From Tab. 2, one can find that if the SAS pattern recogni-
tion is excluded, the recovery SNR deteriorates with 13.66dB
and the average dispersion measure D increases with about
3.7 times. Therefore, the SAS pattern recognition plays an
essential role in the whole BI scheme.

B. TRACING THE ORIGINS OF SAS PATTERNS

Recall that once an SAS pattern z, is recognized, its
time-frame index and DFT-bin index can be recorded. More-
over, since the individual z,, only origins from a single source,
its source index ¢, can be traced by the following formula

cp= arg min |z,, — ﬁn| . (30)
n=1,...,.N
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FIGURE 9. SAS distribution: (a) mixture 1; (b) mixture 2; (c) mixture 3; (d) source 1; (e) source 2; (f) source 3; (g) source 4.

Hence, one can mark z,, on the TF planes of all mixtures and
the c¢,-th source. Further, repeating this operation on all P
SAS patterns yields the SAS distribution diagrams illustrated
in Fig. 9(a)-(g) (marked in black stars), which exhibit the
following distribution features:

a) As Fig. 9(a)-(c) depict, all these SAS pattern points
fall in large-amplitude areas (i.e., those regions dyed in deep
red), which verified that SAS patterns correspond to a strong
components and are less likely to be disturbed by other
components.

b) As Fig. 9(d)-(g) depict, one can notice that, for any
individual pattern z,, there exists only a single TF plane (i.e.,
the c,-th source it belongs to) in which its surrounding region
is in deep red. For example, for any pattern point bounded by
the specified purple ellipses, only the surrounding region of
the 2-nd source TF plane appears active (i.e., in deep color)
while the surrounding regions of the other 3 TF planes appear
inactive (i.e., in light color). This implies that these P single-
active-source patterns are correctly searched out.

c) As Fig. 9(d)-(g) depict, most of the strong SAS pat-
tern points are located on flat red stripes in low-frequency
regions, which correspond to the harmonic-like voiced-sound
components. This reflects that the proposed phase coherence
criterion based pattern refinement is in accordance with the
speech generation mechanism.

C. ROBUSTNESS TO THE RANDOMNESS OF THE

MIXING MATRIX

In this section, the proposed algorithm is compared
with 3 other UBSS blind identification algorithms including
TIFROM [39], LOST [19] and NPCM [28]. Unlike the case
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of Section V-A only involving a fixed mixing matrix A, this
section aims to investigate the robustness to different mixing
matrices. Specifically, we conducted 100 comparison trials
and each trial deals with a randomly generated normalized
matrix A. In consideration that, the performance of any BI
algorithm might deteriorate when matrix A is in ill condition,
each A is required to satisfy the following conditions

a) The intersection angle between any two columns of A is
larger than 10°;

b) The absolute value of any element of A is greater
than 0.1.

To enhance the proposed BI scheme’s robustness to the
randomness of the mixing matrix, we present a minor
improvement measure on the data density based classifier.
Specifically, following Step 6 of the clustering procedure
addressed in Section IV-B, one can further compress the
cluster space using another specified distance threshold d,.
(576 < d,, here EZC is set to be 0.65d.). Thus, around the center
z;, of an individual cluster ®,, only a portion of neighbour
patterns z; satisfying

dg,j = |24, —2j| <de. 2zj€®,, n=1,...,N, (31)
need to be collected. Thus, the average of z; in ®, can be
treated as an accurate estimate of a column a,, of the matrix A.
In this way, ay, ..., ay will be estimated one by one.

Among these 4 BI algorithms, it seems a bit difficult and
inconvenient for TIFROM and LOST to estimate the matrix A
without knowing the source number a priori [28]. Hence,
the correct source number N was directly specified in both
of them. In contrast, since both NPCM algorithm and the
proposed algorithm do not need any knowledge of the source
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number, N was estimated by themselves. Other parameter
settings are as follows: The mixtures are transformed into
STFT domain (time frame length L = 512, hanning win-
dowed, 50% frame overlapping). For the NPCM algorithm,
the parameter p is set to be p = 10, and the population size
and the generation number of PSO are respectively config-
ured as P = 30, K = 30. Besides, the termination parameter
er = 0.4 and the masking threshold o9 = 12°. For LOST
algorithm, the Laplacian density parameter 8 is initialized
as 1. For the TIFROM, the length of a TF window is set as 10.
Their recovery SNRs are listed in Tab. 3.

From Tab. 3, one can see that the proposed BI algorithm
has highest recovery quality (SNR=51.14dB), and the NPCM
algorithm takes the second place (SNR=41.58dB), com-
pared to that the LOST algorithm and the TIFROM exhibit
relatively poor quality (SNR=23.65dB and SNR=21.39dB,
respectively).

D. COMPARISON OF COMPUTATIONAL COMPLEXITY

Tab. 3 also lists the elapsed time (Equipped with Intel Core
i3 CPU 2.0GHz, 4GB RAM) consumed by different BI algo-
rithms. Specifically, the average elapsed time of the TIFROM
(0.70s) is comparable to the proposed algorithm (0.85s), both
of which are much shorter than that of NPCM (15.22s) and
the LOST (8.38s). This experimental result can be well expli-
cated by the following computational complexity analysis.

For the TIFROM, although the computational complexity
seems to be a bit lower than our proposed algorithm, it also
suffers nearly 30 dB of recovery SNR deterioration compared
to our proposed method. This loss arises from its block-wise
(each block includes multiple time slots) SAS identification
operation, which only adopts coarse statistical analysis to
judge whether those observed TF points among a chosen time
slot origin from a single source or not. To achieve a high BI
efficiency, the time slot has to be very long, which in turn
inevitably increases roughness of BI performance.

For the LOST algorithm, the computational load is much
heavier than our proposed algorithm, which is mainly caused
by 2 aspects. On one hand, all the TF points across the
STFT plane are utilized to search for the line orientation
close to a column of the mixing matrix, whereas only a small
portion of TF points (i.e., those TF points inside an SAS
region) are used by the proposed algorithm; On the other
hand, the LOST algorithm is implemented in an iterative way
consisting of two alternative steps (i.e., the Expectation step
and the Maximization step), whereas the proposed algorithm
works in a forward way.

For the NPCM algorithm, the computational load is heav-
ier than the other 3 BI algorithms, which arises from
its evolution-based optimization mode for searching the
columns of the mixing matrix. Specifically, this scheme intro-
duces the PSO algorithm to solve a multivariate optimization
problem. To achieve a high BI accuracy, both the population
size and the number of evolved generations have to be very
large, which inevitably increases the computational load.
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E. COMPARISON OF ANTI-NOISE PERFORMANCE

To explore the anti-noise performance of these 4 BI algo-
rithms, two types of noise disturbances (additive gaussian
white noise and pink noise) were considered. For each noisy
case, we conducted 100 Monte Carlo trials (in each trial,
the matrix A was still randomly generated) under different
SNR levels. The averaged recovery SNR curves of the gaus-
sian noisy case and the pink noisy case are plotted in Fig. 10
and Fig. 11, respectively.
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FIGURE 10. Recovery SNR curves across different Gaussian white noise
levels.
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FIGURE 11. Recovery SNR curves across different pink noise levels.

Note that, in both Fig. 10 and Fig. 11, the SNR at the
horizontal coordinate and the SNR at the vertical coordinate
have different physical meanings. The SNR at the horizontal
coordinate refers to the signal-to-noise ratio at each obser-
vation rather than at each source. In other words, in order
to investigate the anti-noise robustness of the proposed BI
algorithm across different noisy cases, we purposely contam-
inate any mixture x,,(¢) formulated in (1) with some noise at
the level of SNR. The SNR at the vertical coordinate reflects
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TABLE 3. Comparison of robustness to alternating mixing matrices.

Algorithms TIFROM LOST NPCM Proposed
Average recovery SNR (dB) 21.39 23.65 41.58 51.14
Average elapsed time (s) 0.70 8.38 15.22 0.85

the recovery quality of the mixing matrix, which is explicitly
defined in (27).

1) GAUSSIAN WHITE NOISE

From Fig. 10, one can see that, across the entire SNR range
of the mixtures, the recovery SNR curve of proposed BI
algorithm (marked in ‘<’) is higher than the NPCM curve
(marked in ‘x’), the LOST curve (marked in ‘x’) and the
TIFROM curve (marked in ‘(D’). This is due to the fact
that, the other 3 algorithms directly use the STFT results
to construct patterns, whereas our proposed algorithm use
the results of spectrum correction of large-amplitude STFT
results. Further, as aforementioned, any corrected amplitude
of each recognized SAS pattern actually stands for an approx-
imation to the amplitude of an ideal peak spectral bin (as the
red dotted line in Fig. 1 illustrates), which is stronger than
other surrounding leaked spectral bins. Hence, the proposed
BI algorithm exhibits higher anti-noise performance than
others.

2) PINK NOISE

Pink noise, whose power spectrum’s shape resembles the
inverse proportional function 1/f [40] (i.e., the energy mainly
concentrates on the low frequency regions), is one of the most
common behavior of natural noise. Therefore, the recovery
SNR curve versus pink noisy levels of a BI scheme reflects the
robustness to the disturbance arising from the natural world.
From Fig.11, two conclusions can be drawn.

a) Similar to the case of Gaussian noise, across most of
SNR levels (especially the high SNR levels), the recovery
SNR curve of the proposed BI algorithm is higher than other
3 BI schemes.

b) Only when SNR<6dB, the recovery SNR curve of the
proposed BI scheme is a little lower than that of the NPCM.
The reason lies in the following: As Fig. 9(d)-(g) depicts,
large-amplitude SAS pattern points are mainly distributed
over the low-frequency regions of N source STFT spectro-
grams, which overlaps the bandwidth occupied by most of the
pink noise energy. Hence, this bandwidth overlapping may
exert a tiny influence to our proposed BI scheme when the
pink-noise disturbance gets serious.

VI. CONCLUSION

This paper proposes a UBSS blind identification method
incorporating the ratio-interpolation based spectrum correc-
tion and the phase coherence criterion based pattern refine-
ment. The main characteristics of this work lie in 3 aspects:
First, this paper discovers that the performance degradation
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of TF masking based BI schemes arises from the devia-
tion between the ideal time-frequency representation and the
commonly-used TF analysis tool, thus a spectrum corrector is
employed to calibrate this deviation. Second, a phase coher-
ence based criterion is proposed to refine the single-active-
source patterns, which greatly enhances the efficiency and the
accuracy. Finally, the data density based clustering is intro-
duced to estimate the source number and enhance the recov-
ery quality. Both theoretical analysis and simulation verified
that, the proposed BI scheme outperforms other BI algorithms
in accuracy, anti-noise performance and efficiency.

Due to the fact that the spectrum corrector incorporated in
the proposed BI scheme does well in harmonic extraction, this
work actually possesses a vast potential in non-speech BSS
fields (such as mechanical vibration analysis, channel esti-
mation in communication, accoustic signal separation), since
harmonic components also occupy overwhelming majority of
the energy of signals in these fields.
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