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ABSTRACT This paper develops a competing risk model to simultaneously analyze censored catastrophic
failures and nonlinear degradation data of the NAND-based solid-state drives for space application. Two domi-
nant failure modes are the hard failure of the controller due to single-event latch-up (SEL) and the soft failure
of the NAND Flash manifesting as random write current degradation. As hard failure probability increases with
radiation intensity and particle number, we establish the inverse power law-Weibull model for SEL cross
section to model the accelerated censored data. The hard failure model is presented based on the invariance
principle of total environmental particles’ energy. On the other hand, soft degradation is described by the
nonlinear Wiener-process-based accelerated degradation test model. Specifically, the temporal variability
concerning the inherent variability of the degradation process over time and the unit-to-unit variability in
degradation rates are both taken into account. Then, we derive the reliability functions and other quantities
of interest under normal conditions with the assumption of independence of failure modes. Furthermore,
to estimate the unknown parameters in the competing risk model, the transformed extreme value regression
analysis other than the least square fitting method is adapted to issue the problem of data uncertainty of
hard failures, whereas the maximum likelihood estimation method is developed for soft failures. Finally,
a detailed simulation example is given to illustrate the procedure of the proposed reliability model with a
sensitivity analysis.

INDEX TERMS Semiconductor device modeling, degradation, reliability engineering, space radiation,
uncertainty.

I. INTRODUCTION
As the need for lower-cost, higher-density mass storage
increases rapidly in space science and application field,
solid-state drives (SSDs), especially commercial NAND-
based SSDs, have been widely used by aerospace devel-
opers and space engineers due to their high-performance,
low energy consumption, small size, and stable delivery
period [1], [2]. Actually commercial off-the-shelf (COTS)
NAND Flash was successfully used in Chinese Tiangong-1
as early as 2011. While the European space mission did
not yet applied the Flash-based mass memory device until
2013 in Sentinel-2 [3]. It was reported that the number of
SSDs shipped in 2016 alone exceeded 130 million units
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totaling around 50 exabytes of storage capacity [4]. For
mission-critical SSD, their in-service failures, such as the
loss of stored data can cause heavy economic losses or even
severe casualties of human lives as a result of the harsh
space environment. Compared with military SSDs, commer-
cial SSDs can easily lower costs and offer technological
innovations, contributing to their increasing popularity in the
aerospace industry. However, COTS products are primarily
designed for use in benign environments where equipment
is easily accessed for repair or replacement, therefore their
space application makes a matter of concern well beyond
the consumer level of electronics [5]. As such, modeling and
estimating their reliability and state of health under actual
space environment accurately to demonstrate the feasibility
and avoid catastrophic events is crucial and significant from
both a cost-effective and a safety point of view.
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Since 2008, JEDEC commissioned a group of drives cus-
tomers, SSD manufacturers, and NAND component man-
ufactures to develop JESD218 and JESD219 standards for
qualifying SSDs to clearly-specified endurance and retention
specifications [6], [7]. More recent attention has focused on
the reliability problem of SSD. Mielke et al. [8] reviewed
SSD’s reliability from the perspective of failure mechanisms
and design mitigation techniques, with particular emphasis
on the JEDEC qualification methods. Schroeder et al. [4]
presented three large-scale reliability studies of NAND-based
SSDs in production environments, subjected to real work-
loads and operating conditions by Facebook, Google and
Microsoft. Compagnoni et al. [9] reviewed historical trends
of NAND Flash technologies, explaining why the scaling of
planar arrays below 1x nm is less favorable than vertical inte-
gration. Boyd et al. [10] conducted a life-cycle assessment
of NAND Flash over five technology generations (150 nm,
120 nm, 90 nm, 65 nm, and 45 nm) to quantify environmen-
tal impacts occurring in Flash production and to view their
trends over time. In general, SSDs experience multiple failure
modes that compete against each other, and whichever occurs
first can cause the failure.

Many people are theoretically devoted to the compet-
ing failures modeling and reliability evaluation considering
multiple degradation failure processes, or degradation and
catastrophic failure processes. Rafiee et al. [11] investigated
reliability modeling for systems subject to dependent com-
peting risks considering the impact from a new generalized
mixed shock model, and the degradation rate and the hard
failure threshold can simultaneously shift multiple times.
Hao et al. [12] developed a reliability model for mutually
dependent competing failure process based on stress-strength
models and cumulative damage/shock model. Che et al. [13]
introduced the Facilitation model to the shock process and
developed a novel analytical competing reliability model with
mutual dependence. Qiu and Cui et al. [14] evaluated systems
competing reliability based on a dependent two-stage failure
process involving with defect initialization and development
stages. Hao and Yang [15] considered the impact of harmful
shocks on temporal degradation performance, degradation
rates as well as hard failure threshold levels and developed
a system reliability model subject to dependent competing
failure processes. Haghighi and Bae [16] proposed a mod-
eling approach to simultaneously analyze linear degradation
and traumatic failures with competing risks in a step-stress
accelerated degradation test based on cumulative exposure
model. Fan et al. [17] developed a competing failure process
model with degradation-shock dependence for an aviation
spool valve. A semi-analytical framework is developed in
modeling dependent competing failure processes based on
stochastic hybrid systems [18]. In [19], a sequential Bayesian
approach is developed for remaining useful life prediction of
dependent competing failure processes. As reviewed above,
the majority of these studies focuses on dependent shock and
degradation process in the competing model, and there are
fewer models considering space radiation and degradation

competing failures. Additionally, research and literature on
commercial SSD reliability under the safety-critical environ-
ment are not as established as in the industrial circles.

In most cases, the expense of radiation test is pretty high,
and the radiation facility is source-constrained. We might
only obtain censored data as the test duration allowed is fixed
and limited. Besides, there exist great uncertainties with small
testing samples, usually resulting in insufficient or missing
data. Thus, in order to take full use of the censored data
under different situations and evaluate the reliability more
precisely, a regression analysis method should be proposed
over the regular MLEmethod for catastrophic failures or hard
failures. On the other hand, since lifetime data are often
hard to obtain, degradation data can be used as an alternative
resource for reliability analysis. Generally, the degradation
of a product’s physical property is related to its reliability,
such as the growth of fatigue cracks and light intensity
degradation, so a degradation failure, also called soft failure,
is usually defined in terms of a performance characteris-
tic exceeding a specified threshold. For instance, a battery
that supplies electrical power by chemical reaction weakens
during usage [20]. Unfortunately, reliability estimation can
still be difficult to perform for it is nearly impossible to
obtain a sufficient amount degradation data within acceptable
testing time by testing them under normal operating envi-
ronments [21]. Take SSD as an example, the manufacturers
usually state in the data sheets that their flash memory has
data retention of 5000 Program/Erase (P/E) cycles. Since, for
obvious reasons of time to market, it is not feasible to test
the flash memory for 20 years. As a result, to understand the
reliability characteristics and lifetime under field conditions,
theWiener-process-based accelerated degradation test (ADT)
models with higher stress levels are proposed to solve the reli-
ability estimation problem. Actually, there extensively exists
nonlinearity in practice, and it plays a vital role in the degra-
dation processes. Nevertheless, the conventional ADT model
cannot trace the dynamics of such a degradation process.
It is more likely that degradation may accelerate at a later
stage of life [22]. Therefore, the nonlinear Wiener-process-
based ADT modeling and prognostics issues deserve to be
addressed for degradation failures or soft failures [23].

All the above introductory remarks lead to the conclusion
that the hard failure model, the soft failure model uncertainty
and the regression analysis method for censored data are all
essential features to be taken into consideration. However,
until very recently, our knowledge about SSD reliability was
derived from controlled experiments in lab environments
under synthetic workloads, often using methods for acceler-
ated testing that put the drive through many cycles to synthet-
ically speed up wear-out, based on JEDEC standards [6], [7].
Furthermore, few works have been witnessed on the compet-
ing risk model of reliability analysis for NAND-based SSDs
in space application. This paper aims to address this problem,
and allow the analyst to develop a competing risk model
considering censored failures and nonlinear Wiener-process-
based ADT model with temporal variability and unit-to-unit
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variability, and predict the reliability of SSDs using both hard
and soft failures. Additionally, the Weibull regression analy-
sis method for censored data and the MLE method for degra-
dation data are derived to estimate the model parameters.

The remainder of the paper is organized as follows.
Section II describes the basic information of SSD, conducts
failure and stress analysis. Model assumption, reliability
modeling and analysis for an individual hard and soft failure
mode and competing risk model are respectively developed
in Section III. In Section IV, the parameter estimation for the
competing risk model, including Weibull regression analysis
method and MLE method are studied respectively. Section V
presents the SSD numerical example to estimate reliability
and remaining useful life (RUL), and sensitivity analysis of
model parameters is also discussed. Section VI summarizes
the article and makes concluding remarks.

II. FAILURE MECHANISMS OF THE SSD
A. SSD DESCRIPTION
As shown in Figure 1, the NAND-based SSD is responsible
for transferring data and communicates with the host by
Serial ATA (SATA) III interface, and its main parts are the
controller, the SDRAM, the NAND Flash, and the power
supply protection circuit. The controller is a microprocessor
with SSD-specific support circuits, typically using an exter-
nal DRAM for its working memory and running firmware,
and it allocates data to NAND Flash components after trans-
lating the logical address into the physical address. NAND
Flash components for storing data take up the majority of
the board space in an SSD, and each component may con-
tain multiple NAND integrated circuits (ICs). The protection
circuit converts the input to a steady low-voltage supply for
other components. Data and power are respectively connected
to the controller and power supply through the SATA III
interface.

FIGURE 1. Function and schematic diagram of SSD.

There are three main performance indexes of SSD: oper-
ating current, read-write speed, and bad blocks. However,
as wear leveling techniques are extensively adopted to reduce
wear on storage cells by dispersing write operations through-
out the available storage area, bad blocks numbers remain
nearly unchanged under limited operating time. According
to historical test results and previous research [24], only the

operating current and read-write speed are monitored to
detect the state of the controller, while random write current
is taken as the health indicator of NAND Flash.

B. FAILURE MECHANISM ANALYSIS
Though the spacecraft takes thermal control, anti-static, and
radiation protectionmeasures, SSDswould still be exposed to
extremely harsh mission environment. In this study, we leave
out the stage of transportation and launch, and focus on the
on-orbit life cycle. As shown in Table 1, on-orbit SSD should
experience space environment stresses, operating stresses and
platform stresses.

TABLE 1. Space environment effect analysis for on-orbit SSD.

For platform environment, micro-meteors and orbital
debris induced platform micro-vibration and shock may
cause fretting wear and fatigue for tiny relativemotion of con-
nector’s contact area, and then result in coat peeling and con-
tact point fracture, etc. A common effect of this latent defects
is to cause adjacent interconnects to short together because
the dielectric separating them breaks down. However, this
issue can be avoided by platform design of vibration iso-
lation. Besides, screening test before delivery can effec-
tively prevent this early process defects. For operation envi-
ronment, even though voltage-related dielectric breakdown,
whether intrinsic or defect related, can lead to the failure of
SSD, and actually the probability of dielectric breakdown is
exponentially dependent on the applied voltage, the steady
input voltage can be guaranteed by the spacecraft system.
Frequent P/E cycles weaken the chemical bond for the insu-
lating floating gate (FG), and worsen insulating layer effect,
making electrons easy to escape. Consequent flash degra-
dation can increase the incidence of retention errors, read
disturb errors and write errors. But the total P/E cycles are
absolutely enough comparedwith the amount ofmission data.
For space environment, weightlessness and electromagnetic
interference caused by space gravitational field have little
influence on SSD; SSD can be directly affected by ionizing
radiation in the form of total ionizing dose (TID) and single
event effects (SEE); high temperature can gradually worsen
the NAND Flash performance; vacuum outgas results in
molecule contamination, such as the increase of contact resis-
tance. Nevertheless, this effect can be negligible as ground
thermal vacuum test is compulsory at least in system level and
the performance of SSD should be assessed; space light radi-
ation may merely cause material aging and coating damage;
plasma-induced charge and discharge commonly affect the
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surface material and coating of the spacecraft, and the effect
on SSD can be ignored due to enclosure protection; To sum
up, ionizing radiation and high temperature are crucial and
deserve further analysis.

The ionizing radiation effects could range from minor
degradation to complete device failure and therefore threaten
the overall mission. In most cases, no permanent damage is
done, but the affected circuit will temporarily mis-operate.
This soft error caused by ionizing radiation is a transient
error in an IC. TID tends to become less significant pre-
sumably because of very thin high k oxides and general
feature shrinking. An SEE is a disturbance to the normal
operation of a circuit caused by the passage of a single ion
through or near a sensitive node in a circuit, and it can be
either destructive or non-destructive. SEE mechanisms are
becoming less severe in terms of survivability of the device
but more widespread due to the physical (3-D) stacking of
the bare chips. Heavy ion induced SEE such as single event
transient, single event upset, single event functional inter-
rupt, or single event latchup (SEL) are of major concern [25].
NAND soft errors are confirmed to be minimal compared to
the controller because NAND has a low soft error rate that
can be handled by the strong error-correction code. Through
design mitigations, it has been experimentally verified that
radiation-induced soft errors can be removed by reset and/or
power cycling without any loss of data. SEL is among the
most important reliability concerns for electronics deployed
in space systems. Despite a lower bias voltage, latchup is
still an issue. The current would show an abrupt jump and
then continue to increase. The radiation of high-energy parti-
cles causes the plasma track, triggering the charge to flow
within the track, and then catastrophic large current might
heat the chip all the way to fail [26]. The chip’s parasitic
devices or weak links are activated, resulting in permanent
changes in the chip’s characteristics or functions, and the
SSD cannot recover even after a reboot. Thus, SEL often
causes more complex failure modes of the controller. For
the flip chip of NAND SSD, the laser test is an alternative
way to replace the ionizing radiation test. It is financially
preferable to choose the pulse laser experiment in National
Space Science Center than Heavy Ion Research Facility in
Lanzhou (HIRFL) and HI-13 tandem accelerator of China
Institute of Atomic Energy.

Some wear mechanisms may play a role in characterizing
the NANDFlash lifetime. A flashmemory basically works on
a floating gate (FG) transistor. The programming operation
injects electrons in the FG, while the erase operation does
the opposite operation. However the FG is subject to wear
and damage. Due to the phenomenon of Fowler-Nordheim
(FN) tunneling, electrons in memory cells write in or read out
data in the NAND flash memory by passing through tunnel
oxide repeatedly. This process contributes to the gradual
degradation of the tunnel oxide. As the environment temper-
ature rises, the thermal motion energy of electrons increases,
accelerating the destruction of tunnel oxide in tunneling.
Besides, for multi-level cell (MLC) Flash, every cell store a

2-bit data, this is to say that the electrical level is divided into
4 levels [27]. Once Flash electrical level drifts, raw bit errors
occur, whereas the distribution of electrical level depends
on temperature. The raw bit error rate (RBER) of NAND
Flash increases with increasing temperature. As a result, high
temperature can gradually worsen the write/read performance
of NAND Flash, leading to the entire SSD to fail.

In summary, based on the structure, function, and space
environment effect analysis, it suggests radiation test and
thermal test are significant and effective to investigate the
reliable utilization of commercial SSDs in space application.

III. MODEL DESCRIPTION
A. MODEL ASSUMPTION
According to the failure mechanism classification of over-
stress and cumulative-stress failure, NAND-based SSDs
presents two dominant failure modes: the hard failure of
the controller due to single event latch-up (SEL), and the
soft failure of the NAND Flash manifesting as random write
current degradation. The competing failure mode is proposed
to describe the failure process of an SSD under the hypotheses
that (1) the two failure modes are independent of each other,
as each failure mode is caused by a different stress and the
physical mechanisms that influence the evolution of each fail-
ure mode are quite unrelated without regard to manufacturing
defects in early age, and radiation-induced soft errors, and
(2) the control unit and NAND Flash are connected in series
and any of the following conditions make the SSD fail: a) the
magnitude of any radiation exceeds the threshold value L,
or b) the current drift of the NAND Flash is beyond the
degradation failure threshold H [28], [29].

B. RELIABILITY MODELING OF THE HARD FAILURE
The exposure to space radiation may cause the SSD suddenly
fails at a certain time when the linear energy transfer (LET)
exceeds the threshold value [30]. Failure data can be used
to estimate reliability and lifetime, and hard failure mode
is caused by SEL. According to the previous engineering
experience, its reliability and cumulative distribution function
(cdf) can be properly described by Weibull distribution with
shape parameterm and scale parameter η(r) at time t and LET
level r :

Rs (t) = exp
[
−
(
t
/
η (r)

)β] (1)

Fs (t) = 1− exp
[
−
(
t
/
η (r)

)β] (2)

Ground radiation simulation test is performed with heavy
ions having different LETs or various pulse laser energy.
Then SEL cross section σSEL under every testing LET
value can be calculated by frequency ratio or area ratio.
Furthermore, the SEL cross section curve covering the whole
practical LET environment data on certain orbit can also
be plotted [31]. Actually classical reliability models can be
mapped from the time domain to the fluence domain. For
selected ranges of LETs, we usually use an upper bound of
particle flux (number of particles/cm2

• s−1) to determine if
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the item can meet the mission’s reliability requirements. The
life characteristic is represented as:

η (r) =
r

σSEL (r)
∫ rmax
0 flux (r) dr

(3)

Hence, mapping from the time domain to the fluence
domain (per LET) is straight-forward. For a given LET, SEL
are independent, and σSEL is constant, the mean fluence to
failure (MFTF) is:

MFTF = 1/
σSEE

(4)

The SSDs actually experience a low radiation intensity
either continuously or intermittently in the space environ-
ment. As the total particles number with certain energy
is equal under the accelerated and usual situation. The
dose or rate are raised to a high level in the laboratory test to
compress test length. In the absence of information regarding
the underlying process of space radiation, the SEL cross
section is assumed to follow a power function:

σSEL = earb (5)

The increase of intensity might have effects on the charac-
teristic life, and then the SEL acceleration factor is

AF =
MFTF (r0)
MFTF (ri)

=
σSEL (ri)
σSEL (r0)

=

(
ri
r0

)b
(6)

Thus, increasing r : 1) shortens lifetime if b > 0; 2) makes
no difference on lifetime if b = 0; 3) prolongs lifetime if
b < 0. The paper deal with the case when b > 0, to shorten
test length, andm is independent of stress level r . Apparently,
the relationship between η(r) and r is an inverse power law
model through a logarithmic transformation:

ln σSEL (r) = a+ b ln r (7)

Due to the limited testing time, constrained facility and
test uncertainty, the results data are usually censored. The
censored times are specified. Moreover, the specified rmax
is determined by using engineering judgment, experience,
similar data, and/or preliminary tests, and it should be as high
as possible to shorten test length and generate more failures.
However, it should not result in new failure modes different
from those at r0.

In order to make the most of the censored data under dif-
ferent LET levels, the transformed extreme value regression
analysis method is established. Let y = ln t , thus y follows
extreme value distribution.

Fs (y) = 1− exp
[
− exp

(
y− µ (r)

σ

)]
(8)

where µ(r) and σ are location and scale parameters{
µ (r) = ln σSEL (r)
σ = 1/m

(9)

A linear relationship between µ(r) and r is given:

µ (r) = a+ b ln r (10)

Then y is ex pressed as

y = a+ b ln r + ε (11)

where ε ∼ EV(0, σ ), and a, b, σ are parameters to be
estimated.

C. RELIABILITY MODELING OF THE SOFT FAILURE
The random write current would continuously degrade under
high-temperature aging until the NAND Flash exhibits an
unsatisfactory performance. To capture the dynamics of the
degradation process, and lead to a better understanding of the
nature of the failure event, we use a stochastic process with a
nonlinear path to characterize the randomwrite current degra-
dation. Moreover, as each item possibly experiences different
sources of variations during its operation, we incorporate
item-to-item variability with the nonlinear Wiener-process-
based ADT model [32].

Let X (t) denote the degradation at time t under stress
level S, which is driven by a standard Brownian motion B(t)
with a constant diffusion coefficient σB and a nonlinear drift
of λ(t;ψ) = ce−d/S tα . By ignoring the measurement error,
the stochastic process becomes:

X (t) = X (0)+ λ(t;ψ)+ σBB(t) (12)

where ψ is the parameter vector, X (0) is the initial degrada-
tion, c is a random effect reflecting unit-unit variation, and
d is a fixed effect suitable for all products.
The lifetime Tw is regarded as the first hitting time that

the long-term drift reaches a pre-set failure threshold H , and
the case X (0) = 0 is considered below without loss of
generality [33].

Tw = inf {t : X (t) ≥ H} (13)

The probability density function (pdf) of the lifetime can
be formulated as:

fw(t; c)=
H − ce−d/S tα(1− α)

σ 2
B

√
2π t3

exp

[
−

(
H − ce−d/S tα

)2
2σ 2

B t

]
(14)

For simplicity, random effect c is assumed to follow a
normal distributionwithmeanµc and variance σ 2

c . According
to the law of total probability, the pdf of the lifetime for a
nonlinear Wiener process with random effects is given by:

fw (t) =
∫
+∞

−∞

fw(t; c)f (c)dcEc [fw(t; c)]

=
1√

2π t3
(
e−2d/S t2α−1σ 2

c + σ
2
B

)
×

[
H − e−d/S tα(1− α)

e−d/S tα−1σ 2
c H + µcσ

2
B

e−2d/S t2α−1σ 2
c + σ

2
B

]

× exp

[
−

(
H − e−d/S tαµc

)2
2
(
e−2d/S t2ασ 2

c + σ
2
B t
)] (15)
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Since the analytical form of Rw(t) can be difficult to obtain,
a numerical integration method can be utilized:

Rw (t) = 1−
∫ t

0
fw (t) dt (16)

D. COMPETING RISK MODEL
As different independent failure mechanisms have different
development rate, the competition process means the system
failure time will be determined by the mechanism which
develops to failure first. Under the assumption of independent
competing rule, the reliability relies on the minimum life
among the multiple random lives:

Rc (t) = P {Tc > t} = P {min {Ts;Tw} > t}

= P {Ts > t}P {Tw > t}

= Rs (t)Rw (t) (17)

The cdf under the competing risk model is given by:

Fc (t) = 1− (1− Fs (t)) (1− Fw (t)) (18)

In many cases, we should figure out which failure mode is
more likely to cause the final failure in a specific duration.
The pdf that the SSD fails on a soft failure in the presence of
both failure modes is stated as follows

fc,w (t) = fw (t)Rs (t)

=
1√

2π t3
(
e−2d/S t2α−1σ 2

c + σ
2
B

)
×

[
H − e−d/S tα(1− α)

e−d/S tα−1σ 2
c H + µcσ

2
B

e−2d/S t2α−1σ 2
c + σ

2
B

]

× exp

[
−

(
H − e−d/S tαµc

)2
2
(
e−2d/S t2ασ 2

c + σ
2
B t
)]

× exp
[
−
(
t
/
η (r)

)β] (19)

By the integral operation, the probability function Fc,w(t)
caused by each failure mode during the whole life can be cal-
culated when the mission time t tend to be infinite. Similarly,
the pdf fc,s(t) and cdf Fc,s(t) of the hard failure can also be
formulated. For competing failures, it turns out to be:

fc (t) = fc,w (t)+ fc,s (t)

Fc (t) = Fc,w (t)+ Fc,s (t) (20)

The mean time to failure (MTTF) for the competing risk
model can be derived through:

MTTF =
∫
∞

0
Rc (t) dt (21)

Besides, RUL, known as the length between the current
inspection time and the end of the allowed useful life,
is crucial to estimate at the design or testing stages so as
to recommend future maintenance and schedule making for
replacement. It can be written as Lt = {L : Tc − t |Tc > t }.

As long as continuous monitoring data is available, the indi-
vidually estimated RUL is beneficial to make dynamic man-
agement. Then the pdf of RUL is expressed as:

fLt (L) = fc (t + L)
/
Rc (t) (22)

IV. PARAMETER ESTIMATION
Since the two failure modes are independent, and parame-
ters are quite unrelated, in this study, the parameters of the
competing risk model can be estimated separately for each
failure mode. Next, the Weibull regression analysis method
for censored failure data and theMLEmethod for degradation
data are illustrated respectively.

A. ESTIMATE OF HARD FAILURE MODEL PARAMETER
There are ni samples tested under different LET levels ri, and
qi of them fail at the censored time y∗i . The time-censored
failure data yi1 ≤ yi2 ≤ . . . ≤ yiqi can be regarded as a value
of the first qi order statistics Yi1 ≤ Yi2 ≤ . . . ≤ Yiqi from
an extreme value distribution with size ni. Then yi(qi+1) = y∗i
is seen as a value of the qith interval statistics from the same
samples.

yik = a+ b ln rik + εik (23)

Q =
m∑
i=1

qi+1∑
k,l=1

[
(yik − a− b ln ri − σuik)
×vikl (yil − a− b ln ri − σuil)

]
(24)

where
[
vikl
]
(qi+1)×(qi+1)

=
[
vikl
]−1
(qi+1)×(qi+1)

, and uik (k =
1, 2, · · · , qi) is themean of the kth order statistics and νik (k =
1, 2, · · · , qi) is the covariance of the kth and the lth order
statistics of the standard extreme value distribution with size
ni, while ui(qi+1) is the mean of the qi+1th order statistics and
νik(qi+1) = νi(qi+1)k (k = 1, 2, · · · , qi + 1) is the covariance
of the standard extreme value distribution with size ni + 1.
All these parameters can be caculated or obtained in [34].

Let the derivatives of Q with respect to a, b and σ to zero,
and the best unbiased integral estimation of the regression
coefficients and the standard deviation can be obtained by
logarithmic regression analysis of censored data:

â = ȳ− b̂ ln r̄ − σ̂ ū (25)

b̂ =
L22L1y − L12L2y
L11L22 − L212

(26)

σ̂ =
L11L2y − L12L1y
L11L22 − L212

(27)

where

ȳ =
1
n∗

m∑
i=1

qi+1∑
k,l=1

υ iklyik , ū =
1
n∗

m∑
i=1

qi+1∑
k,l=1

υ ikluik

ln r̄ =
1
n∗

m∑
i=1

qi+1∑
k,l=1

υ ikl ln ri, n∗ =
m∑
i=1

qi+1∑
k,l=1

υ ikl

L1y =
m∑
i=1

qi+1∑
k,l=1

υ ikl (ln ri − ln r̄) (yik − ȳ)
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L2y =
m∑
i=1

qi+1∑
k,l=1

υ ikl (uik − ū) (yil − ȳ)

L11 =
m∑
i=1

qi+1∑
k,l=1

υ ikl (ln ri − ln r̄)2

L12 =
m∑
i=1

qi+1∑
k,l=1

υ ikl (ln ri − ln r̄) (uik − ū)

L22 =
m∑
i=1

qi+1∑
k,l=1

υ ikl (uik − ū) (uil − ū)

The one-side upper and lower limits with confidence coef-
ficient γ for position parameter µ(r) and scale parameter σ
under certain LET r are given respectively:

µup (r)= â+ b̂r +
σ̂uγ

1− u2γ c33

[
uγ (c13+c23r)+

√
ω
]

µlow (r)= â+b̂r+
σ̂uγ

1− u2γ c33

[
uγ (c13+c23r)−

√
ω
]
(28)

σup =
σ̂

1− uγ
√
c33

σlow =
σ̂

1+ uγ
√
c33

(29)

where uγ is the γ quantile for a standard normal distribution,

ω

= u2γ (c13 + c23r)
2
+

(
1− c33u2γ

) (
c11 + 2c12r + c22r2

)
(
cj1j2

)
3×3

=



m∑
i=1

qi+1∑
k,l=1

υ ikl
m∑
i=1

qi+1∑
k,l=1

υ iklri
m∑
i=1

qi+1∑
k,l=1

υ ikluik

m∑
i=1

qi+1∑
k,l=1

υ iklri
m∑
i=1

qi+1∑
k,l=1

υ iklr2i

m∑
i=1

qi+1∑
k,l=1

υ iklriuik

m∑
i=1

qi+1∑
k,l=1

υ ikluik
m∑
i=1

qi+1∑
k,l=1

υ iklriuik
m∑
i=1

qi+1∑
k,l=1

υ ikluikuil



−1

The confidence intervals for position parameter µ(r) and
scale parameter σ with confidence coefficient 2γ -1 are
[µlow(r), µup(r)] and [σlow, σup].{

P
{
µlow (r) ≤ µ (r) ≤ µup (r)

}
= 2γ − 1

P
{
σlow ≤ σ ≤ σup

}
= 2γ − 1

(30)

After obtaining â, b̂ and σ̂ , we can acquire the estimation of
Weibull parameters m̂ and η̂ (r). Furthermore, for these sev-
eral sets of censored data under different accelerated stresses,
the parameters of inverse power law - Weibull model for SEL
are estimated {

σSEL (r) = exp µ̂ (r)
m̂ = 1/σ̂

(31)

B. ESTIMATE OF SOFT FAILURE MODEL PARAMETER
Suppose thermal test stress levels are S = {S1, S2, . . . , SK},
and under the kth temperature level Sk , J measurements
for the ith product are observed at times ti,j,k , where
i = 1, 2, . . . ,N ; k = 1, 2, . . . ,K ; j = 1, 2, . . . , J .
The corresponding degradation measurements are denoted
by xi,j,k . Denote the observation times vectors ti,k = (ti,1,k ,

ti,2,k , . . . ti,J ,k )T, Ti,k =
(
tαi,1,k , t

α
i,2,k , · · · , t

α
i,J ,k

)T
, and the

measurements vectors xi,k = (xi,1,k , xi,2,k , . . . , xi,J ,k )T.
xi,k follows a multivariate normal distribution with mean and
variance based on the s-independent assumption of Brownian
motion [35].

µxi,k = µce
−d/SkTi,k (32)

6i,k = e−2d/Skσ 2
c Ti,kT

T
i,k +�i,k (33)

where

�i,k = σ
2
BQi,k , Qi,k =


ti,1 ti,1 · · · ti,1
ti,1 ti,2 · · · ti,2
...

...
. . .

...

ti,1 ti,2 · · · ti,Ji,k


Therefore, the likelihood function based on the degradation

model over parameter set θ =
(
µc, σ

2
c , σ

2
B, d, α

)T
can be

derived by

fxi,k (x |θ, S )

=

N∏
i

K∏
k


1

(2π)
Ji,k

/
2√
|6i,k |

× exp
[
−
1
2

(
x − µxi,k

)T
6−1i,k

(
x − µxi,k

)]


(34)

Due to the s-independence assumption of the degradation
measurements of different items, the log-likelihood function
can be written as

lnL (θ; x, S) = −
JKN ln (2π)

2
−

1
2

N∑
i=1

K∑
k=1

ln
∣∣6i,k

∣∣
−

1
2

N∑
i=1

K∑
k=1

(
xi,k − µce−d/SkTi,k

)T
×6−1i,k

(
xi,k − µce−d/SkTi,k

)
(35)

where∣∣6i,k
∣∣ = ∣∣�i,k

∣∣ (1+ σ 2
c e
−d/SkT Ti,k�

−1
i,k Ti,k

)
,

6−1i,k = �
−1
i,k −

σ 2
c e
−d/Sk

1+ σ 2
c e−d/SkT

T
i,k�

−1
i,k Ti,k

�−1i,k Ti,kT
T
i,k�

−1
i,k

As all items are measured at the same time, the number of
measurements of each item is the same. Take the first partial
derivatives of the log-likelihood function with respect to µc,
σ 2
c (36) and (37), as shown at the top of the next page.
For specific values of d , α, σ 2

B , though it is difficult to
obtain the exact value by (32), we can easily obtain the
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∂ lnL (θ; x, S)
∂µc

=

N∑
i=1

K∑
k=1

T T�−1xi,k − N
K∑
k=1

µce−d/SkT T�−1T

1+
K∑
k=1

σ 2
c e−2d/SkT T�−1T

(36)

∂ lnL (θ; x, S)
∂σc

= −

K∑
k=1

σcNe−2d/SkT T�−1T

1+
K∑
k=1

σ 2
c e−2d/SkT T�−1T

+

N∑
i=1

K∑
k=1

σc
(
xi,k − µce−d/SkT

)T
�−1T�−1T T

(
xi,k − µce−d/SkT

)
(
1+

K∑
k=1

σ 2
c e−2d/SkT T�−1T

)2 (37)

restricted MLE results of µc, σ 2
c by setting their derivatives

equal to zero:

µ̂c =

N∑
i=1

K∑
k=1

T T�−1xi,k

N
K∑
k=1

e−d/SkT T�−1T

(38)

σ̂ 2
c =

K∑
k=1



1

N
(
e−2d/Sk T T�−1T

)2

×

N∑
i=1

[ (
xi,k − µce−d/SkT

)T
×�−1TT T�−1

(
xi,k − µce−d/SkT

) ]
−

1
e−2d/SkT T�−1T


(39)

To estimate other parameters, the log-likelihood function
with restricted MLE µ̂c, σ̂ 2

c can be expressed as

lnL
(
σ 2
B, d, α;X , S, µ̂c, σ̂

2
c

)
= −

JKN ln (2π)
2

−
1
2
N

K∑
k=1

ln |6k |

−
1
2

N∑
i=1

K∑
k=1

(
xi,k − µ̂ce−d/SkT

)T
6−1

(
xi,k−µ̂ce−d/SkT

)
(40)

Then the MLE of d , α, σ 2
B can be acquired by maximiz-

ing the log-likelihood function through a multi-dimensional
search, and the final MLE for µc, σ 2

c can be obtained by
substituting σ̂ 2

B, d̂, α̂.

V. NUMERICAL RESULTS
The testing 128GB 2.5-inch client-level SSD applies Phi-
son’s PS3110-S10 controller and Toshiba’s MLC NAND
Flash, and protection measures such as error-correction code,
wear leveling management and data encryption are also
adopted. Its operating voltage is 5V (±10%) DC, while
the temperature limit range are −40◦C∼+85◦C for storage

and 0◦ ∼ +70◦ for operation, respectively. The total data
written is 257TB, approximately 3000∼5000 P/E cycles.
An open-source Iometer based SSD test system software is
specifically designed to realize the function of automatic
parametermonitoring, including the voltage and current at the
SATA interface, the average & real-time read/write speed and
response time, as well as the amount of the written data. It can
not only inspect and record the disk capacity periodically,
but also adjust the test strategy (the read/write proportion,
the data packet size, and the assess patterns), and control
the power supply voltage. The testing system chart of SEE
tests or thermal tests is shown in Fig. 2.

FIGURE 2. Testing system chart of SEE tests or thermal tests.

A. DATA SIMULATION
This commercial SSD is shown as an example to illustrate
the procedure that how to predict reliability and RUL when
read/write speed and current are used as precursor parame-
ters. Hard failure data are generated based on similar com-
ponents’ SEE results of COTS A3PE3000L type FPGA in
space application. Samples 1#∼4# are tested under three
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different ion beams, and the ion characteristics and SEL cross
sections are listed in Table 2. On the other hand, according to
the previous constant stress ADT data of the military-grade
SSDs, we simulate soft failure data with the model parame-
ters presented in Table 3. Every four samples are randomly
selected from the total twelve products (5#∼16#) to carry out
thermal ADT under each accelerated stress levels with 80◦C,
90◦C and 110◦C. Fig. 3 shows the simulated soft failure data,
and we assume the failure threshold at practical operating
temperature (40◦C) is 125mA referencing to the NAND flash
memory manual. It is apparent from the figure that the degra-
dation of the randomwrite current is nonlinear and physically
dependent on the system aging, then the power law function
with stress variances is justified.

TABLE 2. Ion beams and SEL cross sections of controller vs. Ion LET.

TABLE 3. Estimated model parameters and true values of the
degradation model.

FIGURE 3. Degradation measurements of random write current data.

B. RELIABILITY ASSESSMENT
Obviously, some cross sections results are censored
in Table 2. For curve fitting method, we usually adopt the
average value at each LET for simplicity, and expect to find
the best fitting curve. In this case, if we use the traditional
curve fitting method, not only some censored information are
ignored, but also unreasonable negative values are inevitable

when LET is small. Thus, the proposed Weibull regression
method can effectively avoid these drawbacks. By the esti-
mation procedure in section IV-A, the hard failure parameter
results are presented in Table 3. Then the conventional opti-
mal curve fitting and the Weibull regression analysis results
for censored failure data are compared respectively in Fig. 4.

FIGURE 4. SEL cross-section of the controller vs ion LET.

Take the environment data of Tiangong-1 space module
for example, the flux versus LET histogram within a solar
maximum window at 350km orbital altitude is presented
in Fig. 5. The shielding material is 5mm aluminum. LET
spectra of galactic cosmic radiation (GCR) and solar proton
events (SPEs) can be easily integrated. Then the hard failure
reliability curves under varying LETs are illustrated in Fig. 6.

FIGURE 5. Average flux versus LET histogram of Tiangong-1 orbit (350km,
5mm shielding aluminum).

The degradation estimation results are also provided
in Table 3. From this data, we can see that all the parameters’
true and estimated values are approximately equal. Moreover,
the true and estimated reliability curves in Fig. 7 for soft
failures are very close to each other, further demonstrating
the effectiveness of the proposed estimation method.

Failure probabilities under the competing risk model
as well as hard and soft failures are shown in Fig. 8.
Thus, we conclude that SEL is the dominant failure mech-
anism, and random write current degradation failure mode
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FIGURE 6. Reliability curves with hard failures under different LETs.

FIGURE 7. Reliability curves with soft failures under normal operating
temperature (40◦C).

FIGURE 8. Estimate of cdf Fc(t) under the competing risk model and of
failure probabilities Fc,s(t) and Fc,w (t).

has little effect during the first 400000h. The asymptotic
values of failure functions Fc,s(t) and Fc,w(t) are 0.9053 and
0.0947 respectively, which means random write current
degradation accounts for approximately 9.47% of the whole
failures.

To demonstrate the feasibility of the proposed method in
RUL estimation, reliability curves with competing risk model
under normal thermal stress and each LET levels are shown

FIGURE 9. Reliability curves with competing risk model under normal
thermal stress (40◦C) and typical LET.

in Fig. 9, demonstrating the necessity of taking the nonlinear
degradation process into consideration.

C. SENSITIVITY ANALYSIS
To investigate the effect of competing risk model parameters
and provide the guidance to design accelerated test plan,
sensitivity analyses of Rc(t) on LET, S, H are presented
in Fig. 9-11 respectively.

From Fig. 10, we observe that LETs have a remarkable
effect on Rc(t). Following the addition of LET, a significant
decrease in the reliability under the competing risk model
is recorded, indicating that ions with higher LETs are more
likely to cause SSD breakdown. The result may be explained
by the fact that as LET represents charged particles’ direct
ionization capacity in certain materials, the SSD may experi-
ence severer effect and have higher possibility to fail when the
ions have higher LETs. Actually the plasma track caused by
the radiation of high-energy particles can trigger the charge
to flow within the track, and then catastrophic large current
might continuously heat the chip until the SSD fails. While
in Fig. 11, competing risk reliability is not obviously sensitive
to the temperature S. When S increases from 20◦C to 60◦C,
Rc(t) slightly decreases. This result further supports the idea

FIGURE 10. Sensitivity analysis of competing risk reliability on LETs.
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FIGURE 11. Sensitivity analysis of competing risk reliability on thermal
stress levels.

FIGURE 12. Sensitivity analysis of competing risk reliability on
degradation failure threshold levels.

that high temperature intensifies the thermalmotion energy of
electrons, and then it accelerates the degradation and destruc-
tion process of the tunnel oxide, leading to an increasing
moving read reference, raw bit error rate and defects per
million. As shown in Fig. 12, the reliability under competing
risk model is susceptible to the soft failure threshold, and
the SSD performance is better for a higher failure threshold.
In most cases, hard failure modes are obvious and easy to
recognize, hence they are often acceptable for both users and
manufacturers. However, there is usually a gap between their
criteria to report a soft failure. For example, an SSD failure
reported by its user might still in the operatable state based
on the manufacturer’s criterion. On the other hand, a failure
defined by the manufacturer may be still satisfactory by its
own user. In addition, the user satisfaction level might be
different from one to another. Therefore, soft failure threshold
uncertainty should be taken into consideration concerning
reliablity modeling.

VI. CONCLUSION
In this paper, a new reliability analysis method is proposed to
solve the competing risk modeling problem and demonstrate
the rationality of using commercial NAND-based SSDs in

the space field. On one hand, the SSD structure, function and
principle analysis are presented. On the other hand, the SSD
space environment effects, including platform stresses, oper-
ating stresses and space environment stresses during its on-
orbit stage are analyzed comprehensively, and results indicate
that ionizing radiation and temperature are dominant sensitive
stresses that deserve extra attention. The controller’s hard
failure is primarily attributed to SEL, and high temperature
causes the phenomenon of NANDFlash randomwrite current
degradation. The hard failure model is built based on the
invariance principle of total environmental particles’ energy.
The inverse power law-Weibull model is used to characterize
hard failures, while a nonlinear Wiener-process-based ADT
model with temporal variability and unit-to-unit variability is
developed for soft failures. Then the reliability andRUL func-
tions considering competing failures are eventually obtained.
Furthermore, the Weibull regression analysis method for
censored data and the MLE method for degradation data are
developed to estimate model parameters respectively. At last,
the effectiveness of the newly proposed reliability model is
illustrated by a simulated case study with sensitivity analysis.
The numerical example shows that the proposed method can
efficiently verify whether it is feasible to apply commercial
NAND-based SSDs in the space field.

For further investigation of this work, SSD failure analysis
based on practical experiments should be highlighted to help
design changes or provide corrective actions, and measure-
ment errors and model uncertainty can be studied to imple-
ment more accurate estimation and prognostic. Moreover,
dynamic reliability analysis considering dependent failures
can be investigated to further improve the developed model.
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