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ABSTRACT In high-accuracy global navigation satellite system (GNSS) positioning applications, the multi-
path is one of the primary error sources because it is hard to parameterize. Being somewhat systematic rather
than purely random, the multipath should be viewedmore as a signal rather than a noise. On this basis, empir-
ically modeling the multipath is realizable. A new sidereal filtering approach based on sparsity-promoting
regularization is proposed to mitigate multipath errors for static short baseline GNSS applications. The key
idea of the proposed method emphasizes the use of the L1 norm to extract multipaths from noisy carrier
phase residuals. Two regularization schemes with the first- and second-order differences are considered. For
each scheme, efficient numerical algorithms are developed to find solutions by using the Thomas algorithm
and the Cholesky rank-one update algorithm as the core of the iteration for the first- and second-order
differences, respectively. Regularization parameters or Lagrange multipliers are optimized by using the
bootstrap method. By applying the proposed multipath modeling method, the average improvement ratio
of the root-mean-square values of double-difference residuals can reach approximately 66.7% compared
with the result without multipath mitigation in the two different datasets. Moreover, positioning precision is
improved by approximately 20.8%, 26.3%, and 37.8% in the East, North, and Up directions, respectively.
Moreover, the fixed rate of ambiguities is improved by 3.7% on average under the kinematic mode.

INDEX TERMS GNSS, multipath, sidereal filtering, regularization, L1 norm, bootstrap.

I. INTRODUCTION
Double-difference technique is commonly used in GNSS
applications as it can eliminate or reduce considerable errors,
such as ionospheric and tropospheric delays, satellite orbit,
and clock errors, especially for short baselines. An unmod-
eled error remains given that poor elimination occurs in
general, even with the double-difference technique. This
error source is the so-called multipath, which occurs when
duplicate satellite transmissions are received by an antenna,
wherein one transmits along a direct path from the satellite
and the others arrive at a slight delay after being reflected
by nearby surfaces. Although hardware-based techniques
can reduce multipath errors in the received signal, avoid-
ing multipath errors completely is impossible for receivers
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regardless of the type of hardware. Multipath can be the
main error source for GNSS relative positioning applications,
such as structural health monitoring [1], crustal motion mon-
itoring [2], mine deformation monitoring [3], and attitude
determination [4], [5]. Based on the corresponding mech-
anism, multipath errors can be as high as a quarter of the
signal wavelength, which is a maximum change in the range
of approximately 4.8 cm for GPS L1 signal [6]. An error
of this magnitude may not be tolerable in some precision
applications, such as those mentioned above.

Multipath errors show certain systematic patterns to some
extent becausemultipath errors can be viewedmore as signals
rather than purely random noise. This feature makes it possi-
ble to model multipath errors. In fact, denoising is crucial in
multipath modeling and many signal process methods [7], [8]
can be applied in this area. However, modeling multipath
mathematically is often difficult due to the complex physical
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and geometrical characteristics of the environment reflecting
the GNSS signal. As a result, one has to resort to empirical
modeling or constructing a model by processing the GNSS
data. Two modes are possible for the obtained multipath
model. The first is the post-processing mode, which uses
the model to correct the measurements wherein the model is
constructed. The second mode is the predicting mode, which
uses the model to correct the measurements obtained in the
future. The latter can be used when the systematic pattern of
the multipath errors repeats itself. Multipath error modeling
together with the use of the model under predicting mode
is also called sidereal filtering in the community. Sidereal
filtering approach can only be applicable in static positioning
situations because repeatability exists only in these situations.

Considerable studies have been conducted on empirical
multipath error modeling and mitigation in recent years. Con-
structing the model and determining the repeating period are
the two crucial aspects of sidereal filtering technique, and
the former is the focus of this study. Constructing a model
can be performed by reconstructing a systematic multipath
error signal from noisy carrier phase measurement residual,
denoising must be performed in the time domain. Consid-
erable techniques can be used, such as wavelet threshold
denoising [9], [10], multi-resolution analysis [11], [12], Von-
drak filtering [13], empirical mode decomposition [14], [15],
and stochastic state estimation [16]. The repeating period can
be obtained by determining the repeating time of multipath
errors and by using the three approaches commonly presented
in the literature [17]–[19]. As this topic is not the focus of this
work, we simply adopt aspect repeat time adjustment (ARTA)
method without detailing it any further. A recently published
work is devoted to this topic wherein three methods are
compared in detail through experiments [20].

Hence, sidereal filtering is not the only approach for mit-
igating GNSS multipath errors. The ultimate cause of multi-
path error repeatability is the repeatability of satellite azimuth
and elevation with consideration for the antenna of the static
site. Thus, modeling the multipath error as a function of satel-
lite azimuth and elevation is necessary. Anymethod following
this reasoning can be called modeling in the space domain,
whereas sidereal filteringmethods can be called time–domain
modeling. Moreover, space–domain methods use techniques,
such as gridding [21], [22], polynomial [23], and harmonic
models [24]. Determining the repeating time is generally
avoided in space–domain methods because repeating time
is relatively long for some constellation satellites other than
GPS, such as BDS [25]; and the long repeating time hinders
sidereal filtering methods from good practicability.

As mentioned above, multipath error modeling in the
framework of sidereal filtering is a denoising task, which is
an important topic in signal processing and applied statistics
communities. As a result, the considerable amount of stud-
ies on signal processing can be used as reference. In fact,
most of the existing sidereal filtering methods can find their
roots in signal processing literature. Similarly, from the view-
point of denoising, an alternative method is proposed in our

previous study for constructing a Tikhonov regularization-
based GNSS multipath error model [26]. In this method, L2
norm of the first- or second-order derivative of the variable
for modeling is constrained. Accordingly, a small or smooth
model or a model with a small derivative of the corresponding
order is preferred. In this work, a different starting point is
followed, wherein a simpler model is preferred instead of a
smaller model. A simpler model, which is also called sparser
model, has good generalization properties [27]. Sparsity is a
crucial concept in multiple disciplines, such as statistics [28],
signal processing [29], [30], machine learning [31]–[33], and
compressed sensing [34]. Particularly, sparsity means that
fewer nonzero parameters exist in the final model. In this
work, first- or second-order derivatives (or differences in the
discrete case) of the multipath error signal must increase in
sparsity, wherein a model with fewer nonzero differences
must be constructed. Sparsity is promoted by introducing L1
norm regularization terms by using other sparsity-promoting
methods found in the literature. First-order derivative uses the
minimum total variation method for 1D problems [35]. This
work can be viewed as an extension of our previous work by
replacing the L2 norm with the L1 norm. However, we would
like to emphasize that this process of replacing is not trivial as
it implies a fundamental strategy shift. Moreover, this work
can introduce a different sparsity viewpoint to the specific
field of GNSSmultipath error modeling. Our own experiment
on GNSS multipath error modeling shows that L1 norm reg-
ularization generally has a slightly better performance than
its L2 norm counterpart although a detailed comparison is
not presented. Some achievements are referenced from our
previous study. To bemore specific, two numerically efficient
algorithms, namely, the Thomas algorithm and the Cholesky
rank-one update algorithm, are used as the engines of iterative
algorithms to obtain the solutions. Similarly, regularization
coefficients, such as Lagrange multipliers, are optimized
through bootstrap technique [36].

This paper is organized as follows. Section II presents
themethodology development, includingmodelingwith first-
and second-order derivative regularization, and determining
regularization coefficients by using the bootstrap method.
Section III discusses the test results, and the last section
summarizes the findings of the paper.

II. METHODOLOGY
A. PROBLEM FORMULATION
Ourmultipath errormodeling problem considers the residuals
corresponding to different satellites separately. The measure-
ment model for an arbitrary satellite is as follows:

φk = mk + ηk , k = 1, 2, · · · , n, (1)

where subscript k denotes the time epoch; φk denotes the
carrier phase measurement residual, which is available as
observables; mk denotes the multipath error, which is viewed
as the signal for reconstruction; and ηk is the equivalent noises
representing all the other unmodeled errors. The multipath
error signal is extracted from the residuals by minimizing one
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of the two following cost functions or Lagrangian notations:

J1 ({mk})=
n∑

k=1

wk (φk − mk)2 + λ
n∑

k=2

|mk − mk−1|, (2)

J2 ({mk})=
n∑

k=1

wk (φk−mk)2+µ
n∑

k=3

|mk − 2mk−1+mk−2|,

(3)

where wk denotes the weights determined as a function
of satellite elevation. The form of Eq. (2) or (3) is only
a total variation regularization problem [35] [37]. The
above Lagrangian notations are presented as follows in vec-
tor/matrix form:

J1 (m) = (φ −m)TW (φ −m)+ λ |01m|1 , (4)
J2 (m) = (φ −m)TW (φ −m)+ µ |02m|1 , (5)

with operators

01 =


−1 1

−1 1
. . .
−1 1

−1 1

 , (6)

02 =


1 −2 1

1 −2 1
. . .
1 −2 1

1 −2 1

. (7)

Note that L1 norm regularization is the only norm that
favors sparse solutions and results in convex problems. Par-
ticularly, Lp norm regularization with p > 1 results in a
convex problem but does not promote sparsity, whereas that
with p < 1 promotes sparsity but results in non-convexity.

B. ITERATIVE REWEIGHTED LEAST SQUARES ALGORITHM
Although many algorithms, such as fast iterative shrinkage-
threshold algorithm (FISTA) and alternating direction
method of multipliers (ADMM), are available to solve
the problems formulated in Eqs. (4) and (5), itera-
tively reweighted least squares algorithm is used in this
work [38]–[40]. A least squares problem must be solved for
a linear model in each iteration of this method. Numerically
efficient algorithms are developed in the next subsection to
solve these least squares problems.

First, replace L1 norm in Eqs. (2) and (3) with a continu-
ously differentiable one.

J1 ({mk})≈
n∑

k=1

wk (φk − mk)2+λ
n∑
k=2

(mk−mk−1)2√(
m̂k−m̂k−1

)2
+ δ

,

(8)

J2 ({mk})≈
n∑

k=1

wk (φk − mk)2

+µ

n∑
k=3

(mk − 2mk−1+mk−2)2√(
m̂k − 2m̂k−1+m̂k−2

)2
+δ

, (9)

where the value with an overbar denotes the estimate obtained
in the immediate previous iteration, and δ is a positive small
number to avoid possible problems of dividing by zero.
Accordingly, Eqs. (4) and (5) are approximated by

J1 (m) ≈ (φ −m)TW (φ −m)+ λmT0T
1D101m, (10)

J2 (m) ≈ (φ −m)TW (φ −m)+ µmT0T
2D202m, (11)

D1 =


d11

. . .

d1i
. . .

d1k−1


d1i =

1√(
m̂i − m̂i−1

)2
+ δ

,

D2 =


d21

. . .

d2i
. . .

d2k−1


d2i =

1√(
m̂i − 2m̂i−1 + m̂i−2

)2
+ δ

.

Hence, minimizers of Eqs. (10) and (11) satisfy the following
necessary conditions:(

W + λ0T
1D101

)
m̂ (λ) = Wφ, (12)(

W + µ0T
2D202

)
m̂ (µ) = Wφ. (13)

Instead of directly solving the numerically efficient algo-
rithms mentioned above (see next subsections for the brief
discussion), the special structure of the coefficient matrices
is simply adopted. Let superscript (i) denote the ith iteration,
whereby the iteration is terminated when

∣∣∣m̂(i) − m̂(i−1)∣∣∣ is
not more than the predetermined small positive constant, such
as 0.0001. An initial guess for the iteration can be obtained
by letting D1/D2 be identity matrices.

C. NUMERICALLY EFFICIENT EQUATION SOLVERS
The tridiagonal coefficient matrix

(
W + λ0T

1D101
)

in
Eq. (12) can be expressed as (14), shown at the top of the
next page, where dk denotes the kth diagonal elements of
D1. Hence, Thomas algorithm, also called tridiagonal matrix
algorithm, is the Gaussian elimination algorithm constructed
for the tridiagonal matrix and can be used to solve Eq. (12).
First, a forward recursion is performed:

ck =
−λdk

wk + λdk−1 + λdk + λdk−1ck−1
(15)

k = 2, 3, · · · , n− 1, with c1 =
−λd1

w1 + λd1
,

gk =
wkφk + λdk−1gk−1

wk + λdk−1 + λdk + λdk−1ck−1

k = 2, 3, · · · , n, with g1 =
w1φ1

w1 + λd1
. (16)
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
w1 + λd1 −λd1
−λd1 w2 + λd1 + λd2 −λd2

. . .

−λdn−2 wn−1 + λdn−2 + λdn−1 −λdn−1
−λdn−1 wn + λdn−1

 , (14)

Then, the solution is obtained by performing the following
back substitution:

mk = gk − ckmk+1
k = n− 1, n− 2, · · · , 1, with mn = gn. (17)

This completes the algorithm development for solving the
first-order derivative regularization problem.

Let0T
2 =

[
ξ1 ξ2 · · · ξn−2

]
, ξ i =

[
. . . 1

i
−2
i+1

1
i+2

. . .
]T

,
we then have the following Cholesky rank-one update for-
mula:

M=
(
W+µ0T

2D202

)−1
=

(
W+µ

n−2∑
k=1

dkξ kξ
T
k

)−1
, (18)

where dk denotes the kth diagonal elements of D2. Not
to be confused with that in the above algorithm, let f =[
1 −2 1

]T ,Mk =

(
W + µ

k∑
j=1

djξ jξ
T
j

)−1
and the 3×3 sub-

matrix of Mk−1 starting from kth row and kth column be
denoted as Uk . Then, based on the Shermann–Morrison for-
mula, we have

Mk = Mk−1 −
µdk

1+ µdk f TUk f

 0 0 0
0 Uk ff TUk 0
0 0 0


k = 1, 2, · · · , n− 2, with M0 = W−1. (19)

The location of the submatrix Uk ff TUk in the bracket is
the same as that of Uk in Mk−1, which means that in each
iteration, such as that in Eq. (19), only nine elements (a
3×3 submatrix) must be updated. After the final iteration,
we haveM = Mn−2. Finally, we have

m̂ (µ) = MWφ. (20)

This completes the algorithm development for solving the
second-order derivative regularization problem.

D. DETERMINING THE REGULARIZATION COEFFICIENTS
BY USING THE BOOTSTRAP TECHNIQUE
Modeling errors are inevitable in empirical models. Themod-
eling errors are assessed by using the bootstrap method [36].
First, select the regularization coefficient corresponding to
the minimum modeling error. Then, determine the candidate
set of the regularization coefficients. For example,

λ or µ ∈ C = {0.1, 1, 10, 100, . . . }.

For each coefficient in the candidate set, perform the mod-
eling process described in II. B or II.C. Define the following

normalized residuals (residual of the carrier phase measure-
ment residual)

$k = wk
(
φk − m̂k

)
, k = 1, 2, · · · , n. (21)

This residual series is homoscedastic. We randomly sample
from the above normalized residual series with a replacement
to obtain series {ϕk}. Add series {ϕk/wk} to

{
m̂k
}
to obtain

a resampled measurement vector φ̃. Repeat this resampling
process B times. For example, B = 50. For the bth resampled
measurement vector, 1 ≤ b ≤ B. Perform the modeling
described in II. B or II.C. Let the corresponding estimate be
denoted as m̂b (λ) or m̂b (µ). The argument λ/µ is introduced
intentionally to denote the dependence on the regularization
coefficients. Let the following average be the final estimate
for the corresponding regularization coefficients

m̂ (λ) =
1

B+ 1

B∑
b=0

m̂b (λ)

m̂ (µ) =
1

B+ 1

B∑
b=0

m̂b (µ). (22)

The subscript b = 0 denotes the solution obtained in II.A
or II. B by using the original measurement. The solution in
Eq. (22), often called bootstrap estimate, is generally better
than the one obtained by using only the originalmeasurement.
Define the following error statistics with the following:

err (λ) =
1
nB

B∑
b=0

[
m̂b (λ)− m̂ (λ)

]T [m̂b (λ)− m̂ (λ)
]

err (µ) =
1
nB

B∑
b=0

[
m̂b (µ)− m̂ (µ)

]T [m̂b (µ)− m̂ (µ)
]
.

(23)

These error statistics denote the overall modeling errors with
different modeling strategies (first- or second-order deriva-
tive regularization) and hyper parameters λ/µ. Finally, the
regularization coefficient is determined as follows:

λ̂ = argmin
λ∈C

err (λ)

µ̂ = argmin
µ∈C

err (µ) . (24)

The estimate based on the coefficient in Eq. (22) is the final
estimate, which is used to correct the measurement at the
same time of the future period.
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FIGURE 1. Flowchart of the proposed multipath error modeling method.

FIGURE 2. Carrier phase residuals of G02 (left), G05 (middle), G21(right) under static mode on DOY-272-273-PM. (The RMS value with a different color
belongs to the curve of the same color.)

III. DATA PROCESSING RESULTS
Two datasets were conducted on the rooftop of the School
of Environment Science and Spatial Informatics in China
University of Mining and Technology to evaluate the effec-
tiveness of the proposed method in multipath mitigation. One
dataset was collected from 14:00 to 18:00 on 29 Septem-
ber 2017 and 30 September 2017 and named DOY-272-PM
and DOY-273-PM, respectively with a sampling rate of 1 Hz
and 10◦ elevation mask angle. Another dataset was collected
from 8:00 to 11:00 on 7October 2017 and 8October 2017 and
named DOY-280-AM and DOY-281-AM, respectively, under
the same observation settings. One antenna was mounted at
an empty corner with an unobstructed environment, which
was used as the base station. Another antenna was placed
approximately 5 m away from the southeast direction of a
white wall, which was used as the rover station. The two
GNSS receivers were Trimble R10 units and the length of
the baseline is around 62.210 m. To ensure that the base
station was not affected bymultipath effects and that the rover

station had a significant multipath effect, we turned off the
anti-multipath function of the rover station as the function of
the base station was switched on. The processing software
of mitigating multipath error was developed based on GNSS
data processing software RTKLIB [41]. Multipath mitigation
based on double-differenced (DD) sidereal filtering requires
the following steps [42]. First, process the previous period
dataset under static mode, and the final baseline vector can
be estimated after ambiguities are resolved. Second, substi-
tute the integer ambiguities and baseline vector back to the
DD equation epoch by epoch. We can obtain DD residu-
als in the DD multipath and noise for each satellite. Third,
we can establish DD multipath models after DD residuals are
denoised by using the method proposed in Section II. Finally,
apply the extracted multipath model to the next period data
with time shift. The baseline vector at each epoch is estimated
independently in the kinematic mode with ambiguities fixed.
Fig. 1 shows the flowchart of the proposed multipath mitiga-
tion approach based on L1 norm regularization.
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FIGURE 3. Carrier phase residuals of G12 (left), G25 (middle), G28(right) under kinematic mode DOY-280-281-AM. (The RMS value with a different color
belongs to the curve of the same color.)

FIGURE 4. Original coordinate residual series in EAST, NORTH, and UP on DOY-272-273-PM (left) and DOY-280-281-AM (right) under kinematic
mode. (The RMS value with a different color belongs to the curve of the same color.)

FIGURE 5. Correlation of residuals (bar) and residual time–shift (plot) corresponding to the maximum correlation coefficients of different GPS
satellites on DOY-272-PM (left) and DOY-280-AM (right), respectively.

The three commonly used methods for estimating the mul-
tipath repeat time [20] are orbit repeat time method [18],
ARTA [17], [19], and residual correlation method [43]. More
details can be found in reference [20] on the comparison of

derived multipath repeat time estimates by using the three
methods. Sidereal filtering has been well developed and
widely applied and most of the existing methods are based on
transforming double-difference to single-difference residuals
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FIGURE 6. Carrier phase residuals and multipath error extracted by using first- (top) and second-order (middle) regularization methods and wavelet
filter (bottom) of G06 (left), G18 (middle), G20 (right) on DOY-272-PM.

following the approach proposed by Alber et al. [44], such
as those found in [16], [42], and [45]. The single-difference
operation has the advantage of processing data from each
satellite separately, rather than working with a pair of satel-
lites. Directlymodeling double-differencemultipath error has
also been studied [43].Without loss of generality in this work,
we use residual correlation method to calculate the multipath
repeat time following the double-difference operation mode.

On the basis of the steps shown in Fig. 1, we calculated the
L1 phase residuals of different GPS satellites (also applicable
to L2 measurements). For short baseline experiments, poste-
rior DD residuals mainly consist of DD multipath errors and
measurement noises. Thus, fluctuations of DD residuals will
demonstrate the DDmultipath characteristics. In the observa-
tion domain, the carrier phase residuals of G02, G05, G21 and
G12, G25, G28 under static and kinematic modes on DOY-
272-PM, DOY-273-PM, and DOY-280-AM, DOY-281-AM,

are shown in Fig. 2–3, respectively. Fig. 4 shows the original
baseline vector residuals, which are the DDmultipath error in
the position domain, in EAST,NORTH, andUP onDOY-272-
PM, DOY-273-PM, and DOY-280-AM, DOY-281-AM under
kinematic mode, respectively. Root mean square (RMS) of
residuals is also displayed in the top corner. The first day
operates under static mode, thereby ensuring that ambigu-
ities are fixed in most epochs and residuals only contain
multipath error and noise. Kinematic mode is followed in
the second day as each epoch is treated separately. Common
parameters cannot affect the level of multipath error [43]. The
figures show that regardless of the observation or position
domain, the residuals (multipath error) almost repeat them-
selves in every sidereal day on consecutive days. The period-
ical repeatability phenomenon of the multipath signal is due
to the periodical motion of a satellite. Hence, the assump-
tion is that the station environment remains unchanged for
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FIGURE 7. Carrier phase residuals and multipath error extracted by using first- (top) and second-order (middle) regularization methods and wavelet
filter (bottom) of G05 (left), G09 (middle), G12 (right) on DOY-280-AM.

subsequent days. Fig. 4 presents that the baseline vector
residuals in the first half hour on DOY-280-AM and DOY-
281-AM was abnormal, which may be caused by the signal
loss of lock, and the ambiguities are not fixed.

As mentioned earlier, sidereal filter is used to mitigate
the multipath error, and residual correlation method is used
to calculate the multipath repeat time. Normally, shift time
represents the multipath repeat time when the consecutive
day residual series has a maximal correlation coefficient.
Fig. 5 shows the time shifts of the measurement residual
corresponding to the maximum correlation coefficients and
statistics. The mean residual time shifts where correlation
coefficients reach maximum value is 248 s, and the mean
of correlation coefficients are as high as 0.921 in spite of
the existence of uncorrelated noises on consecutive days.
Thus, we can mitigate multipath effects by using previously

developed multipath models based on orbital repeat time
due to the remarkable correlation from the sidereal filtering
method.

The multipath signals are extracted by using the pro-
posed sparsity-promoting regularization method in this study.
Other methods [9], [46], [47] with the same aims have been
proposed in the literature. Among them, wavelet threshold
denoising method is chosen as an example in data analysis to
obtain an intuitive appreciation for the relative performance
of the developed method. G06, G18, and G20 on Doy-272-
PM and G05, G09 and G12 on Doy-280-AM are taken as
examples. Fig. 6–7 show the extracted multipath signals with
first- and second-order regularization, respectively. From
these figures, the following conclusions can be drawn. First,
the multipath signals can be extracted correctly by first- and
second-order regularization constraint, wherein the multipath

VOLUME 7, 2019 24103



C. Chen et al.: GNSS Multipath Error Modeling and Mitigation by Using Sparsity-Promoting Regularization

FIGURE 8. Frequency of zero for mk − mk−1.

FIGURE 9. Carrier phase residuals of G02, G05, and G18 before and after applying sidereal filtering on DOY-273-PM: raw vs. mitigated with first-order
regularization (top); raw vs. mitigated with wavelet filtering (bottom). (The RMS value with a different color belongs to the curve of the same color.)

signals are relatively smoother than raw measurement resid-
uals. The second observation implies the denoising effect of
the proposed method. The third presents that first-order regu-
larization method is only slightly better than the second-order
regularization method, which is consistent with the fact that
reduced smooth property of multipath signals. For the sake

of brevity, only the results from first-order regularization
method are shown as second-order regularization method
obtains similar results and leads to the same conclusion. Com-
pared with classical wavelet filtering, the extracted multipath
error curves by using the proposed methods can approxi-
mately coincide with the use of wavelet filtering. Fig. 6–7
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FIGURE 10. Carrier phase residuals of G12, G18, and G28 before and after applying sidereal filtering on DOY-273-PM: raw vs. mitigated with first-order
regularization (top); raw vs. mitigated with wavelet filtering (bottom). (The RMS value with a different color belongs to the curve of the same color.)

FIGURE 11. Baseline coordinate residuals in East, North, and Up directions by using raw measurements (red) and measurements corrected by using
sidereal filtering with first-order regularization (cyan) on DOY-273-PM and DOY-281-AM, respectively. (The RMS value with a different color belongs
to the curve of the same color.)

show the effectiveness of regularizationmethod. InFig. 8, it is
clearly shown that there is a significant part of between-epoch
different in the models constructed.

After the multipath signals are extracted correctly, the two
key steps of sidereal filter are completed, namely, multipath
model and repeat time. Thus, the multipath model is sub-
tracted from the obtained time shift by using the last period
data to the current period data. Fig. 9–10 show the posterior
DD residuals before and after application of sidereal filter

of G02, G05, and G18 on DOY-273-PM and G12, G17, and
G28 on DOY-281-AM, respectively. The figures show that
multipath error can be mitigated effectively and that pos-
terior residuals only reflect the random characteristics after
sidereal filter (cyan lines). Hence, effectiveness of the pro-
posed method is further verified. The direct consequence of
this efficacy is the smoother coordinate series obtained with
multipath mitigation by using wavelet filtering first-order
regularization than those without mitigation (Fig. 11–12),
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FIGURE 12. Baseline coordinate residuals in East, North, and Up directions by using raw measurements (red) and measurements corrected by
using sidereal filtering with wavelet filtering (cyan) on DOY-273-PM and DOY-281-AM, respectively. (The RMS value with a different color belongs
to the curve of the same color.)

FIGURE 13. RMS (bar) and improvement (plot) of measurement residuals before and after multipath mitigation by using sidereal filtering with
first-order regularization (SF–R) and wavelet filtering (SF–W) on DOY-273-PM and DOY-281-AM, respectively.

TABLE 1. RMS (mm) and improvement of baseline coordinate residuals before and after sidereal filtering with first-order regularization and wavelet
filtering.

and RMS of the residuals are displayed in the top corner.
Fig. 13 and TABLE 1–2 show the statistics of residuals in
the observation and position domains. The figure and tables
show that (1) the ambiguity fixed rate before and after sidereal
filter and multipath mitigation increased the fixed rate from
94.8% to 98.2% on DOY-273-PM and 93.7% to 97.7% on
DOY-281-AM, respectively; (2) the cyan lines are relatively

smoother and less outlying than the original results, espe-
cially during 15:30 to 16:00 on DOY-273-PM. Smoothness
of the calculated coordinates by using the corrected measure-
ments is improved significantly compared with those from
rawmeasurements; (3) the average improvements along East,
North, and Up directions after multipath mitigation by using
wavelet filter and first-order regularization are 19.4%, 26.8%,
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TABLE 2. Fixed rate values of ambiguity before and after multipath mitigation on DOY-273-PM and DOY-281-AM.

36.8% and 20.8%, 26.3%, 37.8%, respectively. These results
show the efficacy of the proposed method. The experimental
results validate the effectiveness of the proposed method.

IV. CONCLUSION
Multipath mitigation is an important step in GNSS data pro-
cessing for high precision geodetic/geophysical and engineer-
ing applications. This work investigates the characteristics
of multipath effect and provides an alternative strategy to
extract an accurate multipath model. A new sidereal filtering
with sparsity promoting regularization is proposed tomitigate
multipath error for static short baseline GNSS applications.
Two regularization terms, namely the first order and the sec-
ond order differences, are considered and compared. These
regularization terms are introduced to constrain the complex-
ity of the resulted model and hence to promote a simpler
model with relatively better generalization capability. The
regularization parameters, namely the Lagrange multipliers,
are optimized objectively using bootstrap method. Two short
baselines with different sampling rates and different process-
ing modes have been used to assess the characteristics of
multipath effect and the performance of the proposedmethod.
From the experiment result, the merit of the proposed method
is demonstrated. The main conclusions are summarized from
experiment results as follows:

1. No matter in observation domain or in position domain,
the residuals (multipath error) almost repeated themselves
every sidereal day on consecutive days. The periodical
repeatability phenomenon ofmultipath signal results from the
periodical motion of a satellite.

2. The multipath signals can be modeled well by the spar-
sity promoting regularization methods and the second-order
regularization method is only slightly better than the first-
order.

3. After sidereal filtering, in observation, the proposed
method can improve the RMS of carrier phase measurement
residuals by about 66.7% compared with the result without
multipath mitigation in two datasets. In position domain,
the positioning precision is improved by about 20.8%, 26.3%,
37.8% in East/North/Up directions, respectively.

4. After multipath mitigation, the ambiguity fixed rate is
improved 3.7% in average in kinematic mode.

As a final note, though double difference mode is followed
in this work, the proposed method can be easily applied
to single and zero difference modes, provided system error
terms rather than multipath errors can be appropriately taken
care of.
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