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ABSTRACT Obtaining precise whole-heart segmentation from computed tomography (CT) or other imaging
techniques is prerequisite to clinically analyze the cardiac status, which plays an important role in the
treatment of cardiovascular diseases. However, the whole-heart segmentation is still a challenging task due
to the characteristic of medical images, such as far more background voxels than foreground voxels and
the indistinct boundaries of adjacent tissues. In this paper, we first present a new deeply supervised 3D
UNET which applies multi-depth fusion to the original network for a better extract context information.
Then, we apply focal loss to the field of image segmentation and expand its application to multi-category
tasks. Finally, the focal loss is incorporated into the Dice loss function (which can be used to solve category
imbalance problem) to form a new loss function, which we call hybrid loss. We evaluate our new pipeline
on the MICCAI 2017 whole-heart CT dataset, and it obtains a Dice score of 90.73%, which is better than
most of the state-of-the-art methods.

INDEX TERMS CT image segmentation, focal loss, deeply-supervised, multi-depth fusion.

I. INTRODUCTION
Whole-heart CT image segmentation refers to predicting the
corresponding category for each voxel in whole-heart CT
images, so as to obtain the volume and shape of all cardiac
substructures, including pulmonary artery, ascending aorta,
right ventricle blood cavity, right atrium blood cavity, left
ventricle blood cavity, left atrium blood cavity, and left ven-
tricular myocardium. It is one of the main steps for the
diagnosis and analysis of cardiovascular diseases. By get-
ting the whole-heart segmentation results, other functional
indicators (ejection fraction, myocardial mass/movement,
ventricular volume) can be obtained, which play important
roles in the detection of heart failure and congenital heart
malfunction [1].

In the past few years, statistical models [2], [3] and atlas-
based methods [4]–[6] were widely used on the whole-heart
segmentation task. In statistical models, variable parameter
models of the heart structure need to be trained from the
dataset, and they can be easily over-fitted when the amount of
training images is small. Atlas-based methods need to align
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the target image to one or more template images by using a
registration algorithm, then the labels of template images will
transmit back to the target image to get segmentation results,
whichmakes these methods highly rely on the accuracy of the
registration algorithm. Zhuang et al. [7] modified the method
by adjusting the weight of each template image through cal-
culating conditional entropy to improve the accuracy. Further
in 2016, Zhuang and Shen [8] applied multi-scale and multi-
modality atlases to enhance the registration effectiveness.
Atlas-based methods have been popular for many years, but
they are usually time consuming to achieve accurate segmen-
tation results (from a few minutes to a few hours, such as the
method reported in [8] takes 12.58 minutes).

In recent years, the full convolution network (FCN) [9]
has been put forward and increasing researchers have been
using deep learning in image segmentation tasks. A common
network used in medical image segmentation is UNET [10].
Similar to FCN, UNET is made up of an encoding module
and a following decoding module, whose decoding mod-
ule is highly symmetric with the encoding module. Further-
more, UNET has many remote skip connections between
the encoding and decoding modules, which are designed to
maintain spatial information lost in the encoding process.
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FIGURE 1. Diagrams of the structure of FCN and UNET. (a) The structure diagram of the FCN. The encoding module is composed of convolution modules
and pooling modules, which constantly reduce the size of the feature map and increase the number of channels. The decoding module uses
deconvolution modules to restore the feature map to the same resolution of the input image, thus obtaining the segmentation result of the input image.
(b) The structure diagram of the UNET. The main difference between FCN and UNET is that the encoding module and the decoding module of UNET are
highly symmetric. Between the encoding module and the decoding module exists skip connections, which are helpful to recover image information from
the encoding result step by step.

The comparison of the structures of the FCN and UNET is
shown in Fig. 1.

Whole-heart CT images are often analyzed slice-by-slice
on 2D images [11], [12]. Its advantage is the low consumption
of storage space and computing time. In addition, pre-trained
nets can be easily used for fine-tuning with 2D inputs. How-
ever, using 2D images leads to the loss of context information
between slices. This problem can be solved by using an
LSTM [13] or CRF [14], which can reserve the slice-to-
slice context information. Wang and Smedby [15] sliced the
whole-heart CT images in three orthogonal directions (axial,
coronal and sagittal view) and averaged these three proba-
bility graph outputs to make use of the slice-to-slice context
information. Since 3D convolution methods keep the context
information to the greatest extent, Dolz et al. [16] applied
3D CNN to the segmentation of the subcortical structure.
Tong et al. [17] extracted interested areas through the use of
the 3D UNET to focus on useful regions. Yang et al. [18]
applied 3D fine-tuning to 3D UNET to accelerate conver-
gence. Payer et al. [19] adopted a tag transformation network
after the UNET network by using the context configura-
tion of different heart substructures [19] and won the first
prize of the MICCAI 2017 Multi-Modality Whole Heart
Segmentation Challenge. Recently, more advanced networks
for medical image segmentation such as DenseVNet [20],
VoxResNet [21] and AtriaNet [22] have been proposed. Fur-
ther description of these networks are given in the second
section.

FIGURE 2. A single whole-heart CT image slice (left), and the
corresponding segmentation label (right). Area 1 corresponds to right
atrium blood cavity, area 2 corresponds to right ventricle blood cavity,
area 3 corresponds to ascending aorta, area 4 corresponds to left atrium
blood cavity, and area 5 corresponds to left ventricle blood cavity, area
6 corresponds to left ventricular myocardium. The boundaries of different
regions are relatively indistinct, so these boundary pixels belong to
indistinguishable pixels.

Though many advanced structures of networks have been
applied to medical image segmentation, there are still many
issues to be resolved. As shown in Fig. 2, the number of
background voxels in CT images is far more than that of fore-
ground voxels, and the boundaries between different adjacent
tissues are relatively indistinct. In addition, we often can-
not find sufficient labelled samples for training and testing
networks. People often use Dice loss [23], Jaccard loss [24]
or training a localization network to clip out the back-
ground region [19] to solve the problem of class imbalance
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FIGURE 3. The Resnet, Multi-Resnet, PolyNet, ResNext are shown from left to right. Some studies [28] have shown that the residual
network performs well is due to a large number of short-path networks. A basic block of Resnet consists of a skip connection and
a residual branch. In each basic block, information can optionally be propagated through the skip connection or the residual
branch. This resulting in the short path number equal to 2N (N means to the number of residual blocks). Multi-Resnet proves that
increasing the number of parallel residual branches may produce more efficient short paths. ResNext reduces the number of
parameters of the multi-residual branches by using 1x1 convolution and group convolution [32]. Finally, Inspired by Inception
Network [33], PolyNet shows that using multi-scale structures in multi-residual branches helps improve network performance.

in 3D medical images, and use data augmentation or deeply-
supervising [17] to alleviate the lack of samples. However,
these schemes do not focus on the indistinguishable boundary
voxels.

Our work can be summarized as follows:
1. Based on the original 3D deeply-supervised UNET,

we proposed a novel network with enhanced segmentation
accuracy by continuously combining local and global features
through multi-depth fusion.

2. We proposed Hybrid Loss, which incorporated Focal
loss into the proposed network to make the model more focus
on indistinguishable boundary voxels.

Finally, we achieved an average Dice score of 90.73% on
the MICCAI 2017 whole-heart CT dataset, which is better
than most of the state-of-the-art methods.

II. RELATED WORK
Building a deeper network has long been considered to
play an important role in improving network performance.
But a deeper network usually leads to the disappearance of
gradients. Resnet [25] alleviates the gradient disappearance
problem by using skip connections, and Densenet [26] by
using feature reusing. They both achieved deeper networks
and showed excellent results. In the field of medical image
segmentation, DenseVNet [20] applies DenseNet to 3D
FCN, VoxResNet [21] improves segmentation performance
by applying residual modules to down-sampling modules.
DRINET combines DenseNet and Inception-ResNet [27] to
improve performance and becomes one of the most advanced
medical image segmentation networks. However, there are
also other studies showing that a deeper network is not the
onlyway to improve performance. Recent studies have shown

that ResNet is more like a collection of many shallower net-
works [28]. Based on this idea, many shallower networkswith
amulti-residual branch likeMulti-ResNet [29], ResNext [30],
PolyNet [31] have been developed and achieved better results
than the original ResNet, which seems to prove that fusing
multi-residual branches ismore effective than simply increase
the network depth. A schematic diagram of a multi-residual
branch network is shown in Fig. 3.

On the other hand, combining the local and global infor-
mation of the images can help improve the segmentation
accuracy. AtriaNet [22] first randomly crops the sub-volume
of the original volume data as a training sample. Then it crops
a larger area centered on the training sample and inputs it into
the network to provide context information of the training
sample. Combining local and global information can also be
achieved by fusing shallow feature maps and deep feature
maps, as Densenet does. Yu et al. [34] claimed that only
using skip connections to fuse feature maps is too rough,
and proposed an architecture of hierarchical and iteration
aggregation.

Our work was based on the 3D deeply-supervised UNET.
We extended the multi-branch residual network and inte-
grated multi-depth fusion to achieve feature aggregation.
After that, we applied Focal loss, which could make the
network pay more attention to the indistinct boundary voxels.
More details are described in the following section.

III. METHOD
The overall structure of the proposed network is shown
in Fig. 4. The differences between our network and the origi-
nal 3D UNET can be understood in the following three main
aspects:
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FIGURE 4. The detailed diagram of the network structure. The input layer size is a 96 × 96 × 96 × 1 four-dimensional tensor. We use
A∗B to describe the size of the feature map, where A represents feature map length/width/height and B represents the number of
feature map channels. It basically follows the UNET architecture. We introduced a deeply-supervised block and multi-depth fusion
block in the network structure to improve network performance.

FIGURE 5. The detailed diagram of the multi-depth fusion block. The black line indicates element wise averaging operations
to fuse feature maps of different depths. The green line means merging operations by element wise addition, which performs
like a residual block.

A. DEEPLY-SUPERVISED MECHANISM
The deeply-supervised mechanism refers to injecting addi-
tional auxiliary predictions in the hidden layer. As shown
in Fig. 4, we used a total of three deeply-supervised branches
in the up-sampling module in the network. In each deeply-
supervised branch, the feature map firstly expanded by
deconvolution (kernel size 3 × 3 × 3) until the feature map
is restored to the same resolution as the input layer. The size
of the feature map is doubled after each deconvolution oper-
ation. Then we applied loss function to each branch. When
training the network, we need to minimize the weighted sum

of the loss function in the deep supervisory branch and the
main branch.

The deeply-supervised mechanism can play a strong regu-
larization function when the training samples are insufficient,
thereby improves the generalization ability of the network
and the convergence speed of the network [35].

B. MULTI-DEPTH FUSION
Inspired by Larsson et al. [36], we used feature maps fusion
on the residual branch. The structure of themulti-depth fusion
block is shown in Fig. 5. The size of convolution kernels is
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set to 3×3×3 and with stride 1. Since we use the element
wise averaging to fuse feature maps, ‘‘same convolution’’
was used in our network to keep the same feature map size.
Theoretically, the more times we applied the convolution
operation, the larger receptive field a feature map would get.
For example, if we applied each 3 × 3 × 3 convolution
operation with stride 1, then after two convolution operations,
each point in the feature map would have a receptive field of
5× 5× 5. Since the shallower feature map can capture more
detailed information about the image and the deeper feature
map can obtain a larger receptive field to capture the context
information, by continuously merging the feature maps with
various depths, the new feature map would contain both local
and global information. Compared to simply merge feature
maps of different depths, we used an iterative layered fusion
approach. This architecture ensures that detailed information
from shallow feature maps is received each time when a
deep feature map is generated. Finally, this combination of
long and short paths is similar to deeply supervision: shorter
paths can quickly obtain predictions and effectively propagate
gradients, while deeper paths can achieve finer results.

C. HYBRID LOSS
1) DICE LOSS
As shown in Fig. 2, the number of background voxels in
CT images is far more than that of foreground voxels. This
leads to a serious category imbalance problem. This problem
is generally solved by using weighted cross entropy or Dice
loss. Giving the ground truth Gw×h×d and the predicted prob-
ability map PC×w×h×d, where w represents the width of the
volume data, h represents the height of the volume data, d rep-
resents the depth of the volume data, C represents the number
of categories of the substructure, and C×w×h×d indicates
that the probability map of the output is a four-dimensional
tensor whose size is C×w×h×d. Since the whole heart
segmentation task belongs to the multi-classification task,
it is necessary to encode the ground truth Gw×h×d into the
‘‘one hot’’ form of the C class to form a new ground truth
GC×w×h×d, then the Dice loss can be expressed as the fol-
lowing form:

LmDSC = −
C∑
c=1

×

2×|
w∑
x=1

h∑
y=1

d∑
z=1

Gc,x,y,z×Pc,x,y,z|

|

w∑
x=1

h∑
y=1

d∑
z=1

Gc,x,y,z|+|
w∑
x=1

h∑
y=1

d∑
z=1

Pc,x,y,z|

(1)

where Pc,x,y,z(0 ≤ Pc,x,y,z ≤ 1) refers to the value of the
point (c, x, y, z) in the output probability map, and represents
the probability that the point (x, y, z) in the input image
belongs to the substructure of class c, and Gc,x,y,z (Gc,x,y,z

equals 0 or 1) represents the value of the point (c, x, y, z) in
the label map. IfGc,x,y,z equals 1, then the point (x, y, z) in the

input image belongs to the substructure of class c, otherwise
it does not.

2) FOCAL LOSS
Dice loss can help solve the problem of category imbalance,
but it does not solve the problem of indistinct boundary vox-
els. The intensities of voxels at the boundary of the anatomi-
cal structure (hard-to-divide voxels, HPs) may be very close,
making it difficult for the network to determine their labels.
On the other hand, the labels of the voxels which are far from
the anatomical boundary (easy-to-divide voxels, EPs) can be
easily decided. The weighted cross entropy loss commonly
used in the field of image segmentation does not solve the
problem of HPs well. If we use weighted cross entropy loss
as the loss function, although each correctly classified voxel
only produces a small loss, a large number of EPs will still
produce a significant amount of loss, thus affecting the effec-
tiveness of the network.

When the weighted cross entropy loss is applied to a multi-
classification task, the loss of a voxel (x, y, z) of the original
volume data can be written in the following form:

LmCross(x, y, z) = −αc
C∑
c=1

Gc,x,y,z logPc,x,y,z (2)

where αc is the weighted coefficient which is defined to
solve the problem of category imbalance. Let nc represent
the number of voxels belonging to the cth category in the
label image. The weighted coefficient for any category c is
calculated through (3).

αc = 1−
nc
C∑
c=1

nc

(3)

As each voxel in the volume data was only assigned to
a single category in the ground truth. After the ‘‘one hot’’
encoding process, the tag value corresponding to the real
category is 1, and all other tag values are 0. Assuming that
the real category of the voxel (x,y,z) in the ground truth is m,
then the value of Gc,x,y,z is defined as (4):

Gc,x,y,z =

{
0 c 6= m
1 c = m

(4)

Then the total loss defined by (2) can be simplified as (5).

LmCross(x, y, z) = −αm logPm,x,y,z (5)

Ignoring the weighted coefficient αm, the weighted cross
entropy loss calculated by (5) as the function of the predicted
value Pm,x,y,z is shown as the blue curve in Fig. 6. It can be
seen that even a voxel is confirmed to be correctly classified
(Pm,x,y,z > 0.5), (5) will still result in a relatively large loss.
This is detrimental to the convergence of neural networks to
optimal results.

Here, we proposed a multi-class Focal loss [37] to reduce
the loss of EPs and named it LmFOCAL(x, y, z), which is
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FIGURE 6. Comparison between the weighted cross entropy and Focal
loss functions. Assuming that the real category of the voxel (x, y, z) in
volume data is m, then in the predicted probability map Pm,x,y,z

represents the probability with which the voxel belongs to category m.
The blue and red curves show the trend of LmCross (x, y, z) and LmFOCAL
(x, y, z) as a function of Pm,x,y,z, respectively.

shown in (6).

LmFOCAL(x, y, z)=−αm(1− Pm,x,y,z)r logPm,x,y,z (6)

Compared with the weighted cross entropy loss, Focal loss
has one more adjustment term (1-Pm,x,y,z)r, where r is the
focus parameter (r >=0, we set r to 4 in this work). Using the
Focal loss, if an EP results in a higher Pm,x,y,z, the adjustment
term (1-Pm,x,y,z)rwill quickly decrease to a negligible value.
And when a voxel is incorrectly classified, its Pm,x,y,z will
usually be small, then the adjustment term (1-Pm,x,y,z)r will
be close to 1 and the Focal loss will approximate the weighted
cross entropy loss. An intuitive comparison is shown in Fig. 6.
LmFOCAL (x, y, z) greatly reduces the loss of correctly clas-
sified voxels, that is, reduces the influence of EPs and forces
CNN to focus on learning features which can reduce the loss
of HPs.

The Focal loss of the whole volume data is the sum of the
losses of all individual voxels, as shown in (7).

LmFOCAL =
w∑
x=1

h∑
y=1

d∑
z=1

LmFOCAL(x, y, z) (7)

The Focal loss and the Dice loss were then combined as the
final loss function (shown as L in (8)). This final loss function
gave consideration to both the problem of category imbalance
and segmentation of the HPs.

L = 100× LmDSC + 1× LmFOCAL (8)

Finally, the mixed loss function was applied to the network
output and three deeply-supervised branches. Assuming that
LOut1∼3 represents the loss function of the three deeply-
supervised branches, LOut represents the loss function of the
network output, the loss function of the whole network is
shown in (9).

Ltotal = LOut+0.3×LOut1+0.6× LOut2+0.9×LOut3

(9)

IV. EXPERIMENTS AND RESULTS
A. DATA
We evaluated the proposed network on the MICCAI
2017 whole-heart CT dataset, which includes 60 cardiac
CT/CTA that covers the whole heart substructures (20 vol-
ume data as training dataset and the other 40 as the testing
dataset). All these clinical data were obtained using con-
ventional cardiac CT angiography at Shuguang Hospital,
Shanghai, China. Each volume data covers the entire heart
structure from the upper abdomen to the aortic arch. The
slices were obtained in the axial view, with the in-plane
resolution about 0.78 mm× 0.78 mm and the average slice
thickness of 1.60 mm. These data were collected in the in
vivo clinical environment, so had various image qualities.
Since we cannot obtain labels of the testing dataset, as sug-

gested in [38], we randomly selected 10 volume data as the
training dataset and the other 10 volume data as the testing
dataset.

B. EVALUATION
To evaluate the segmentation results, two types of measures
are usually used: the Jaccard score and the Dice score. The
Jaccard score is defined as the ratio of the intersection and
union of the predicted and actual results. Given the set of
predicted results A and actual results B, the Jaccard score can
be calculated from (10).

Jaccard(A,B) =
|A ∩ B|

|A| + |B| − |A ∩ B|
(10)

The Dice score means the Dice similarity coeffi-
cient (DSC) and measures the spatial overlap between the
predicted and actual results, which can be explained as (11).

DSC(A,B) =
2× |A ∩ B|
|A| + |B|

(11)

C. EXPERIMENTAL DETAILS
We used Tensorflow to train and test the network. In order to
verify the ideas of our network, we use the same partition-
ing method to divide training dataset and testing dataset as
described in the Baseline model [38]. And we used the same
way in [38] to do data augmentation: the original volume data
was randomly cropped to a sub-volume of 96× 96× 96 and
rotationwas applied to the sub-volume for data augmentation.
All training samples were normalized to zero mean and unit
variance. We used Adam as the optimizer to update weights
of the network, and the batch size was set to 1. The initial
learning rate was 0.001. When the accuracy could not con-
verge, the learning rate was halved, and the final iteration
was about 60,000 epochs. All experiments were performed on
an Intel(R) Core(TM) i7-6800K-based workstation equipped
with a 12GB NVidia Geforce Titan X.

D. EXPERIMENTAL RESULTS
To test the effectiveness of multi-depth fusion and Hybrid
Loss, we first simply applied multi-depth fusion to the
pipeline, then both the multi-depth fusion and the Hybrid
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TABLE 1. The comparison between our model and baseline, measured by the Jaccard score.

TABLE 2. The comparison between our model and the top seven results of MICCAI 2017 Multi-Modality Whole Heart Segmentation challenge, measured
by the Dice score.

Loss were applied. Along with the Baseline method, Jaccard
scores of the three networks were calculated.

The performance of the three networks in the pulmonary
artery (PUA), ascending aorta (ASA), right ventricular blood
chamber (RVBC), right atrial blood chamber (RABC), left
ventricular blood chamber (LVBC), left atrial blood chamber
(LABC), myocardium of the left ventricle (MLV) is shown
in Table 1. The results demonstrate that our network achieved
significantly higher scores compared to the Baseline model.

Finally, we compared the accuracy of our network
with those of the top seven participants of the MICCAI
2017 Multi-Modality Whole Heart Segmentation Challenge.
Their results were extracted from Payer et al. [19], who won
the first prize in the challenge. Measured by the Dice score,
the comparison of results is shown in Table 2. The results
show that we have achieved the most advanced performance.

Some of the segmentation results on the testing dataset
are demonstrated in Fig. 7. Snapshots were taken using
ITK-SNAP 3.8.

V. DISCUSSION
Segmenting whole-heart substructures from CT images has
always been a challenging task. It is extremely difficult
to identify the boundaries of different anatomical substruc-
tures because of the blurred voxels in between. In addition,
the shape of the heart can be greatly changed during exer-
cise or in diseases, which further increases the difficulty of
automatic segmentation of the whole heart. Models trained
according to healthy data may not be able to perform well
on pathological data [1]. This boundary indistinctness and
large variations in the anatomical structure in cardiac CT
images force us to capture more advanced features from
images such as textures to identify the boundaries. In order
to address the indistinct boundaries and anatomical changes,
it may be useful to obtain larger context information. In the
field of natural images, Deeplab expands the receptive field

FIGURE 7. Comparison of the ground truth and segmentation results on
two volume data. (Ai, Aii) The volume data with the worst segmentation
results. (Bi, Bii) The volume data with the best segmentation results.
(Ai, Bi) Ground truths of the two volume data. (Aii, Bii) Prediction results
of the two volume data.

by using cavity convolution to obtain a larger context [39],
however, as Deeplab uses the same dilation rates in each layer,
the voxels in high-level featuremaps only receive information
in a checkerboard fashion, and lose a large portion of informa-
tion [40]. Combining multi-scale features seems to be more
effective than simply expanding the filter’s receptive field.
Since filters located in deeper layers have greater receptive
fields [41], combining feature maps of multiple depths helps
to obtain multiple levels of context features. We used the
idea of amulti-residual branch network and combined context
information by the layered iterative fusion to build a powerful
segmentation tool.
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Another difficulty in applying deep learning to whole-heart
segmentation is that training deep neural networks usually
requires a large amount of training data. It is expensive
to obtain a large number of whole-heart segmented sam-
ples because it takes a lot of time and efforts of human
experts to label different structures from medical images.
Under these circumstances, the deeply-supervised mecha-
nism shows superior performance when the training data set
is small. It has a regularization effect, and can alleviate the
over-fitting problem. In addition, we randomly crop the sub-
volume from the entire volume as the training sample and
apply a rotation transform on it, which also increases the
number of training samples. Another idea is to let the data
determine the depth of the network. Zhou et al. [12] proposed
a novel architecture to select appropriate depths in the UNET
by pruning the neural network, in order to effectively select
the optimal network structure based on the size of an existing
training dataset.

For voxels that are far from the boundary, the neural net-
work should be able to accurately determine its class based
on contextual information. However, due to a large number
of such voxels, the loss value will accumulate to a level
big enough to hinder the convergence of the network to the
optimal result. Focal loss reduces the loss of EPs and forces
the network to focus on dividing indivisible voxels on bound-
aries without the need for additional boundary correction
steps [42]. Compared to the common method which uses
the localization network to crop the region of interest for
segmentation [17], our method is end-to-end and suppresses
category imbalance by using Hybrid Loss.

We also tried to use random paths [36] in multi-depth
fusion blocks. Surprisingly, the network using random paths
did not show a superior effect (the Dice score decreased by
0.17% in the case of the same training hyper-parameters and
number of iterations). A possible reason is that the random
path destroys the collaboration of different paths to fuse
features. Due to the limit of storage space, we have only
tried multiple depth fusion in the up sampling phase and
down sampling phase. It may be effective to introduce the
multi-depth fusion in the UNET skip connections phase.

Our approach is generic and can be migrated to tasks simi-
lar to the whole-heart segmentation, such as the segmentation
of brain structures.

VI. CONCLUSION
In this study, we have developed and evaluated a new
deeply-supervised UNET for robust whole-heart segmenta-
tion from CT images. The network has three key features:
the deeply-supervisedmechanism,multi-depth fusion blocks,
and Hybrid Loss. Our method can generate more advanced
features by continuously fusing local and global information,
and reduces the loss of EPs, which allows the network to
focus on dividing indistinct borders.

We have applied the segmentation network on theMICCAI
2017 whole-heart CT dataset. Results showed that it is supe-
rior to most of advanced CNNs proposed recently, and there

is a significant improvement in the segmentation of the pul-
monary artery, ascending aorta and right ventricular blood
cavity. It will surely contribute to the establishment of more
robust and accurate whole-heart segmentation methods and
assist in the diagnosis and treatment of patients with heart
diseases.
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