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ABSTRACT The next generation of wireless networks faces the challenges of the explosion of mobile
data traffic, the associated power consumption, and operation cost. The centralized radio access networks
(Centralized RANs) architectures have been proposed to reduce the power consumption and the network
operating cost. By integrating many distributed base stations’ processing resources in a processing pool and
sharing processing resources on demand, the overall required processing resources for the Centralized RAN
can be reduced compared to the conventional RAN. This can be measured by the statistical multiplexing
gain (SMG). However, most of the SMG analysis only considered the temporal traffic distribution which is
not suitable for the current mobile networks. In this paper, we analyze the SMG of processing resources based
on a temporal—spatial joint traffic distribution model, which considers the mobile data traffic distribution both
in the time and space domains. Based on this model, we derive a formula for the SMG and also a closed-form
approximation for that when the spatial traffic distribution is lognormal distribution. The theoretical analysis
and simulation results show that the SMG increases with the service threshold ratio Py, but the growth trend
of SMG for different area types is not always the same. We also find that the traffic distribution parameters,
such as the standard deviation of the lognormal distribution variable’s natural logarithm, have a significant
influence on the SMG.

INDEX TERMS Centralized RAN, processing resources pool, statistical multiplexing gain, traffic

distribution.

I. INTRODUCTION

Due to a widely use of ubiquitous smart devices, the global
mobile data traffic is forecasted to be increased exponen-
tially per month and mobile network connections speed will
increase by more than three-fold by 2020 [1]. To meet the
high traffic demands, the number of base stations (BSs) is
expected to increase significantly which results in a series
of problems including higher energy consumption, higher
operating cost and stronger interference in radio access net-
works (RAN) [2]-[4]. In order to solve these problems,
centralized radio access networks (Centralized RAN) archi-
tectures have been proposed, such as C-RAN [5], Super Base
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Station [6], [7] and et al. As shown in Fig. 1, in centralized
radio access networks, the capabilities of many originally
distributed BS processing resources are integrated in a cen-
tralized processing pool, which is connected to remote radio
heads (RRHs) via high-speed fiber-optic switching. With
the centralized network architecture, power consumption and
network operating cost can be reduced significantly due to
the relatively simple locating of RRHs and low cost mainte-
nance of BS processing resources [5]. Moreover, cooperative
operations of different BS processing resources can be easily
implemented.

One of the most important features of Centralized RAN
is that the processing resources can be shared between dif-
ferent BSs based on the centralized processing pool. In the
traditional distributed radio access networks (Distributed
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FIGURE 1. Architecture of centralized radio access networks.
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FIGURE 2. Architecture of distributed radio access networks.

RAN) architecture, processing resources are deployed to each
BS as shown in Fig. 2. Each BS must be designed with the
highest capacity to support the maximum possible traffic load
in its cell. However, BSs traffic load varies throughout a day
like a tide [5]. When a BS traffic load is low, most of its
capacity is wasted because the physical resource of BSs can-
not be shared among different BSs as they are isolated from
each other. In Centralized RAN, there is no fixed mapping
between the processing resources and BSs. A large amount
of BS processing resources are physically grouped together
and form a pool, which enable the statistical multiplexing
of processing resources. Therefore, from “‘exclusive owned”
processing resources in Distributed RAN to ‘““shared” pro-
cessing resources pool in Centralized RAN, a much higher
utilization rate of processing resources can be achieved so
that the related cost including power consumption, etc., can
be reduced. In literature, statistical multiplexing gain (SMG)
has been used to measure the performance of processing
resources utilization. Although substantial statistical multi-
plexing gain of Centralized RAN has been observed by sim-
ulations and in real systems, a proper mathematical model and
analysis are necessary to guide the practical system design.
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Liu et al. [8], [9] assume that the user session obeys
Poisson arrival, and construct a multi-dimensional Markov
chain of user sessions with virtual base stations. Thereby,
a statistical multiplexing gain model of virtual base station
pools computing resources is established. A tractable model
is proposed in [10] to analyze the statistical multiplexing
gain of the fronthaul capacity in C-RAN based on the user
blocking rate, which is caused by the fronthaul capacity
limitation. Madhavan et al. [11] quantify the variation of
the multiplexing gain of consolidated base stations in differ-
ent traffic conditions through traffic simulation experiments.
Checko et al. [12] present an evaluation of statistical mul-
tiplexing gain of Baseband Units (BBUs) in C-RAN based
on the load of base stations throughout a day. However,
the data traffic models used in these papers cannot reflect
the temporal and spatial distribution characteristics of current
mobile traffic. The widespread of smart mobile terminals
and the rapid development of mobile internet applications
have brought significant diversity in types and character-
istics of mobile network services. Traditional voice-based
services have evolved into various types of data services
such as instant messaging, multimedia videos and so on.
Different from voice services, the traffic distribution of these
new mobile Internet applications have obvious of hetero-
geneity, burstiness, and heavy-tailed characteristics [13]. The
temporal and spatial variation of the traffic distribution is
more prominent in current cellular mobile networks [13].
Therefore, the SMG analysis based on the temporal traffic
distribution of voice services is not suitable for current mobile
networks. In this paper, we propose a model of statistical
multiplexing gain of processing resources in centralized radio
access networks and make detailed analysis for the SMG by
considering both the temporal and spatial traffic distribution
characteristics.

The main contributions of this paper are as follows:

o We give a general definition of statistical multiplexing
gain of processing resources in centralized radio access
networks. The SMG is expressed by the ratio between
the maximum value of the temporal-spatial data traf-
fic over time in the area and the maximum value of
the average traffic value of all cells over time in the
area. By considering the service threshold ratio Py, in
practical cellular networks, we further define a specific
expression of SMG as a function of the Py,. The SMG for
practical networks is then expressed by the ratio between
the maximum traffic that can be serviced with the service
threshold ratio Py, at any time and the maximum value
of the average traffic value of all cells over time in the
area.

« We propose a method to compute statistical multiplexing
gain of processing resources in centralized radio access
networks by considering the traffic distribution both in
time and space domains, i.e., temporal-spatial joint traf-
fic distribution, instead of only considering the temporal
traffic distribution in most of the current research. The
SMG is analyzed based on two representative spatial
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traffic distribution models which are lognormal distri-
bution and Alpha-Stable distribution. We also derive a
closed-form approximation for SMG when the spatial
traffic distribution is lognormal distribution. The numer-
ical SMG can be obtained by the closed-form approx-
imation to provide insight on engineering practice of
cellular networks.

o We provide a detailed analysis on the SMG of processing
resources in centralized radio access networks. We show
numerically the influence of various factors including
the service threshold ratio Py, and distribution parame-
ters. Both the theoretical analysis and simulation results
show that the SMG increases with Py, for all typical area
types: CDB, park, and campus. We present the numerical
results for the theoretical SMG and simulated SMG
based on the lognormal and Alpha-Stable spatial traffic
distribution models. The gap between the simulation and
theoretical results is less than 5% for all, which verifies
the SMG analysis proposed in this paper.

The remaining of this paper is organized as following:
In Section II, the model of statistical multiplexing gain of
processing resources in centralized radio access networks is
proposed. Section III focuses on analysis of the SMG of
processing resources in centralized radio access networks
for temporal-spatial joint traffic distribution model based
on lognormal distribution. Then analysis of the SMG for
temporal-spatial joint traffic distribution model based on
Alpha-Stable distribution is made in Section IV. In Section V,
simulations are carried out to compare with corresponding
theoretical SMG values. In the end, we summarize the paper
in Section VI.

Il. SYSTEM MODEL

Considering that in cellular mobile networks, the number of
cells in the target region is N. In the centralized radio access
networks architecture, N RRUs of all cells are connected to a
centralized processing pool through an optical fiber fronthaul
link. For the convenience of narrative, we use 7 to represent
the data traffic statistics period of the network, and N to
represent the number of cells in spatial extent of the network.
Random variable X(i, )i = 1,2,....N;t =1,2,...,T)isa
traffic matrix. The matrix element x (i, t) represents the traffic
value of cell i at time 7, which denotes the traffic load of cell
i from time (r — 1)At to tAt. X(i, t) is defined as follows:

x(1, D x(1,2) ..x(1,¢) ... x(1, T)
x(2, D) x(2,2) ..x2,1) ... x(2,T)

XEO =1 D% 2) o x( 1) o x(,T) W

X(N. Dx(N.2)..x(N. 1) ... x(N. T)

Each row vector X(i,:) of matrix X(i, t) represents the
traffic values of a specific base station i in the time domain,
while each column vector X (:, #)7 of matrix X (i, t) represents
the traffic values of N base stations in the space domain at
specific time ¢. That is, the matrix X (i, t) characterizes the
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traffic distribution in both time and space domains. Assume
that in cellular mobile networks, the relationship between
processing resources allocated for a base station and the data
traffic to be processed by the base station is linear with
coefficient £ [14]. The processing resources required by base
station i is £x(i, t) at time ¢.

In a Distributed RAN architecture, each base station needs
to be allocated with enough resources to process the maxi-
mum traffic value that the corresponding cell may produce
at any time ¢. Therefore, processing resources for each base
station is determined by mtax &x(i, t), the required processing
resources in distributed radio access networks are the sum-
mation of the maximum processing resources of every base
station. In order to meet the network processing capability,
the total processing resources should be allocated as follows:

N
Roran = ;mgx £x(i, 1) @
1=
If the traffic for all the cells is similar, the required process-
ing resources can be given by:

Rpran = N maxéx(i, t) 3)
it

In a Centralized RAN architecture, because the process-
ing resources are shared among different BSs, the resources
should be allocated as a whole, not for separate BSs one by
one as in a Distributed RAN architecture. Therefore, in order
to satisfy the network processing capability at time 7, pro-

N

cessing resources should be allocated as > £x(i, t), which

is the sum of traffic values generated by .fﬁl] cells at time 7.
So, the required processing resources of the centralized radio
access networks should be determined by the maximum sum
of traffic values generated by all cells that may occur at any
time. Therefore, the required processing resources should be:

N
Reray = max ) _£x(i,1) @)
i=1
The ratio between the processing resources required in dis-
tributed radio access networks and the processing resources
required in centralized radio access networks % repre-
sents the reduction of required processing resources for the
centralized radio access networks. We refer to this ratio as the
statistical multiplexing gain (SMG) of processing resources
in centralized radio access networks, which can be expressed
as follows:
RpraN N n’l}E}X Ex(i, t) N rr;z;xx(i, 1)
SMG = = . = . 5)
Rcran N N
max Z; Ex(i, 1) max Z; x(@i, 1)
= =

Further, the SMG can be expressed as follows:

max x(i, t)
it
— (6)
2o x(ie)

i=1
max —x—

SMG =
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where maxx(l t) represents the maximum value of the

temporal spat1al data traffic over time in the area. It corre-
sponds to the maximum element in the traffic matrix X (i, t).
N

Zx(i,l)
In (6), max =
t

represents the maximum value of the
average traffic value of all cells over time in the area. Let
us use m(t) to denote the average traffic value of all cells at
time ¢ in the area, expressed as:

N
> x(i, 1)

) = =1 7
m(t) N N

Thus, the SMG can be expressed as:

maxx(i, t)
SMG = —L— 8
mtax m(t) ®)

In practical cellular networks, the processing resources of a
BS are usually configured to satisfy a very high percentage of
required resources, rather than always satisfy the processing
requirements of the BS maximum traffic at any time because
of the deployment cost. In other words, there is a service
threshold ratio Py, specified by practical systems. For a
given ¢, let us denote the service traffic threshold correspond-
ing to the service threshold ratio Py by xu(f, Py,). Here,
X (t, Pyyy) 1s the maximum traffic that can be serviced with
the service threshold ratio Py, at time ¢. Then we have:

Py = Pr(x(i, 1) < xm(t, Prp)) ®

where Py, can be set according to the actual network scenario
and engineering experience, e.g2. 95%, 97%, 99%, etc.
Therefore, for a given Py, the SMG can be expressed as:

max xg(t, Py,)

SMG(Py,) = tmax—m(t) (10)
t

Due to the relative stability of the total number of mobile
users in the entire area and the uneven distribution of mobile
users in spatial locations, the traffic of a single cell has strong
non-uniformity both in time and space domain [15]. Obtain-
ing the temporal-spatial joint distribution of traffic in cellular
mobile networks is critical for the analysis of SMG. There are
two representative spatial traffic distribution, i.e., lognormal
distribution [15]-[17] and Alpha-Stable distribution [19], for
current cellular mobile networks. Therefore, Section III will
give an analysis of SMG based on lognormal distribution,
and Section IV will give an analysis of SMG based on
Alpha-Stable distribution.

Ill. ANALYSIS OF STATISTICAL MULTIPLEXING GAIN
BASED ON LOGNORMAL DISTRIBUTION

In order to analyze the statistical multiplexing gain, we need
to know the temporal-spatial distribution of traffic and the
average traffic value of all cells over time in the area.
The temporal traffic distribution model describes the traffic
characteristics of cellular networks over time. Generally, the
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temporal traffic distribution model exhibits strong periodic-
ity, in which the busy time and idle time are clear during
a day. For example, in the working hours, a large number
of users move from the residential area to the office area,
and during the non-working hours, a large number of users
return to the residential area from the office area. As these
users move, the traffic load of the cellular networks also
shows a phenomenon of migration, known as tidal effect in
the network over time. Wang et al. [15] analyzed the traffic
value of base stations in time domain, and found that mobile
users have repetitive behavior during the time period in one
day. A sine signal superposition model was proposed to fit the
real traffic distribution in time domain for cellular networks.
The model is given by [15]:

n
m (1) = ao+ ) agsin (it + gr) (11)
k=1

where m(t) is the average traffic value of all cells over time
in the area, ag is a constant, wy is the frequency components
of traffic variation, n is the number of frequency components,
ay and @y are the amplitudes and phases, respectively, of the
corresponding traffic variation.

In general, traffic is usually not uniformly distributed in
real networks because of the convergence of user social
behavior. The spatial distribution of traffic in cellular net-
works is geographically dependent. Users in different areas
show different behavior characteristics, resulting in uneven
distribution of traffic in the spatial domain. The work
in [15]-[17] illustrated that the spatial inhomogeneity of
traffic in cellular networks can be described by a lognormal
distribution. The traffic density, which is regarded as real
traffic demand of users, can be approximated by a lognor-
mal distribution [17]. Therefore, statistical multiplexing gain
will be analyzed based on this representative spatial traffic
distribution model.

A lognormal distribution is a continuous probability dis-
tribution of a random variable whose logarithm is normally
distributed. The probability density function (PDF) of the
lognormal distribution is:

(Inx — p)?

1
exp{ —
xo 21w P { 202

Jx (xip,0) = } (x > 0)

(12)

where u and o are the mean and standard deviation of the
logarithm of the variable, respectively. The cumulative distri-
bution function (CDF) of the lognormal distribution is:

® {_—(lnx) _“} (13)
o

Based on the lognormal model for the spatial traffic dis-
tribution, the parameter u of lognormal distribution at time ¢
can be computed with the following expression [15]:

Fx(x) =

1
1 (1) = In(m(z)) — 502 (14)
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Formula (14) is based on the relationship between char-
acteristic parameters (mean and variance) of a lognormal
random variable and characteristic parameters (mean and
standard deviation) of the associated normal distribution,
expressed as:

w = In(m?* /vv + m?) (15)

o =/In(u/m? +1) (16)

where m and v are the mean and variance of a lognormal ran-
dom variable, respectively, i and o are the mean and standard
deviation of the associated normal distribution, respectively.

According to the temporal traffic distribution model for-
mula given by (11), a temporal-spatial traffic distribution
modeling approach is established by using lognormal distri-
bution with parameters u (¢) and o as follows:

Sx x(@, 1); p, o)
= fx (x(i, 1); In(m(t)) — %02, a>

| (lnx(i, 1) — In(m(t)) + %02)2
= exp —
x(i, o271 202

)

where x(i, t) represents the traffic value of cell i at time 7 in
the area.
The cumulative distribution function(CDF) of x(i, t) is:

X
Fx(x(i, 1)) =/ Jx (x(@@, 1) dX

Inx(i, 1) — In(m(1)) + 30

V2o

)
(18)

= %(1 + erf(

where erf is the error function, which is defined as:

X

erf (x) = % et = %/OX edt (19

According to (9) and (18), the service threshold ratio
Py, can be expressed as:

Py, = Fx(xu(t, Py))

Thus, we can get the expression of xy,(¢, Py,) as:
_ 1
xn(t, P) = m(t) exp(v/ 20 erf ' 2Py, — 1) — 502) (22)

where erf —12P,, — 1) returns the value of the inverse error
function for 2P, — 1.

Therefore, considering the threshold ratio Py, based
on (10) and (22), the SMG of processing resources in cen-
tralized radio access networks is further expressed as:

max xg,(t, Pry)
SMG(Py) = ——

max m(t)
t

max m(t)exp(v/ 20 erf 1 (2Py, — 1) — %02)

mtaxm (1)
= exp(W20erf 'QPy — 1) — %02) (23)

For the inverse error function, an approximation is given
by [18]:

100 In(1 —x2
ef ")~ [‘ i
100 In(1—x2)\2 50 12
+\/<ﬁ+¥> —71“<1—x2>]

(24)

the relative precision of this approximation is better than
4.1073, uniformly for all real x in the interval (0, 1).

Therefore, according to (23) and (24), the SMG can be
expressed as (25), shown at the bottom of this page. It can
be seen that the SMG of processing resources in centralized
radio access networks is related to the service threshhold
ratio Py, and the parameter o of lognormal distribution.
A reasonable service threshold ratio is usually set as Py, =
95% ~ 100% for the practical deployments of cellular net-
works. The corresponding numerical SMG can be obtained
by closed-form approximation (25) to provide insight on
engineering practice of cellular networks.

IV. ANALYSIS OF STATISTICAL MULTIPLEXING GAIN
BASED ON ALPHA-STABLE DISTRIBUTION

The work in [19] and [20] showed that the Alpha-Stable
distribution model is suitable to characterize the spatial inho-
mogeneity of traffic in cellular networks. The Alpha-Stable
model is able to capture the appropriate level of burstiness
of different types of traffic by selecting the proper parame-
ters [21]. It could most precisely fit the actual traffic spatial

- 1 lnxlh(t, Pth) — ln(m(t)) + %0.2
= el T ) (0)
Then, we have:
n L) Per= Py~ 1) - 507 @D
m() 5
— 12
SMG(Py) ~ exp (ﬁa[ 100 In(1 — 2Py — 1))
T 2

+/(%+
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2y
5 -7 In(1 — 2Py, — 1)2):| - 502> (25)
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distribution in cellular networks, reflecting the basic charac-
teristics of traffic demands from users, such as self-similarity
and long-range dependence, and partially exhibit the nature
of human activities [22]. With the property of burstiness
and heavy-tailed distribution, Alpha-Stable model manifests
itself in the capability to characterize the distribution of nor-
malized sums of a relatively large number of independent
identically distributed random variables [19].

In the previous section, we use random variable x(i, ) to
represent the traffic value of cell i at time 7. In this section,
we consider Alpha-Stable distribution to characterize the
traffic model in cellular networks. Since this model does not
specify the traffic in each cell, rather it specifies the traffic
model for each spatial sampling area. We need to redefine
the traffic matrix and corresponding SMG in this section.
Considering that in cellular mobile networks, the target region
is divided into M sampling areas with the same size, and
the coverage area of a sampling area is A. Let us define the
traffic matrix as X,(j,)j = 1,2,....M;t = 1,2,...,T).
The element x,(j, t) represents the traffic value of the spatial
sampling area j at time ¢, which denotes the traffic load of
the sampling area j from time (¢t — 1)Ar to tAt. In this
scenario, similar to the discussion in Section II, the SMG can
be expressed as:

max xq(j, 1)
SMG= -1 (26)

M
Z Xa(j,1)
=1

mtax i

where maxx,(j, t) represents the maximum value of the
gt

temporal-spatial data traffic over time in the region. It corre-
sponds to the maximum element in the traffic matrix X,(j, t).
Let us use m(t) to denote the average traffic value of all cells
at time ¢ in the area, and n, is the average number of cells in
a sampling area. Thus, we have:

M

Z xa (i5 t)

=1

! o = m(n, 27)

So, the SMG can be expressed as:

max xq(j, 1)

SMG =21 (28)
mtax m(t)n,

Since the expression of PDF fy (x) is unknown in
closed-form for most stable distributions, Alpha-Stable dis-
tribution is generally specified by its characteristic function.
A random variable X is said to obey the Alpha-Stable distri-
bution: X ~ S(«, B, y, 8), if there are parameters o € (0, 2],
B e[—1,1],y €[0,+400),5 € R, such that its characteristic
function is of the following form [23]:

exp{—y*|w|*(1 — iBsign(w) tan(%*)) + idw},
O(w)= . “EL
exp{—y|wl|(1 + iBsign(w) In|w|) + idw},
a=1
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where « is the characteristic exponent and indicates the
index of stability, 8 is identified as the skewness parameter,
o and B together determine the shape of the model, y and &
are scale and shift parameters respectively. An Alpha-Stable
distribution can be described by only four parameters. The
PDF of the Alpha-Stable distribution is the inverse Fourier
transform of the characteristic function, shown as:

fx @) = F ' [@w)] = % / d(w)e"™dw  (30)

The CDF of the Alpha-Stable distribution is:
X
Fx(x) = /fx(y)dy €1y}
—0oQ

The parameter § of Alpha-Stable distribution indicates the
shift of the PDF and it equals to the mean of the variable
when o € (0, 1). The PDF fx(x) for some negative interval
is non-zero and then it makes no sense for the traffic of
cellular networks when § < 0. Therefore, we consider the
non-negative interval of the variable X and normalize the
PDF for such an interval with practical meaning by defining a
Truncated Alpha-Stable distribution: X ~ §(a, B,v,68). The
PDF of the Truncated Alpha-Stable distribution is:

Jx(x) >0
f fx(J’)d)” n (32)

y>0
0, x<0

feto) =
The CDF of the Truncated Alpha-Stable distribution is:

Fx(x) = / Fxdy (33)
0

In an Alpha-Stable model for the spatial traffic distribution
in cellular networks, for a sampling area j(j = 1,2, ..., M) at
timer(t = 1, 2, ..., T). Let Aps(j, t) denote the density of base
stations and A7gr(j, ) denote the density of spatial traffic for
sampling area j at time ¢, both A7r(j, ) and Aps(j, ) follow
the Alpha-Stable distribution. In addition, a linear regres-
sion can characterize Aps(j, r) and A7gr(j, t), which can be
stated as [19]:

Aps(j, t) = kArr(j, 1) (34)

where k is a linear coefficient representing the number of base
stations required per unit spatial traffic. The parameters of the
Alpha-Stable distribution of Apg are fixed values for a same
area [17]. Thus, the temporal-spatial traffic model can be
established by using the Truncated Alpha-Stable distribution
as follows:

Xa(j, 1) = Am(t)Aps(j, 1) (35)
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FIGURE 3. Theoretical SMG as function of Py, (Lognormal distribution). (a) Py, = 0.94 — 0.995. (b) Py, = 0.995 — 0.9999.
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FIGURE 4. Theoretical SMG as function of o(Lognormal distribution).

According to the linear nature of the Alpha-Stable distribu-
tion [24], if X ~ S(«, B, y, 6), we have:

S(a, sign(b)B, |b| y, bs), o #1
bX ~
S(1, sign(b)B, |bl y, b8 — 2b(n |b])By), o =1

(36)

_ Thus, for Ags(j. 1) ~ S(o, Bo. 10, 8), We have x,(j, 1) ~
S(a(, 1), BG. 0, ¥ (. 1), 8G, 1)):

xa. 1) = Am(t)ips(. 1)
S(a. sign(Am())Bo. |Am(1)] yo. Am(1)50).
~ wEL g
S(1, sign(Am(t))fo. IAm(1)| yo. Am(1)d

— 2 Am(t)(In |Am(1)]) Boyo),

Similar to the discussions in Section III, for a given
service threshold ratio P, the SMG of processing
resources in centralized radio access networks can be
expressed as:

ag =1

max Xarh(t, Pyp)

SMG(Py,) =
() mlaxm(t)n(,

——1
mtax FXa (t, Py)

- mlax m (t) n, (38)
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Based on formula (30) to (33), we have:
——1 _
Fy, (t,Pp) = Fy'(t, Py + (1 = Pp)Fx,(0,1))  (39)
Therefore, the SMG can be expressed as:
max Fy ' (t, Py + (1 = Py)Fx, (0, 1))
SMG(Py) = — (40)

max m(t)n,
1

It can be seen that the SMG of processing resources in
centralized radio access networks is related to the thresh-
hold ratio Py, the maximum value of average traffic m(r)
of all cells in the area, the average number of cells ng in a
sampling area, and the Truncated Alpha-Stable distribution
parameters («o, Bo, Y0, do) of the density of base stations.
Since the expression of PDF fy (x) is unknown in closed-form
for Alpha-Stable distributions, we will evaluate it numerically
in the following section.

V. SIMULATION RESULTS

In this section, we present the numerical results of the the-
oretical SMG values and simulated SMG values based on
the temporal-spatial joint traffic distribution models. For the
temporal-spatial joint traffic distribution model based on the
lognormal distribution, we select three typical area types:
central business district (CBD), park, and campus. Each area
type has a typical standard deviation of its traffic distribution.
The lognormal distribution parameter o of them has been
obtained in [15]. For the temporal-spatial joint traffic distri-
bution model based on Alpha-Stable distribution, in order to
utilize the temporal traffic distribution of the whole area given
in [15], we consider the spatial traffic distribution in the whole
area with parameters specified in Table 1.

For lognormal distribution, the theoretical values of SMG
is shown as Fig. 3. It can be seen from the Fig. 3 that the
SMG increases with Py, for all typical area types: CBD,
park, and campus. This is because the larger Py, the more
processing resources needed to be configured to support high
traffic load of cells in DRAN architecture. In centralized
RAN, processing resources can be shared among different
BSs. When a BS is in a high traffic load, more processing
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TABLE 1. Values of parameters.

Parameter Value

N 1000

T 24h

At 1h

o(CBD) 2.8

o(park) 1.3

o(campus) 3.6

Py, (0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 0.999, 0.9999)

m(t)(CBD) 75.724-47.52 xsin( {51 —2.56) + 16.71 «sin(£r + 1.45)

m(t)(park) 351.06+222.7 xsin( {51 +3.11) + 96.24 % sin( § 1 +2.36)

m(t)(campus) 323.04 +148.3 xsin( {51 +2.98) +109.4 xsin( £ +2.15) +38.43 xsin(§1 4 1)
m(t)(whole area) | 173.29489.83xsin(757+3.08) +52.6xsin(F1+2.08) 4 16.68 +sin( 7+ 1.13)
A 1km?

ny 15

0o, Bos Yo, 0 (1.79, 1.00, 6.33, 15.37)

14 T
=@ Theoretical value(CBD) p
=& Simulation value(CBD)
[| == Theoretical value(park) .
=¥ Simulation value(park) *
10H == Theoretical value(campus) ’

=% Simulation value(campus)

Pth

()

10° || =@= Theoretical value(CBD)
=% Simulation value(CBD)
4 Theoretical value(park)
=W Simulation value(park)
=P Theoretical value(campus)
=% Simulation value(campus)

I
099 0999 09999
Pth

()

FIGURE 5. Simulated versus theoretical SMG as function of Py, (Lognormal distribution). (a) Py, = 0.94 — 0.99.

(b) Py, = 0.99 — 0.9999.

resources are allocated to it. When its traffic load is low,
the redundant resources could be dynamically re-assigned to
other BSs with a higher traffic load. Therefore, P, does not
affect the resource configuration in centralized RAN signif-
icantly. Moreover, when Py, is fixed, the SMG is different
in CBD, park and campus. The reason is that the standard
deviations of their traffic distribution are different, which will
be discussed in detail in Fig. 4.

Fig. 4 shows the relationship between SMG and o when
the Py, is fixed as 0.97, 0.99, 0.995, respectively. It can
be seen that the SMG gets the maximum value (5.86,
14.96, 27.58) when o = 1.9,2.3,2.6. The SMG increases
with ¢ when o is less than 1.9, 2.3, 2.6, respectively, and
SMG decreases with o when o is larger than 1.9, 2.3, 2.6,
respectively.
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Fig. 5 illustrates the SMG simulation and theoretical results
over different Py, for three typical areas: CBD, park and cam-
pus. The gap between the simulation and theoretical values
for three typical areas is less than 5%, which verifies the
theory analysis of SMG in above sections.

For Alpha-Stable distribution, Fig. 6 shows theoretical
values of SMG and the simulated temporal-spatial joint traf-
fic distribution of 1000 base stations over time of one day
in the target area. Fig. 6 illustrates simulated SMG val-
ues and theoretical SMG values over different Py, values.
The relative error between the simulated SMG values and
the theoretical SMG values is less than 4%, which verifies
the correctness of analysis. In addition, it can be seen from
the Fig. 6 that the SMG increases with Py,. The reason is
consistent with the SMG based on the lognormal distribution.
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FIGURE 6. Simulated versus theoretical SMG as function of Py, (Alpha-Stable distribution). (a) Py, = 0.94 — 0.99.

(b) Pg, = 0.99 — 0.9999.

However, when the Py, is 0.9999, the SMG is much less than
the SMG based on the lognormal distribution. It shows that
different spatial traffic distributions have a great influence
on SMG.

VI. CONCLUSIONS

In this paper, we investigated the SMG of processing
resources in centralized radio access networks by considering
the temporal and spatial distribution of data traffic in current
cellular networks. We also proposed a model of SMG and
made detailed analysis for it by using the model of statis-
tical multiplexing gain based on the temporal-spatial joint
traffic distribution model. We found that the SMG is related
to the service threshold ratio Py, and certain spatial traffic
distribution parameters, for example, o of lognormal spatial
traffic distribution, (¢, B, y, 8) of Alpha-Stable spatial traffic
distribution. Moreover, the SMG is related to the maximum
average traffic value m(z) of all cells in the target area when
the spatial traffic distribution is Alpha-Stable distribution.
In general, the SMG increases with Py,. We compared sim-
ulated SMG values with corresponding theoretical SMG val-
ues for three typical area types of park, campus and CBD over
different values of the service threshold ratio Py, respectively.
The gap between the simulated SMG values and the theoreti-
cal SMG values is less than 5% for all. Overall, the simulation
results prove the correctness of our theoretical analysis.
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