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ABSTRACT In practical wireless sensor networks (WSNs)-based applications, often only a few nodes are
active while most of the others are activated occasionally due to limited resource of the WSNs. Thus most
sensors only provide a few observations and only a few sensors make many observations, which often cause
long-tail issue to undermine information fusion performance. So we present a confidence-aware information
fusion scheme named CAIF to solve such a problem. In particular, we first make a quantitative study on the
long-tail data phenomenon and the relationship between node-target distance and node sensing capability,
which can provide a guideline to improve node weight estimation error caused by long-tail data. Then,
we propose a truth discovery-based method in WSNs via incorporating node-target distance into the truth
discovery optimization solution framework to infer the sensor node’s fusion weight. In order to adapt to
the distribution characteristic of the WSNs, we propose a distributed implementation to estimate the sensor
nodes’ weights via confidence level and node-target distance to further improve the fusion performance.
Besides, the iterative process shown in CAIF converges to a stationary point of the optimization problem and
its time complexity is linear with respect to the total number of observations. Finally, we conduct extensive
experiments on real data to validate and evaluate CAIF. The experimental results demonstrate the superior
performance of our method over existing solutions in terms of root-mean-square error and accuracy.

INDEX TERMS Wireless sensor networks, information fusion, confidence level, weight optimization.

I. INTRODUCTION
Wireless sensor networks (WSNs) are gaining popularity in
diverse fields because they can support multiple applica-
tions [1]–[3]. Different from traditional networks, a WSN
enjoys its own layout and resource constraints, such as lim-
ited energy, short communication range, limited process-ing
and so on. Besides, sensor nodes with limited computing
resources are also small and inexpensive compared with
traditional sensors nodes. What is more, such constraints
depends on specific applications and monitored environme-
nts. Such environments play an important role in determ-
ining the network size, network topology, and deployment
strategy. To measure the same physical quantity, each sen-
sor node is characterized by its own performance (weight)
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and power usage. WSNs are usually deeply integrated with
dynamic physical environments where uncertainties are ubiq-
uitous [4], which result in conflicting observation for the
same detection target among the sensor nodes. Thus it is
important to distinguish the most trustworthy information by
utilizing information fusion techniques from multiple sensor
nodes of conflicting information in WSNs. This is a non-
trivial problem due to three major challenges.

A. WEIGHT ESTIMATION
Information conflicts have been researched in database area
for many years [5] and some approaches are also proposed
to process such conflicts for information fusion. Among
them, majority voting method [6] is usually utilized to solve
information conflicts for categorical data. This method treats
information owning the highest occurrences as the truth
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information and enjoys some robust-ness also in the case
of unequal quality sensors. While mean or median [7] can
also be regarded as the truth information and for continuous
values. The shortcoming of such methods mentioned above
is that all the sources (sensor nodes) are equally reliable
and have the same weight. In complicated world informa-
tion fusion, fusion weight estimation plays is important to
discover the correct information from conflict-ing data, espe-
cially when there exist sensor nodes providing low quality
information, such as faulty sensors that keep producing data.
However, the user does not know which sensor node is more
reliable and which piece of information is correct in advance.

B. DISTRIBUTED ESTIMATION [2]
WSN has distributed characteristic and often consists of
many sensors deployed in the practical surveillance area.
Each sensor node makes a local observation about under-
lying physical phenomenon, quantizes its observations, and
transfers the data back to a fusion center/base station (fusion
node). The goal of the sensor network design is to esti-
mate such physical phenomenon as accurately as possible
under the limited network resource. Thus it is necessary to
design distributed estimation framework to overcome this
challenge.

C. LONG-TAIL DATA [8]
The long-tail of multi-source data means that most moni-
toring targets obtain a few claims from a small number of
sensors and only a few targets obtain many claims from a lot
of sensors. In practical WSNs-based applications, there often
only a few sensor nodes are active while most of others are
activated occasionally, which often causes some nodes with
very few observations. The number of observations made by
the sensor nodes typically exhibits long-tail problem, that
is: 1) most of the sensor nodes only provide information
about one or two items; 2) there are only a few sensor nodes
that can make many observations. Long-tail phenomena are
ubiquitous in real world applications, which bring obstacles
to the task of information trustworth-iness estimation in the
process of information fusion.

While in WSNs-based information fusion, the node fusion
weight plays an important role in improving fusion perform-
ance, many truth discovery methods was proposed to estim-
ate such weight and infer truth without any supervision [9].
In particular, the observations about the same targets can be
acquired from a variety of sources. Under such circumstance,
information conflicts often are generated inevitably. Thus
how to identify the truths among conflicting data from multi-
ple sensor nodes becomes an important problem. Here the
truth information of a monitoring target is the most trustwor-
thy one from all possible candidate observations sensed by
sensors. To distinguish such truths, weighted aggregation
of the multi-source information is conducted based on the
estimated node weight. As for truth discovery problems, if a
set of assertions claimed by multiple sources (sensor nodes)
are given, each claimed value is labeled as true or false

and the reliability of each sensor node is computed. Node
weight estimation is the most important characteristic of truth
discovery. The current main research about truth discovery
focuses on iteratively computing and updating the trustworth-
iness of a source sensor as a function of the belief in its claims,
and then the belief score of each claim as a function of the
trustworthiness of the source sensors asserting it. Thus the
sensor node weight estimation and truth discovery steps are
closely linked: the sensor nodes with true information more
often will be allocated higher weight, and the informa-tion
given by sensor nodes with higher weight will be considered
as truth information.

Thus for the mentioned above challenges, a truth estima-
tion problem is considered in the paper, and a truth dis-
covery base Confidence Aware Information Fusion (CAIF)
approach is presented here to estimate such truths. The long-
tail data issue is first analyzed in WSNs and the relation-
ship between node-target distance and sensing performance
is also explored. These can provide guideline to overcome
the long-tail issue. Then based on such discovery, the sensor
node-target distance is incorporated into the truth discov-
ery framework to estimate the sensor nodes’ information
fusion weight which can improve the fusion performance.
In order to overcome physical environments’ uncertainties,
we combine both node-target distance and confidence level
of observation error to deal with long-tail data and fur-
ther improve the information fusion performance. What is
more, due to constrained-resource of the WSNs, we design
a distributed node weight estimation scheme via consider-
ing both node-target distance and confidence level, which
make CAIF be suitable to the distributed characteristic of the
WSNs. The contributions of this paper are summarized as
follows.

1)We propose a truth discovery based method to solve
long-tail data phenomenon in WSNs, which incorporate sen-
sor node-target distance into the truth discovery algorithm
optimization solution framework to infer the sensor node’s
information fusion weight.

2)We propose a distributed implementation in WSNs to
estimation the sensor nodes’ weights via considering both
confidence level and node-target distance. In particular,
we plug the node-target distance into squared loss of the
errors to compute its confidence interval. The optimized
weight is obtained via minimizing the confidence interval’s
upper bound, which can process the long-tail data better.
Besides, the iterative process shown in the proposed method
converges to a stationary point of the optimization problem
and its time complexity is linear with respect to the total
number of observations.

The rest of this paper is organized as follows. Related work
is reviewed in Section II. We give an overview about CAIF
in Section III. Quantitative study for long-tail data is intro-
duced in Section IV. Section V presents an confidence-aware
information fusion approach named CAIF. In Section VI,
we evaluate the performance of CAIF and analyze the results.
Finally, we give conclusive remarks in Section VII.
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II. RELATED WORK
In practical monitoring scenarios, many WSNs based appli-
cations utilize information fusion coming from various sensor
nodes to improve surveillance performance. A survey of the
current work [10] has been performed for information fusion
and event detection in WSNs. Zhao et al. [11] constructed
an efficient framework that can exploit multiple available
information to analyze and improve the performance of the
WSN-based indoor localization system. Multiple pieces of
information are fused to derive the relationship to the target
position and eliminate the error. The information fusion in
WSNs is divided into three levels: data level fusion, feature
level fusion and decision level fusion. A mechanical fault
diagnosis method based on multi-level hierarchical informa-
tion fusion in WSNs is proposed in [12] to meet the real-
time transmission of a large number of vibration signals when
applied to mechanical fault diagnosis. However, these works
assume all the sensor nodes are equally reliable, and thus the
votes from different sensor nodes are uniformlyweighted dur-
ing fusion process, which can not reflect the real monitoring
environ-ments.

While motivated by the importance but lack of knowle-
dge in nodes weight, we found that many truth discov-
ery approaches [13] have been proposed to estimate source
weight without any supervision in the field knowledge dis-
covery. In particular, the source weight can only be inferred
based on the data. The source weight estimation and truth
finding steps are tightly combined through the following
principle: The sources that provide true information more
often will be assigned higher weight degrees, and the infor-
mation that is supported by reliable sources will be regarded
as truths. For example, Wang [14] proposed a new model
that solves a bi-dimensional estimation problem to jointly
estimate the correctness and theme relevance of claims as
well as the source reliability and theme awareness of sources.
A multi-dimensional estimation problem is solved in [15] to
jointly estimate the correctness and mood neutrality of claims
as well as the reliability and mood sensitivity of sources.
A new time sensitive truth discovery scheme is proposed
in [16]. In this method, the source responsiveness and the
claim lifespan are incorporated into a analytical framework,
by which amaximum likelihood estimation problem is solved
to determine both the truth information and source weight.
Xu et al. [17] proposed an efficient and privacy-preserving
truth discovery scheme in crowd sensing systems. Specifi-
cally, it utilized the additive homomorphic privacy-preserving
data aggregation and super-increasing sequence techniques to
achieve both high performance and strong privacy protection.
In order to take advantage of a joint inference on data with
heterogeneous types for truth discovery, a conflict resolution
scheme [18], [19] is proposed to resolve conflicts among
multiple sources of heterogeneous data types. It modeled
the problem using an optimization framework where truths
and source reliability are defined as two sets of unknown
variables. The objective is to minimize the overall weighted
deviation between the truths and multi-source observations

where each source is weighted by its reliability. The works
mentioned above are not applied in WSNs and also do not
consider the limitations of WSNs. These works have been
applied in the database community for years. The approaches
mentioned are mainly centralized algorithms and also do not
consider long-tail problem.

In recent yeas, there are also some truth discovery based
methods. For example, Li et al. [20] focus on the probabilistic
model and formulate it as a geometric optimization problem.
Based on a sampling technique and a few other ideas, the
first (1 + ε)-approximation solution is achiev-ed. What is
more, a novel distributed truth discovery frame-work is pro-
posed in [21], which can effectively and efficiently aggregate
conflicting data stored across distributed servers, with the
differences among the objects as well as the importance level
of each server being considered. Because confidence interval
contains richer information, Liu et al. [22] propose a novel
approach called TruthDiscover to determine the most trust-
worthy object in LinkedData with a scale-free property.More
specifically, TruthDiscover consists of two core components:
Priori Belief Estimation for smoothing the trustworthiness
of sources by leveraging the topological properties of the
Source Belief Graph, and Truth Computation for inferencing
the trust-worthiness of source and trust value of an object.
Besides Zheng et al. [23] propose a new system architecture
enabling encrypted truth discovery in mobile crowd-sensing,
which focus on general and realistic mobile crowd-sensing
scenarios with varying levels of user participation, and the
security design is built on the confidence-aware truth dis-
covery approach for its state-of-the-art accuracy in such
scenarios. Along the whole workflow, the sensory data and
reliability degrees of users, as well as the inferred truths of
the requester, are kept private. But these works also do not
consider the limitations of WSNs.

Long tail data phenomenon is ubiquitous in WSN-based
applications. For example, Iyer et al. [24] shown that in
the wireless sensor networks the efficiency of cross-layer
QoS performance of routing algorithms with MAC losses
has a long tail, because it is similarly observed in Power
Law. Besides, in practical applications, in order to obtain
stringent accuracy requirements for target monitoring while
maximizing network lifetime in WSN-based applications,
only a few sensors are incessantly active while most of oth-
ers are activated occasionally, which also lead to long tail
issue. A typical example is sleep scheduling mechanism [25]
in WSNs, which brings the result that most sensors only
provide a few observations and only a few sensors make
many observations [26], [27], which often causes some nodes
with very few observations. As for the long-tail phenomenon,
a confidence-aware truth discovery method is proposed in [8]
to automatically estimate truths from conflicting data with
long-tail issue. The proposed method not only estimates
source reliability, but also considers the confidence interval
of the estimation, so that it can effectively reflect real source
reliability for sources with various levels of participation.
Similarly to [8], Xiao et al. [28] also proposed a novel truth
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FIGURE 1. An overview of CAIF scheme.

discovery method to construct confidence interval estimates
as well as identify truths. But these works are not also applied
in WSNs and do not consider the distributed characteristic of
the WSNs.

III. AN OVERVIEW OF CAIF SCHEME
In the paper, we present a confidence-aware information
fusion approach named CAIF. We first make quantitative
study on long-tail data to provide guideline for improving
fusion performance. Then in order to solve long-tail issue and
estimate fusion weight, node-target distance and confidence
level of observation error are incorporated into truth discov-
ery framework. Besides, we also propose cent-ralized and
distributed implementation respectively in WSN to estimate
the nodes’ weights. In particular, an overview include three
parts described as follows as shown in Fig.1.

A. QUANTITATIVE STUDY
The long-tail phenomenon is first studied by utilizing real
data and such phenomenon is serious. This will undermine the
fusion performance [8]. Through the research on relationship
between node capability and node-target distance, we find
that node-target distance is inversely proportional to node’s
capability, which can overcome long-tail problem in a certain
when utilizing such weight for information fusion.

B. NODE WEIGHT ESTIMATION
We provide a node-target distance based truth discovery algo-
rithm to estimate node weight in a centralized way for fusion
information in WSNs, which is computed by minimizing
overall weighted deviation between the truths, the sensor
nodes’ observations and node-target distance to solve the
long-tail data problem.

C. NODE WEIGHT OPTIMIZATION
We provide a distributed node weight estimation method to
optimize about our proposed method in WSN. In particu-
lar, we incorporate the node-target distance into the confi-
dence interval of observations’ error. The optimized weight
is obtained via minimizing such confidence interval’s upper
bound to process the long-tail data.

IV. QUANTITATIVE STUDY FOR LONG-TAIL DATA
In this section, we present real world information fusion
applications where the long-tail phenomenon can be
observed. Although the long-tail phenomenon is not rare in

information fusion tasks, it does not receive enough atten-
tion yet. Next, we first make quantitative study on long-
tail phenomenon, and then the relationship among detection
capability and sensor-target distance is researched, which
will provide guideline to improve information fusion perf-
ormance via relieving long-tail issue.

A. LONG-TAIL DATA PHENOMENON
In WSN based applications, for the same object or event,
different sensors nodes may report differently due to many
factors, such as the quality of the sensors and ubiquitous
uncertainties in practical monitoring environments. Truth
discovery techniques can be useful for information fusion
to improve the quality of sensor data integration by inferr-
ing the sensor nodes’ quality. In many practical WSN-based
applications, in order to achieve energy efficiency, only a few
sensor nodes are active while most of others are activa-ted
occasionally, which causes the long-tail data phenome-non:
most sensor nodes provide few observations and only a small
proportion of the sensor nodes can provide a large number
of observations. Note that sensor nodes usually include com-
munication module, sensing module and calculation module.
The sensor nodes’ energy usage is mainly concentrated on the
CPU and the wireless transceiver. Under the normal circum-
stances, wireless communication consumes relatively more
energy [29].While themember sensor nodes which join in the
information process will need to sense and communicate with
a Fusion Center/ Base Station. Thus keeping only a fraction
of all the nodes active can reduce communication and sensing
energy.

A representative example of long-tail phenomenon is the
construction of indoor floor plans [30]. Indoor floorplans
are usually needed by indoor localization and are typically
in the form of a building blueprint for a specific indoor
environment. If an Indoor floorplan is given, we can define
the indoor environment. This research topic has recently
drawn a growing interest since it potentially can support a
wide range of location-based applications. The goal of indoor
floor plan problem is to develop an automatic floor plan
construction system that can infer the information about the
building Indoor floorplan from the readings of inertial sensors
(e.g., accelerometer, gyroscope, and compass). Here we are
interested in one specific task of floor plan construction,
i.e., to estimate the distance between two indoor points (e.g., a
hallway segment, which is a straight or curved path in a build-
ing that is adjacent to rooms. If one person walks through
the hallway, the person will pass the rooms along the hallway
sequentially, which means how rooms are arranged along the
hallway.). The estimated distances given by different sensor
nodes are inevitably different due to the varieties in their
walking patterns and the quality of sensor nodes.

Because long-tail phenomenon is a general scenario, some
distributions can be used to describe such phenom-enon. Thus
the technical detail and indication of relevance about long-
tail data can be expressed by following distributions: 1) The
histograms in terms of the number of sensor observations
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can be fit into an exponential distribution, which can be
expressed by formula ϕpower−law = ϕmin(1 − κ)−1/(δ−1),
if given a source of uniform random numbers κ in the range
0< κ <1, the formula for generating random numbers
ϕpower−law can be obtained from continuous distributions; δ
is scaling parameter of the discrete power law. 2) The data
about the number of sensors and number of the observa-
tions can be fit into power law distribution, which can be
expressed by formula ϕexp onential = ϕmin − ln(1− κ)/4,
the random numbers ϕexp onential can be obtained from con-
tinuous distribu-tion when the uniform random numbers κ
are in the range 0 < κ < 1, 4 is the exponential parameter,
ϕmin is the minimum value of ϕexp onential . 3) The data about
the number of sensors and the number of observations can
be fit into log-normal distribution, which can be expressed
by ϕ1log−normal = exp(0 sinϑ), ϕ2log−normal = exp(0 cosϑ),

where 0 =
√
2σ 2 ln(1− κ1), ϑ = 2πκ2, κ1 and κ2 are

the the uniform random numbers, σ 2 is varia-nce. From the
formula, we can find that there is no simple closed-form
expression to generate a single random. The formula can
generate two independent log-normally distributed random
numbers ϕ1log−normal and ϕ

2
log−normal . In order to demonstrate

the long-tail phenomenon clearer, we further fit Indoor Floor-
plan into power law function, a typical long-tail distribution.
Experimental results show that most sensors only provide a
few claims and only a few sensors make many claims, and
the fitting curves closely match the observations, which is a
strong evidence of long-tail problem in WSNs.

B. SENSOR-TARGET DISTANCE AND DETECTION
CAPABILITY
Wisconsin SensIT experiment data [31] is utilized to per-
form vehicle detection via information fusion. For the data
set extraction, a k-Nearest Neighbor classifier was used to
label each 0.75s data segment from each separate node as a
detection or non-detection,which is coming from each sep-
arate sensor node. Two types of vehicles (aav and dw) are
utilized in the experiment and two features are utilized for
such detection classification which are the distance between
the vehicle and sensor node and the acoustic signal energy
for that given time respectively. The sensor and sensor cluster
readings are classified into the vehicle types. The trace data
is the vehicle runs including aav3, dw3 aav4, dw4; aav5,
dw5; aav6, dw6; aav7, dw7; aav8, dw8; aav9, dw9. Among
them, aav3 and dw3 were used for training, the rest are used
for detection classification. The events in these runs were
identified manually and we can obtain the event labeling
for each run. According to experimental analysis, we can
make conclusion that the sensor’s sensing performance will
become weak when the distance increases [31]. According
to the relationship between sensing node- target distance and
measurement quality, we can find that node-target distance
can reflect the real weight of the sensor nodes at a certain,
although the relationship of sensing node-target distance on
measurement quality has been recently analyzed in detection

problems. Thus we consider incorporate node-target distance
into truth discovery framework to estimate node weight and
improve information fusion performance which is under-
mined by long-tail issue.

Therefore, according to the section A and B mentioned
above, we can make conclusions as follows: 1) Long-tail data
phenomenon is ubiquitous in WSN-based applications which
will undermine fusion performance for lower precise of node
weight estimation. 2) sensor nodes’ sensing performance will
become weak when the distance increases, which can reflect
the real weight of the sensor nodes at a certain. Thus we
consider incorporate node-target distance into truth discovery
framework to estimate node weight and improve information
fusion performance which is undermined by long-tail issue.

V. CONFIDENCE-AWARE INFORMATION FUSION
In this section, we first formalize the problem and propose
a centralized and distributed confidence-aware information
fusion approach respectively. Then its convergence and time
complexity are analyzed.

A. PROBLEM FORMULATION
We assume there exist N sensor nodes in the WSN consid-
ered. Each node is indexed with n, which denotes the n-th
sensor node in the WSNs. At the same time, each node has
M kinds of feature observations which are indexed with m.
The m-th observation feature obtained by the sensor node n
is represented as o(n)m . The truth for the observation feature
m is denoted as o(∗)m , the weight for each sensor node n is
wn. Table I summarizes the important notations used in this
paper. With these notations, the problem can be formalized as
follows.

Suppose there are observations set { Eon}
N
n=1, where the

vector Eon = [o1, o2, . . . , oM ] represents different observa-
tions of the nth node. The expected output are the truths
o(∗) = {o(∗)1 , o

(∗)
2 , o

(∗)
3 , . . . , o

(∗)
m , . . . , o

(∗)
M×N } and nodes’

weights ∇ = {w(∗)
1 ,w

(∗)
2 ,w

(∗)
3 , . . . ,w

(∗)
n , . . . ,w

(∗)
N }. The truth

of the observation feature is vector about the characteristic
of monitoring target (eg., highest temperature of every day )
which are extracted from the observations sensed by sensor
nodes. Thus the observation feature is used to describe the
object; and a sensor node describes the place where informa-
tion about objects’ properties can be collected. The intuitions
behind the proposedmethod are that the truths should be close
to the observations given by the reliable sensor nodes, and the
nodes with smaller node-target distance has bigger weights.
Based on these intuitions, we formulate the problem by

min
o(∗),∇

f (o(∗),∇) = α ×
∑N

n=1

(
wn
∑M

m=1
3m(o(∗)m , o

(n)
m )
)

+β ×
∑N

n=1
wndn

s.t.
∑N

n=1
exp(−wn) = 1,∇ ∈ D (1)

where α and β are hyper parameters that balance between the
two terms in the objective function. wn is the weight of
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the node n. dn is the distance between the sensor node n and
the monitoring target.

We are trying to search for the values for two sets of
unknown variables o(∗) = {o(∗)1 , . . . , o

(∗)
m , . . . , o

(∗)
M } and ∇ =

{w(∗)
1 , . . . ,w

(∗)
n , . . . ,w

(∗)
N }, which correspond to the collection

of truths and source weights respectively, by minimizing
the objective function f (o(∗),∇). There are two types of
functions that need to be plugged into this framework. 1)
Loss function. 3m refers to a loss function defined based on
the distance between the truth and observation.This function
measures the distance between the observation o(n)m and the
truth o(∗)m . This loss function should output a high value
when the observation deviates from the truth and a low value
when the observation is close to the truth. 2) Regularization
function.

∑N
n=1 exp(−wn) reflects the distributions of nodes’

weights∇. To constrain the nodes’ weights into a certain
range, we need to specify the regularization of ∇ and the
domain D(∇ ∈ D). If each sensor node’s weight wn is
unconstrained, then the optimization problem is unbounded.
That is because we can simply take wn to be −∞.

Algorithm 1 Centralized Confidence-aware Node Weight
Estimation

Input: Observations from N sensor nodes{Eo1,Eo2,Eo3,. . . ,
Eom. . . ,EoN×M}
Sensor node-target distance dn obtained by location algo-
rithm
Output:Truths o(∗) = {o(∗)m }Mm=1,nodes’ weights ∇ =
{w1, . . . ,wn, . . . ,wN }
1 Initialize the truths o(∗)

2 repeat
3 Compute and update nodes’ weights ∇ according

to Eq. (15)
4 for n← 1 to N do
5 for m← 1 to M do
6 Update the truth of the m-th observation

o(∗)m according to Eq.(3) based on current
estimation of nodes’ weights.

7 end for
8 end for
9 until Convergence criterion is satisfied.
10 return o(∗) and ∇

B. PROPOSED SOLUTION
The benefits of adopting this optimization-based formul-
ation are: 1) It encodes the idea of truth discovery. 2) It
allows us to incorporate constraints and prior knowledge
about sensor nodes weights. 3) In the following, we will show
that this formulation can be linked with MAP (Maximum a
posteriori) estimation which gives an efficient incremental
solution. In this optimization problem as shown in Eq.(1),
two sets of variables are involved, sensor nodes’ weights ∇
and aggregated results o(∗). To solve this problem, we adopt
coordinate descent, in which one set of variables are fixed in

TABLE 1. Parameter meaning.

order to solve for the other set of variables as shown in the
algorithm 1.

1) CASE 1: TRUTH CALCULATION
In this case, node weights ∇ are fixed, we update the truth by
minimizing the objective function as follows.

o(∗)m ← argmin
o

f (o(∗),∇) (2)

As shown in Eq. (2), the truth computation step (Eq. (2))
depends on the loss function.We respect the characteristics of
each feature observation and utilize different loss functions to
describe different notions of deviation from the truths. Thus,
truth computation will differ among various data types.When
the nodes’ weights ∇ are fixed, we take the derivative of
Eq. (2) with respect to o(∗)m so as to infer the truth. Then we
get the following result.

o(∗)m =
∑N

n=1
wn × o(n)m /

∑N

n=1
wn (3)

2) CASE 2: WEIGHT CALCULATION
In the process of weight calculation, we first fix all sets of
truths, and then calculate the sensor nodes’ weights based on
the difference between the truths and the observations sensed
by the sensor nodes.

∇ ← argmin
∇

f (o(∗),∇), s.t.
∑N

n=1
exp(−wn) = 1 (4)

According to Lagrange multipliers method, the optimiza-
tion problem can be solved. The Lagrangian of Eq. (1) is
computed as follows.

L({wn}Nn=1, λ) = α ×
∑N

n=1
wn
∑M

m=1
3m(o(∗)m , o

(n)
m )

+β ×
∑N

n=1
(wn × dn)+ λ(

∑N

n=1
exp(−wn)− 1)

(5)
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where λ is a Lagrange multiplier. Let the partial derivative of
Lagrangian with respect town be 0, we get following formula.

α ×
∑M

m=1
3m(o(∗)m , o

(n)
m )+ β × dn = λ exp(−wn) (6)

From the constraint that
∑N

n=1 exp(−wn) = 1, we can derive
that

λ = α ×
∑N

n′=1

∑M

m=1
3m(o(∗)m , o

(n′)
m )+ β ×

∑N

n′=1
dn′

(7)

We can then derive the update rule for each node’s weight by
plugging Eq. (7) into Eq. (6) as shown in Eq. (8).

wn

=−log

(
α×

∑M
m=13m(o

(∗)
m , o

(n)
m )+β×dn

α×
∑N

n′=1
∑M

m=1 dm(o
(∗)
m , o

(n′)
m )+β×

∑N
n′=1 dn′

)
(8)

where n denotes the index of a sensor node. This update rule
shows that a node’s weight is higher when its observations are
more often close to the truths.

Algorithm 2 Distributed Confidence-Aware Weight Estima-
tion

Input: Observations from N sensor nodes{Eo1,Eo2,Eo3,. . . ,
Eom. . . ,EoN×M}
Sensor node-target distance dn obtained location algorithm

Output:Truthso(∗) = {o(∗)m }Mm=1, nodes’ weights ∇ =
{w1, . . . ,wn, . . . ,wN }
1 Initialize the truths o(∗)

2 repeat
3 Each sensor node compute its weight wn via its

history observations and initialization truth as
shown in Eq. (15).

4 Each node broadcasts a packet to its neighbors and
the packet contain each node’s residual
energy value and ε.

5 forn← 1 to N do
6 form← 1 to M do
7 Each node compute 0n = wn × o

(n)
m via its

history observa- tions and weight
8 Update the truth of the m-th observation

o(∗)m via Eq. (3) based on the current estimation
of nodes’ weights.

9 end for
10 end for
11 until Convergence criterion is satisfied.
12 return o(∗) and ∇

However, because there exists ubiquitous noise, so the
sensor node-target distance dn can not also accurately reflect
the real weight of the sensor nodes. As we have observed
the long-tail phenomenon in Section III, most of the sensor
nodes have very few observations. We assume all the sen-
sor nodes obtained their observations independently. Errors,

which are differences between the observations and the truths,
may occur for every sensor node. The variance of the error
distribution reflects the reliability degree of this node: if a
node is unreliable, the errors it makes occur frequently and
have a wide spectrum in general, so the variance of the error
distribution is big. Gaussian distribution is utilized to describe
the errors, which is widely adopted in many fields such as
crowd sensing [8]. For each sensor node, its error follows
a Gaussian distribution with mean 0 and variance σ 2. Since
we have the sensor node independence assumption, the errors
that nodes make are independent too. We can then compute
the distribution for the error of the weighted combination in
Eq. (3) as follows.

ε ∼ N (0,
∑N

n=1
w2
nσ

2
n

/∑N

n=1
w2
n) (9)

The shape of the distribution is determined by variance
for a Gaussian distribution. If the variance is small, then the
distribution has a sharp and high central peak at the mean,
which indicates a high probability that errors are close to 0.
Thus we want the variance of the ε to be as small as possible.
Usually the theoretical σ 2

n is unknown for each sensor node.
Inspired by sample variance and sensor node-target distance
dn, the following estimator can be used to estimate the real
variance σ 2

n by Eq. (10).

σ̂ 2
n =

1
dn
×

∑
m∈Nn (o

n
m − o

∗(0)
m )2

|Nn|
(10)

where o∗(0)m is initial truth (such as the mean, median or mode
of the observations), |Nn| is the number of observations made
by the sensor node n. Another interpretation of Eq. (10) is that
σ 2
n represents the mean of the squared loss of the errors which

are made by the sensor node n.
Then, we adopt (1− γ ) confidence interval for σ 2

n , where
γ , also known as significant level, is usually a small num-
ber such as 0.05. This also applies to missing data. As we
illustrate above, the difference between onm and o∗(0)m follows
a Gaussian distribution N(0, σ 2

n ). Since the sum of square of
standard Gaussian distribution has chi-squared distribution,
we have:∑

m∈Nn (o
n
m − o

∗(0)
m )2

σ 2
n

=
dn × |Nn| × σ̂ 2

n

σn
∼ χ2(dn × |Nn|)

(11)

Thus, we have the following formula.

P
(
χ2
(1−γ /2),dn×|Nn| <

dn × |Nn| × σ̂ 2
n

σ 2
n

< χ2
γ /2,dn×|Nn|

)
= 1− γ (12)

which gives the (1 − γ ) confidence interval of σ 2
n as

follows:[∑
m∈Nn (o

n
m − o

∗(0)
m )2

χ2
(1−γ /2),dn×|Nn|

,

∑
m∈Nn (o

n
m − o

∗(0)
m )2

χ2
γ /2,dn×|Nn|

]
(13)
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The confidence level is more informative according to
Eq. (13). Although two sensor nodes with different numbers
of observations, which is caused by missing data or sleep
scheduling mechanism [25], may have the same σ̂ 2

s , the con-
fidence interval of σ 2

n for these two nodes can be significantly
different.

The upper bound of the confidence interval is a biased
estimator on σ 2

n , but the bias is big only on nodes with few
observations. As the number of claims from a node increases,
the bias drops. We can substitute the unknown variance σ 2

n
in Eq.(10) by this upper bound and rewrite the optimization
problem Eq. (4) as shown in Eq. (14).

min
wn

∑N

n=1
wn
∑

m∈Nn
(onm − o

∗(0)
m )2

/
χ2
γ /2,dn×|Nn|

s.t.
∑N

n=1
exp(−wn) = 1,∇ ∈ D (14)

This optimization problem is convex, so the global mini-
mum guarantees that we can find the best weight assignment
under this scenario. The closed form solution is given as
follows.

wn ∝ χ2
γ /2,dn×|Nn|

/∑
m∈Nn

(onm − o
∗(0)
m )2 (15)

According to Eq. (15), we can find that the node’s weight
is inversely proportional to the upper bound of the (1 − γ )
confidence interval for its real variance. Bedsides the chi-
squared probability value will dominate the weight when a
node only provides very few observation. If a sensor node can
provide sufficient observations, the chi-squared’ probability
value is close to |Nn| and has small bias on the estimator.
Thus, the proposed method automatically adjusts weights for
nodes with different numbers of observations.

Therefore, truth discovery based method in our paper can
better solve long-tail data phenomenon in WSNs, that is
because it incorporate sensor node-target distance and con-
fidence level into the truth discovery algorithm optimization
solution framework to infer the sensor node’s information
fusion weight.While even if a well defined probabilistic
framework would be much better at representing uncertainty
and fusing uncertain information sources with differing con-
fidences, it may lead to an inappropriate weight assignment
for most of sensor nodes with less claims, and further cause
inaccurate truth computation because of ubiquitous long-tail
problem. Although Dempster-Shafer evidential methods has
a better theoretical foundation, it also can not better solve
long-tail problem and obtain inaccurate fusion weight.

C. DISTRIBUTED IMPLEMENTATION IN WSN
At the beginning, each feature observation m initializes its
truth o(∗)m . Then, the computing process is based on the two
cases of updates. Case one: each node’s weight wn can be
computed via its history observations and initialization truth
at the local node as shown in Eq. (15). Case two: each node
compute 0n = wn × onm via its history observations and
node weight computed by case one. Then each node broad-
casts a packet to its neighbors and the packet contain each

node’s weight wn and 0n. After that each type sensor’s truth
can be computed by Eq. (3). In this way, the first iteration
computing is completed via the case one and case two. The
iteration process will continue until convergence criterion is
satisfied. Thus the sensor node’s weight can be computed in
a distributed way via the algorithm 2.

D. ALGORITHM ANALYSIS
In this section, in order to prove the convergence of the prob-
lem, we first analyze the convexity property of the objective
function with respect to each variables set. And then the time
complexity of our proposed scheme is discussed.
Theorem 1: The iterative process shown in Algorithm

2 converges to a stationary point of the optimization problem.
Proof: Because the truths are fixed, the optimization

problem Eq. (1) has only weight variables ∇. Another vari-
able tn is introduced and let tn = exp(−wn) in order to prove
the convexity of Eq. (1). Thus the optimization problem can
be rewritten in terms of tn:

min
{tn}Nn=1

f (tn) = α ×
∑N

n=1
− log(tn)

∑M

m=1
3m(o(∗)m , o

(n)
m )

+β ×
∑N

n=1
− log(tn)× dn

s.t.
∑N

n=1
tn = 1 (16)

According to Eq. (16), its constraint is linear in tn. The
objective function is a linear combination of negative loga-
rithm functions and thus it is convex. Thus, Eq. (1) is convex
while fixing all the truths, such that a unique minimum for wn
can be achieved with the update rule in Eq. (6).

Since the weights are fixed, Eq. (1) is a summation of
quadratic functions with respect to o(∗)m . It is convex since
these quadratic functions are convex and summation opera-
tion preserves convexity. As a result, a unique minimum for
o(∗)m can be achieved with the update rule in Eq.(15). Based
on the property of the block coordinate descent, every limit
point of the objective function is a stationary point if the
objective function can get a unique minimum during each
iteration. Based on the above analysis, the objective function
is convex with respect to each variables set. Thus a unique
minimum can be obtained at each iteration. As the condition
holds, this theorem holds. Besides, the time complexity of
the CAIF method is linear with respect to the total number of
claims, i.e. O(|o|), where |o| is the input size of the proposed
method. If the aforementioned iterative procedure is adopted,
the time complexity of the CAIF method is then changed to
O(|o|×t), where t is the number of iterations. Note that before
information fusion, according to the node weight computed
by the algorithm 2, fusion node and member nodes will be
selected similar to the method in [2], which can form clust-
ers. When the sensor nodes joining information fusion, me-
mber sensor nodes in the cluster first make local decision and
transmit the local decision at each sample interval to fusion
node. Fusion node makes a final decision at each sample
interval.
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VI. EXPERIMENTS
To evaluate the performance of our proposedmethod, we have
conducted extensive experiments using the real world data
set, which show that CAIF method is efficient and out-
perform traditional methods when integrating node-target
distance and confidence level of observation error. Next,
we first describe experimental methodology and related set-
tings, and then experimental results and related analysis are
introduced.

A. EXPERIMENTAL METHODOLOGY AND RELATED
SETTINGS
1) DATA SETS
In order to obtain stringent accuracy requirements for
target detection or classification while extending network
lifetime as much as possible in the military vehicles moni-
toring [31], only a few sensor nodes are activated incessantly
while most of sensor nodes are occasionally active. Accord-
ing to the experiment of the reference in [32], an average
of 10 active sensor nodes can cover all critical locations in
SensIT experiment. Thus we can construct a truncated dataset
from the original SensIT dataset [31] including the sensing
data of 23 nodes, which exits long-tail phenomena and is
utilized to demonstrate effectiveness of the proposed method.
In particular, the sensor nodes are deployed along a road and
each node contains an acoustic, seismic and infrared sensor.
The vehicles pass through the network 20 times along the road
and provides ground truth through the GPS trajectory.The
sensor readings are classified into the vehicle types which
are the claims. The truncated dataset contains a total trace
length of 30830 time intervals and each 0.75s data segment
from each separate node is one time interval. One claim can
be obtained in an time interval. Ground truth are manually
assigned to each interval by a human operator to ensure high
accuracy of the class labels. The real sensor data and ground
truth are used as the input to a trace-driven WSNs simulation
running on a computer. Besides, we assume each node is a low
power mote-class device, such as Mica2 mote [33]. Although
the radio communication is often loss in WSNs, we focus
on information fusion performance, and assume communica-
tion is reliable.

2) PERFORMANCE MEASURES
In this experiment, we focus on continuous sensor data.
To evaluate the performance of our method, we adopt the
following three measures: RMSE (Root-Mean-Square Error),
Accuracyand Energy consumption.
RMSE: It is computed as the percentage of the approach’s

output that are different from the ground truths. In the
paper, we use RMSEas the performance measure of an
approach. RMSE can be computed by Eq.(17) as follows.

RMSE =

√∑N
n=1

∑M
m=1 (o

(∗)
m − onm)2

M × N
(17)

FIGURE 2. RMSE and Accuracy with different α.

For this measure, the lower the value of RMSE, the closer the
methods estimation value is to the ground truths and thus the
better the estimation performance.
Accuracy: It is defined as the ratio of the correct number

of detection samples to the total number of detection samples.
Thus Accuracy can be computed by Eq.(18)

Accuracy =
℘

X
(18)

where ℘ is the total correctly target detection samples and
X is the total target detection samples. A detection sample
means a CPA feature, which is variance of one time interval.
Besides, the metric of energy usage is also adopted. Such
energy consumption is determined by active node sampling
time and transmission energy as defined in [34]. For the
proposed method, iterative procedure is applied and the sig-
nificance level α is set as 0.05.

3) BASELINE METHODS
In our CAIFmethod, weighted median is utilized for continu-
ous data, that is because it is efficient and robust in noisy envi-
ronments.Weight assignment is calculated byminimizing the
upper bound of the confidence interval so that the difference
in node wight is emphasized. The proposed approach is com-
pared with traditional methods that cover a wide variety of
ways to resolve conflicts. These approaches include CATD,
CRH, Median, DisM and Mean method. Note that CAIF
method means a distributed implementation algorithm while
CAIF-C mehtod is a centralized implementation of CAIF in
the following experiment.
CATD [8], [28] method (Confidence-aware Truth Dis-

covery): It is a statistical method that has been proposed
for long-tail phenomenon in truth discovery, where con-
fidence interval is incorporated in source node weight
estimation.
CRH [18], [19] method (Conflict Resolution on Heterog-

eneous Data): it is a framework that infers the truths from
multiple sources with different data types, such as con-
tinuous and categorical data.
Median method [7]: Median calculates the median of all

observations on each type sensor data of each object as the
final output.
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FIGURE 3. Source node error distributions.

Mean method: the truth for each type sensor is the mean
of the claims. This is traditional way of resolving conflicts in
categorical data without source node weight estimation and
assume all the sources are equally reliable and have the same
weight.
DisMmethod [31], [35]: Each sensor node’s fusion weight

is estimated via sensor-target distance and the fusion node
make information fusion via such weight. Sensor-target dis-
tance often reflects each source sensor’s sensing perfor-
mance in a certain.

B. EXPERIMENTAL RESULTS AND RELATED ANALYSIS
1) αβ SELECTION AND ASSUMPTION VALIDATION
The parameter α and β defined in Eq. (1) are analyzed via
using the empirical history data. As shown in Fig.2, in the
analysis process, we set different α (α = 0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9) to compute RMSE and accuracy
for continuous sensor data respectively. According to the
experiment on real data set, we find that when α = 0.7,
RMSE is lower and accuracy is higher than other settings
of α as shown in Fig.2. Because α + β = 1, then β =
0.3. Thus the value of α and β are set to 0.7 and 0.3
respectively.

Besides, because we have Gaussian assumption on source
error distribution [8] in section V-B, normality tests is con-
ducted via utilizing the truncated dataset to validate this
assumption. Fig.3 shows the error distributions of sensor
nodes from truncated dataset. Gaussian distributions are fitted
and the mean is approximate 0. In order to further validate
error distributions, a well-known graphical technique Q-Q
plot is used to conduct normality testing. As shown in Fig. 4,
data points are plotted against a theoretical Gaussian dis-
tribution (the line in the plot) and an approximate straight
line indicates strong normality. Figs. 3 and 4 proves that
the observation errors of the sensor nodes are indeed Gaus-
sian distributed. Besides, practical convergence property of
the proposed method CAIF is also analyzed. The proposed
method converges as discussed in Section IV-C. In order
to show the convergence in practice, RMSEon continuous
data with different iterations are computed. we find that
RMSE of CAIF can obtain stable quickly during the 10-th
iteration.

FIGURE 4. Source node error distributions.

FIGURE 5. RMSE with different number of selected nodes.

2) RMSE AND ACCURACY WITH DIFFERENT NUMBER OF
NODES
In this section, wemake comparison our method’s RMSE and
accuracy with that of CRH, CATD, Median, DisM and Mean
method under different number of sensor nodes. As shown
in Fig. 5 and Fig. 6, CAIF has lower RMSE and higher
accuracy than that of CRH, CATD, Median, DisM and Mean
method, which demonstrate that CAIF method’s estimation
is closer to the ground truth and has better information fusion
performance than that of all the comparison methods. That
is because CAIF considers both the node-target distance and
observation error’s confidence level comprehensively to over-
come long-tail issue better.While because method utilizes the
confidence level of the observation error to solve the long-
tail problem at a certain, CATD has lower RMSE and higher
accuracy than that of other comparison methods. Besides, all
the methods’ RMSE decrease and accuracy increase with the
increase of the number of the sensor nodes. That is because
multi-source fusion can improve the performance of the infor-
mation fusion.

3) SENSOR WEIGHT WITH DIFFERENT GROUPS
In this section, we make comparison our method’s weight
with that of CRH, CATD and DisM method under dif-
ferent groups. As different methods adopt various weight
computation, the source weights are normalized into the
range [0], [1] by dividing the maximum weight to make a fair
comparison. In order to illustrate the problem brought by the
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FIGURE 6. Accuracy with different number of selected nodes.

FIGURE 7. Node weight of DisM with different group.

long-tail phenomenon, sensor nodes are divided into two
groups: Group 1 contains nodes with less than five claims
and Group 2 contains nodes with five or more claims.
This threshold is set so that the ratio of group sizes is not
too extreme. Intuitively, Group 1 nodes should have small
weights, because each of them provides only few observa-
tions. Group 2 nodes may have large weights or small weights
depending on the sensor nodes’ reliability. Figs. 7∼10 shows
the weight distributions of these two groups of nodes for
CATD, DisM, CRH and CAIF method respectively. Here
these two baselines are chosen because the other truth discov-
ery baselines are designed for continuous data only, thus the
weights learned by those methods on numerical claims are
not representative. The problem for CRH is that the weight
distribution of Group 1 nodes is polarized. The number of
Group 1 nodes which have weights as high as 1 stands out.
Each Group 1 node only makes a few observations, and if the
claims are correct, then its accuracy is high, so CRH assign a
large corresponding node’s accuracy is low, so it is assigned
a small weight. Although CRH have reasonable node weight
estimation on big sensor nodes, the inaccurate estimation on
large amount of small nodes discounts their performance.
Thus CRH method ignores the difference between big and
small sources, and assign source weights purely based on
accuracy without considering the sample size. While the
problem for DisM is similar to CRH method and its weight
distribution of Group 1 nodes is also polarized. The number
of Group 1 sensors which have weights as high as 1 stands
out. Each Group 1 sensor only makes a few observations, and

FIGURE 8. Node weight of CRH with different group.

FIGURE 9. Node weight of CATD with different group.

if the sensor is close to themonitoring target, then its accuracy
is high, so DisM method also assigns a large corresponding
sensor’s accuracy is low, so it is assigned a small weight.
Although DisM method also have reasonable node weight
estimation on small sensor nodes, the inaccurate estimation
on large amount of big nodes discounts their performance.
Thus DisM method ignores the difference between big and
small source sensors, and assign nodes’ weights based on
sensor-target distance. CAIF and CATD method are aware
that when the claimsmade by a small node happen to be accu-
rate, it does not confirm that this small sensor node is reliable;
and for big sources, the bias on node weight estimation is low.
While because CAIF incorporates the node-target distance
into the confidence level which can better solve long-tail issue
than CATD, as shown in Fig. 10, we can see that Group
1 nodes have relatively lowweights. For Group 2 nodes, some
of them have low weights whereas others have big weights.
Thanks to the accurate node weight estimation, the proposed
CAIF method provides more accurate truths. Besides, as for
the centralized implementation CAIF-C of CAIF, although
the radio communication is often loss in WSNs, we focus
on information fusion performance, and assume communica-
tion is reliable. Thus the performance of CAIF-C is similar to
CAIF.

4) ACTIVE NODES AND ENERGY CONSUMPTION
In the section, the energy usage of our methods (CAIF
and CAIF-C) are compared with other traditional methods
(CATD, CRH, Mean, Median, and DisM). According to the
discus-sion in [32], in order to save energy, the experiment
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FIGURE 10. Node weight of CAIF with different group.

with 10 nodes awake at all times can meet system accuracy
requirements. Thus all the methods’ average active nodes are
10. Because CAIF is a distributed method, its energy usage
for radio is 0.177J and its total energy usage is 26.558J.While
other methods are centralized, their energy usage for radio is
3.197J and total energy usage are 29.578J respectively. Thus
the distributed implementation of CAIF has lower energy
usage than other methods.

VII. CONCLUSION
In order to conduct effectively information fusion in WSNs’
applications, one important problem is to identify the node
information fusion weight among conflicting sources of data.
But it is usually unknown which one is more reliable a pri-
ori. Moreover, long-tail data phenome-non is ubiquitous in
WSN-based applications which will undermine fusion per-
formance for lower precise of node weight estimation. Spe-
cially, we show that node-target distance and confidence
level can reflect the node’s capability to estimate fusion
weight precisely, which can solve long-tail issue in a certain.
Thus a confidence-aware information fusion scheme named
CAIF is presented to solve such problem via combing node-
target distance and confidence interval in a distributed way.
The proposed method can converge to a stationary point of
the optimization problem and its time complexity is linear
with respect to the total number of observations. Because
of the accurate node weight estimation, the proposed CAIF
method provides more accurate truths. Experimental results
also demonstrate the superior performance of CAIF over
existing solutions in terms of RMSE and accuracy with differ-
ent number of nodes. In future work, we will make theoretical
analysis about the selection of parameter α and select more
metrics to make comparison with traditional methods.
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