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ABSTRACT Mask data preparation (MDP) is a part of the mask data process for fabricating semiconductors,
and its importance has commonly been neglected. This paper proposes an integer linear programming model
and two meta-heuristics, a genetic algorithm (GA) and simulated annealing (SA), for solving the MDP
scheduling problem (MDPSP). The proposed meta-heuristics are empirically evaluated using 768 simulation
instances of MDPSP based on the characteristics of a real technology company and compared with the most
commonly used first-come, first-served method. The experimental results reveal that the proposed GA and
SA algorithms can critically improve the manufacturing schedule for semiconductor factories.

INDEX TERMS Scheduling, integer linear programming, mask data preparation, meta-heuristics, genetic
algorithm, simulated annealing.

I. INTRODUCTION
Products that are derived from semiconductors have long
been an essential part of daily life. A semiconductor
fabrication line involves hundreds of steps, which com-
prises diffusion, photoresist, exposure, development, etch-
ing, implant, chemical vapor deposition, and metallization.
Optical lithographic imaging methods (photo-lithography,
LITHO) are regarded as themost complicated in the semicon-
ductor fabrication process [1]. Circuit patterns are transferred
onto the wafer which is coated with a photo-resist and then
baked to make the photo-resist for subsequent exposure [2],
[3]. However, the LITHO workshop is commonly a bottle-
neck and related scheduling decisions affect the efficiency of
the entire semiconductor manufacturing process [4].

The photomask is an important LITHO tool in the semi-
conductor manufacturing process. The alignment and expo-
sure process in a photolithography workshop is repeated
until the circuit with numerous layers has been formed.

The associate editor coordinating the review of this manuscript and
approving it for publication was Qing Chang.

Each layer, with specific device characteristics of a layer,
requires its photomask. Mask data preparation (MDP) pro-
vides mask data information to mask-shops, including the
specifications and instructions to build a photomask. It is
the process of translating a file that contains the intended
set of polygons in an integrated circuit layout into a set of
instructions that can be followed by a photomask writer to
generate a physical mask [5]. When a chip design becomes
tape-out, mask databases and mask tooling documents are
prepared. MDP is the final stage of product design and the
first stage of production. The completion of MDP repre-
sents the beginning of production. From 2010 to the present,
MDP has been one of the procedures that are considered in
improving the efficiency of the semiconductor manufacturing
process.

As shown in Figure 1, MDP comprises three major steps,
which are mask data generation (MG), optical proximity
correction (OPC) and mask tape-out (TO).While the first two
steps relate to design for manufacture (DFM), the third step
involves outputting a document and data translation. Three
steps are as follows.
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FIGURE 1. The flowchart of MDP.

(1) MG comprises three operations. The first generates the
dummy fill; the second is the mask bias trimming process;
the third is mask data generation. In the past, circuit design
has had to meet design specifications that depend strongly
on the production machine used. If the production machine is
changed, then a time-consuming circuit redesign must be per-
formed. Today, MG is performed by a simple bias trimming
process to save time and workforce.

(2) OPC is a resolution enhancement method that improves
pattern fidelity in lithography [6], [7]. Increasing the circuit
density improves the integrated circuit (IC) performance but
leads to patterning proximity issue. A layout edge or fragment
migrates to its proper position to minimize edge placement
error [8]. OPC can be performed using rule-based and model-
based methods. Owing to the availability of the required soft-
ware, and the time and cost of the process, OPC is conducted
only in the critical layer.

(3) TO transforms several sets of graphic data into the
electron beam lithography system (manufacturing electron
beam exposure system, MEBES) format, which can be read
by a mask writer. TO also performs the job deck view (JDV).
The information is then passed to mask-shops for mask pro-
duction after the information has been verified.

The circuit designer follows the specifications for circuit
design and then hands off to the production department. In the
past, whereas the production department has been responsible
for manufacturing faults, the design department has been
responsible for issues concerning the device and its elec-
trical properties. Today, process scaling has reached insur-
mountable physical limits, so the production department is
commonly unable to achieve a particular yield rate under the
specifications of the circuit that are set by the design depart-
ment. Design and production departments must work closely
together to solve this problem [9]. Schiavone et al. [10] pre-
sented a novel mask proximity correction software to ensure
accuracy and to reduce writing time in photomask manufac-
turing. The trend in the field of circuit technology to reduce
the dimensions of critical features has drastically increased
the size of design files. Marques et al. [11] presented an
MDP flow that maintains a consistent delivery time to mask-
shops. Also, simulation-based recent works have surveyed
MDP and developed newmethods to improve the productivity
of OPC [12]. In the past, one product has not required the use
of too many masks, and the first-come, first-served (FCFS)
method is frequently used. However, with the evolution of
production process technology, the monthly number of masks
produced has jumped by a factor of approximately two to
three. In this situation, solving MDPSP using the FCFS

method tends greatly to delay delivery, and cause problems
of staff allocation. Therefore, algorithms must be developed
to deal with this situation.

The MDPSP that is considered herein can be elucidated
as follows. Consider a set of n mask data and each mask
datum has three tasks to be processed in three production
stages (MG, OPC, and TO). Each mask datum may have a
different release time from the others. The flow of mask data
through the MDP is unidirectional, but some mask data do
not have to be processed in a single production stage (OPC in
the MDP). Each production stage involves operations on mi
machines. At each production stage i (i = 1, 2, 3), one task
of mask datum j is performed by one of parallel machines
and without pre-emption. Each machine can process no more
than one mask datum at a time and the machines are con-
tinuously available. The processing time and the resources
required are the same for all mask data in the same stages
of MG or TO (and OPC if required). The objective is to
find a schedule that minimizes the total weighted tardiness.
Notably, theMDPSP considered herein is a special case of the
hybrid flowshop scheduling problem (HFSP) with a missing
operation, i.e., some mask data can skip the stage of OPC.
The traditional HFSP consists of a series of production stages,
in which each stage has some identical parallel machines.
While some stages may have only one machine, at some
stage the machines are duplicated to enhance the capacity of
the shop floor, or to balance the capacities between different
stages. A set of independent jobs must be sequentially pro-
cessed through these production stages, and each job consists
of several operations to be performed by none, one or more
machines on each stage. However, in most of the studies,
it is assumed that there is one operation for all production
stages [13].

The hybrid flowshop system (HFS) has been applied to
various industries, including the semiconductor, electronics,
textile and food industries [14]. In recent decades, the wide
range applications of the HFS have attracted many attentions
from researchers and practitioners who have addressed vari-
ous HFSPs. The algorithms for solving HFSPs fall into three
categories, which are exact methods [15]–[18], constructive
heuristics [19]–[24], and improvement heuristics [24]–[33].
Regarding the exact methods, Naderi et al. [18] reviewed
the shortcoming of the available models in the literature
and provided a comparison of four different mathemati-
cal models. Although optimal solutions of HFSPs can be
obtained using exact methods in the literature, owing to the
computational complexity, it is severely painful even formod-
erately sized HFSPs. Therefore, most decision-makers use
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constructive and improvement heuristics to find approximate
solutions in an acceptable computational time. A constructive
heuristic usually starts with an empty permutation list and
repeatedly extends the current permutation list until a com-
plete schedule is obtained. Among the constructive heuris-
tics available for HFSPs, the two approaches based on the
Nawaz-Enscore-Ham (NEH) heuristic [24], WT1_NEH(x)
and WT2_NEH(x), proposed by Kizilay et al. [25] are cur-
rently the best ones for the HFSP with makespan objective.

On the other hand, an improvement heuristic usually
starts with an initial solution and then provides a scheme
for iteratively improving the incumbent solution. Among
improvement heuristics, studies with meta-heuristics have
been extensively applied on the HFSPs. The meta-heuristic
is a rather broad-spectrum algorithmic framework that can
be applied to different combinatorial optimization prob-
lems with minor modifications. Methods of the remarkable
approximation algorithms available for HFSPs including:
Tabu search [26], immune algorithm [27], ant colony system
algorithm [28], particle swarm optimization algorithm [29],
iterated greedy algorithm [30], genetic algorithm [31],
simulated annealing algorithm [32], hybrid immune algo-
rithm [33], hybrid artificial bee colony algorithm [34], and
hybrid particle swarm optimization algorithm [25]. In the
past, one product has not required the use of too many masks,
and the first-come, first-served (FCFS) method is frequently
used. However, with the evolution of production process tech-
nology, the monthly number of masks produced has jumped
by a factor of approximately two to three. In this situa-
tion, solving MDPSP using the FCFS method tends greatly
to delay delivery, and causes problems of staff allocation.
Therefore, algorithms must be developed to deal with this
situation. Since the computational results of above studies
showed that approximation algorithms have practical value
for solving HFSPs in terms of solution quality, robustness and
efficiency, this study presents two high-performance approx-
imation algorithms for solving the MDPSP. The novelty and
contributions of this paper are summarized as follows. The
considered MDPSP, which is regarded as the most critical
stage in the photo-lithography process, is mathematically
modeled using an integer linear programming (ILP) model.
To meet the practical requirements, two high-performance
meta-heuristic algorithms, a simulated annealing (SA) and
a genetic algorithm (GA), are also developed for solving
this practical but computationally intractable problem. Since
scheduling algorithms strongly affect the performance of
the photo-lithography process, this work contributes signif-
icantly to meeting the practical requirements for solving the
MDPSP problem.

The rest of this work is organized as follows. First, the ILP
model of the MDPSP is formulated. Second, the two pro-
posed meta-heuristic algorithms are elucidated. Third, the
proposed algorithms are empirically evaluated using 768 sim-
ulation instances that are based on the characteristics of a
real technology company, and their performance is com-
pared with those of the ILP model and the FCFS method.

Finally, conclusions are drawn, and recommendations for
future research are provided.

II. ILP MODEL
This section formulates the MDPSP of interest. To simplify
the formulation, the following notation is used.
Indices:

i : Stage
j : Mask datum
t : Time unit

Parameters:

N : Number of mask data
K : Number of stages
mi : Number of identical parallel machines in stage i
T : Planning horizon for which the schedule is to

be developed
Bj : Release time of mask datum j
Dj : Due date of mask datum j
Wj : Penalty per unit time of tardiness for mask datum j
Pi : Processing time required in stage i for

each mask datum

Decision variables:

Xijt = 1, if mask datum j is processed in stage i at time t;
0, otherwise

Sij : Starting time of mask datum j in stage i
Cij : Completion time of mask datum j in stage i
Tj : Tardiness of mask datum j

Let mask datum 0 be the dummy initial mask datum. The
MDPSP problem can be formulated as follows.

Minimize
N∑
j=1

WjTj (1)

subject to
N∑
j=1

Xijt≤mi, i=1, 2, . . . ,K ; t=1, 2, . . . ,T ,

(2)

C(i−1)j ≤ Cij − Pi, i = 2, . . . ,K ;

j = 1, 2, . . . ,N , (3)

Cij − Sij + 1 = Pi, i = 1, 2, . . . ,K ;

j = 1, 2, . . . ,N , (4)
T∑
t=1

Xijt = Pi, i = 1, 2, . . . ,K ;

j = 1, 2, . . . ,N , (5)

Sij ≤ t + T (1− Xijt ), i = 1, 2, . . . ,K ;

j = 1, 2, . . . ,N ; t = 1, 2, . . . ,T (6)

tXijt ≤ Sij + Pi − 1, i = 1, 2, . . . ,K ;

j = 1, 2, . . . ,N ; t = 1, 2, . . . ,T (7)

S1j ≥ Bj, j = 1, 2, . . . ,N , (8)

Tj ≥ CKj − Dj, j = 1, 2, . . . ,N , (9)
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TABLE 1. An example of MDPSP data.

Tj ≥ 0, j = 1, 2, . . . ,N , (10)

Xijt ∈ {0, 1}, i = 1, 2, . . . ,K ;

j = 1, 2, . . . ,N ; t = 1, 2, . . . ,T , (11)

Sij ∈ {1, 2, . . . ,T }, i = 1, 2, . . . ,K ;

j = 1, 2, . . . ,N , (12)

Ci0 = 0, i = 1, 2, . . . ,K , (13)

Cij ∈ {1, 2, . . . ,T }, i = 1, 2, . . . ,K ;

j = 1, 2, . . . ,N . (14)

The objective function minimizes the total weighted tar-
diness. Constraint set (2) sets the maximum number of
machines that are available in each stage during a period.
Constraint set (3) imposes the condition that no mask data
task can be begun until the preceding task has been com-
pleted. Constraint set (4) is the starting time constraint, which
is obtained from the processing time requirement. Constraint
set (5) represents the period that each mask data at each
stage occupies. Constraint set (6) denotes that, at each stage,
each mask data will occupy its required number of processors
from its starting time at that stage. Constraint set (7) requires
that, in each stage, each mask datum will occupy its required
number of machines until its finishing time in that stage.
Constraint set (8) confirms that the staring time of the first
stage of each mask datum cannot earlier than its release
time. Constraint (9) determines the tardiness of mask datum j,
which is computed as the completion time of mask datum j in
the last stageminus its due date (CKj−Dj). Finally, constraints
(10)-(14) define the decision variables.

III. PROPOSED META-HEURISTIC ALGORITHMS
This section briefly describes the representation of the solu-
tion to the MDPSP of interest, the calculation of the objective
function value, and the elements used in SA and GA for
solving the MDPSP.

A. SOLUTION REPRESENTATION AND CALCULATION OF
OBJECTIVE FUNCTION VALUE
In this work, a sequence of mask data is represented by
a string of numbers that is a permutation of mask data.
Therefore, the first entry in the solution representation is the
first mask datum to be processed on the machine of the first
stage (MG). Then, from left to right, other mask data are
sequentially processed on the available machines of the first
stage. In the other two stages, i.e., OPC (if required) and

TO, the mask data are dispatched to the available machine
according to the First-Come First-Served (FCFS) rule. If a
mask datum is scheduled to be processed before its release
time, then the process is delayed until that time. Suppose that
five mask data are to be processed, and two, one, and two
machines are available for MG, OPC, and TO, respectively.
Table 1 presents five mask data. Column 1 in Table 1 denotes
the number of mask data, while columns 2-4 present the
processing times of MG, OPC and TO for each mask datum
which is zero if the operation does not have to be performed
on the mask data. Columns 5 to 7 present the release time,
due date and unit weighted tardiness of the mask data. For
example, a solution that is represented as [3 2 1 4 5] can be
interpreted as an operating sequence that involves five mask
data on the machines of the first stage of 3-2-1-4-5, then the
Gantt chart of the schedule is presented in Fig. 2. As listed
in Table 2, the total weighted tardiness for this solution is 68
(6∗1+ 2∗3+ 0∗1+ 6∗1+ 10∗5 = 68).

B. NEIGHBORHOOD SOLUTION
Given a schedule 5, the neighborhood solutions of 5,
denoted as N (5),can be randomly generated by the swap
and insertion operations. For the swap operation, N (5) is
sampled by randomly selecting two mask data and directly
switching their positions; for the insertion operation, N (5) is
sampled by randomly selecting a mask datum and inserting
it immediately before another randomly chosen mask datum.
For example, if a new solution N (5) is obtained by swap-
ping the second mask datum and the fifth mask datum of
the solution 5 = [3 2 1 4 5] revealed in Figure 2, then
N (5) = [3 5 1 4 2]. If a new solution N (5) is obtained
by inserting the fourth mask datum before the second mask
datum in the 5 = [3 2 1 4 5], then N (5) = [3 4 2 1 5].

FIGURE 2. Gantt chart of an MDPSP solution.
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TABLE 2. The calculation of an MDPSP solution.

C. GENETIC ALGORITHM
Holland [35] developed the first genetic algorithm (GA). Fol-
lowing the publication of a text book onGAbyGoldberg [36],
the range of applications of GAs has increased rapidly.
GA has been successfully used to solve many complex com-
binatorial optimization problems [36]–[38]. The searching
procedure of a GA is based on natural selection, which
operates on multiple solutions simultaneously and evaluates
a fitness function for the corresponding solutions.

FIGURE 3. Pseudo-code of the proposed GA.

The Pseudo-code of the proposed GA is shown in Figure 3.
Let P(t) and C(t) represents the parents and offspring in
current population t . The initial population, chromosome
representation, selection scheme, crossover operator, muta-
tion operator, and termination condition of the proposed GA
algorithm to be used to solve the MDPSP of interest are
described as follows.
• Chromosome Representation and Initial
population—The chromosome representation is the
solution representation as described in Section 3.1.
Initial solutions are randomly generated. A collection
of Psize such individual randomly generated solutions
forms a population P.

• Selection Scheme—The probability that an individual
is selected as a parent increases with its corresponding
fitness function value. Given a population P and the
total weighted tardiness value (WTt ) of each individual
t ∈ P, the fitness function value of t , ft , is given by
ft = 1/(1 + WTt ). The proposed GA uses tournament
selection to identify two individuals and to select the one
with the higher fitness function value as a parent.

• Crossover—Two parents have a probability pc of under-
going the crossover operation. A newly generated indi-
vidual has chromosomes that comprise genes from both
of its parents. If the total weighted tardiness of the newly
generated individual inC(t) is less than that of the parent
with the larger total weighted tardiness value, then it
will replace that parent; otherwise, the newly generated
individual will be eliminated. The proposed GA uses the
well-known position-based crossover [39]. The position
based crossover is one of the simplest but powerful
crossover operators for sequencing problems, and has
been applied to solve many optimization problem suc-
cessfully [40]–[42]. As a rule of thumb, we adapted it in
this study.

• Mutation—New offspring have a probability pm of
undergoing mutation. If the total weighted tardiness of
a mutated offspring is less than the pre-mutation value,
then the mutated offspring in C(t) will replace the orig-
inal offspring. Section 3.2 describes how to generate the
mutated individual using neighborhood solution.

• Termination Condition—The proposed GA is termi-
nated if the maximal computation time MaxTime is
reached.MaxTime is set to Tvalue×n seconds, where Tvalue
is a parameter value controlling the maximal computa-
tion time and n is the number of mask data.

D. SIMULATED ANNEALING
The simulated annealing (SA) algorithm was intro-
duced by Metropolis et al. [43] and popularized by
Kirkpatrick et al. [44]. SA has been successfully applied to
a wide variety of complex combinatorial optimization prob-
lems [45]–[48]. The SA algorithm is modeled on the process
by which the slow cooling of metal causes good crystal-
lization, while rapid cooling causes poor crystallization. The
proposed SA algorithm is described in detail as follows. First,
four parameters,Niter , T0, α, andMaxTime, are set, whereNiter
represent the number of iterations at a particular temperature;
T0 denotes the initial temperature; α is the coefficient that
controls the cooling schedule, and MaxTime is the maximal
computational time for executing the algorithm. The Pseudo-
code of the proposed SA heuristic is shown in Figure 4.
The initial current temperature T is set to T0. The solution
is represented as described in Section 3.1. Subsequently, an
initial solution5incumbent is randomly generated. The current
best solution 5best is set to 5incumbent . Let TWT (5) be the
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FIGURE 4. Pseudo-code of the proposed SA.

total weighted tardiness of5. Set the best objective function
value TWT (5best ) to TWT (5incumbent ).

The current temperature T is reduced following Niter iter-
ations after the previous temperature reduce using a for-
mula T ← αT , where 0 < α < 1. In each iteration,
a feasible solution 5new is generated from 5incumbent using
N (5incumbent ), as described in Section 3.2. Let 1 be the
difference between TWT (5incumbent ) and TWT (5new), such
that 1 = TWT (5new) − TWT (5incumbent ). The probability
of replacing 5incumbent with 5new, given that 1 > 0, is
e−1/T . Replacement is performed by generating a random
number r ∈ [0, 1] and replacing the incumbent solution
5incumbent with 5new if r < e−1/T . Conversely, if 1 ≤ 0,
then the probability of replacing 5incumbent with 5new is
100%. The searching process is terminated when themaximal
computation time is used and the maximal computation time
is calculated in the same way as for the GA.

IV. COMPUTATIONAL RESULTS AND DISCUSSION
The proposed GA and SA algorithm were coded using C and
tested on a personal computer with an Intel Core 2 2.67 GHz
CPU, 4GB memory, and Window 10 operating system. The
ILP model of the MDPSP was solved using Gurobi 8.1 [49]
on that machine.

A. TEST PROBLEMS
To demonstrate the applicability of the two developed meta-
heuristic algorithms in practice, 720 large-scaled problem

instances were obtained from a technology company in
Taoyuan, Taiwan. To confirm the proposed ILP and to com-
pare with GA and SA, another 48 small-scale problem
instances (reduced from the large-scale problem instances)
were used. Therefore, a total of 768 test problems were
solved.

The parameters of the 720 large-scaled test problems,
including the processing time required in stage i for each
mask datum (Pi) and the numbers of identical parallel
machines in stage i (mi) came from the technology company’s
actual data. The number of mask data (N ), the OPC ratio
(OPCR), the release time (Bj), the due date (Dj), and the
penalty per unit time of tardiness for mask datum j (Wj) are
generated according to the standard time and real requirement
of the company. The processing times for MG and TO are
12 and 24 hours, respectively, while the operating time for
OPC, if required for mask data, is 60 hours. According to
the company’s actual data, the numbers of machines for
MG, OPC and TO are three, five, and four, respectively.
The number of mask data (N ) has three levels, 75, 100,
and 125. Two OPC ratios (OPCR) – 33% (Low) and 80%
(High) – are used, meaning that the number of mask data to
be processed in OPC is around 33% or 80% of all the mask
data. The Release Time Range (RTR) has two levels - Short,
which is [0, 180] hours, and Long, which is [0, 360] hours,
where the numbers inside parentheses specify the range of
discrete uniform distribution that be used to generate release
times. The tightness of the due date (TDD) determines the
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TABLE 3. Summarized levels of the five factors for 720 test instances.

possible available time for handling mask data and is set
to Tight(Release time + Total Processing Time), Middle
(Release time + 1.5 × Total Processing time) or Loose
(Release Time+ 2× Total Processing Time). The mask data
weight range (MDWR) denotes the range of unit penalties for
tardymask data. There are two levels ofMDWR: Small, which
is [1, 5], and Large, which is [1, 15], where the numbers inside
parentheses denote the range of discrete uniform distribution
that be used to generate weights. The values for Bj,Dj, and
Wj are generated using discrete uniform distributions from
the intervals ofRTR, TDD, andMDWR, respectively. For each
combination of problem factors, ten instances are generated.
As a result, 3×2×2×3×2 = 72 combinations of factors and
72× 10 = 720 problem instances are used. Table 3 presents
the levels of the five factors.

The 48 small-scale problems are generated as follows. The
number of mask data (N ) has six levels, 6, 8, 10, 12, 14,
and 16, in which eight test instances are generated from
each level. The RTR is generated from discrete uniform

distribution in the range [0, 40]. The operating times for
MG and TO are scaled to 6 and 12 hours, respectively. The
operating time for OPC, if required, is scaled to 30 hours. The
numbers of machines for MG, OPC and TO are two, four, and
three, respectively.

B. PARAMETER VALUE
This subsection discusses the results of computational exper-
iments that are designed for evaluating the performance
of the proposed GA and SA. Since parameter setting may
influence the performance of each algorithm, 72 new test
instances (one test instance for each combination of prob-
lem factors) are randomly generated for parameter analysis.
Tested parameter combinations for the GA in the analysis
are Psize = {50,100,150,200}, Pc = {0.6,07,0.8,0.9}, and
Pm = {0.10, 0.20, 0.30, 0.40}. Tested parameter combina-
tions for SA in the analysis are T0 = {1, 4, 7, 10}, α = {0.90,
0.93, 0.95, 0.97}, andNiter = {1500, 2000, 2500, 3000}. Each
test instance is solved 10 times.

Since each parameter had four levels, the orthogonal array
L16 (34) is applied in the design of experiment (DOE) [50].
Table 4 shows the 16 combinations of parameter values in
the experiment, and the response variable is average improve-
ment rate (AIR), which is computed as follows.

AIRh =
TWT FCFSmax − TWT

h
max

TWT FCFSmax
× 100%

where TWT FCFSmax and TWT hmax represent the total weighted
tardiness values that are obtained using the FCFSmethod and
heuristic h, respectively.
Table 5 presents the significance value of each parameter.

It shows that Pm and T0 is the most significant parameters for
GA and SA, respectively. TheAnalysis of Variance (ANOVA)

TABLE 4. Orthogonal array of experiments.
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TABLE 5. The average relative percent of deviations for each parameter
of GA and SA.

of parameters is shown in Tables 6 and 7. Table 6 reveals that
both Pm and Psize has an impact on the solution quality of GA,
while Table 7 shows that T0 has an impact on the solution
quality of SA. According to the parameter analysis, in this
study, the parameter values of GA are set as Psize = 50,
Pc = 0.6, and Pm = 0.4, and the parameter values of SA
are set as T0 = 10, Niter = 1500, and α = 0.97.

C. COMPARING RESULTS OF ILP SOLVED BY GUROBI
SOLVER, GA AND SA
The proposed ILP model is optimally solved using the
Gurobi 8.1, a state-of-the-art mathematical programming

solver. In this study, the planning horizon (T ) is set to T =
max

j=1,...,N
{Bj} +NP1/m1 +NopcP2/m2 +NP3/m3, where Nopc

is the number of mask data required OPC. Notably, for the
ILP model, the initial lower bound (LB) of the objective
function value (total weighted tardiness) is zero, and the
initial upper bound (UB) of the objective function value is
infinite. When the ILP model is solved using Gurobi 8.1,
the LB and UB will be replaced according to the solver and
the incumbent solution. Once the objective function value of
the incumbent solution equals the current LB, the optimal
solution is obtained and the solver is terminated. The solver
is terminated after one hour if it had not found the optimal
solution.

Table 8 presents the solutions and the computing times for
48 small problem instances. The Gurobi solver finds optimal
solutions to 29 out of the 48 problems, as shown in bold
in Table 8. The GA and SA also yield the same 29 optimal
solutions. For the other 19 small-scale problems, which do
not have known optimal solutions, both the GA and SA find
better solutions than the Gurobi solver. The reason is that
the addressed MDPSP is NP-hard in the strong sense, so the
performance of the ILP model is significantly reduced when
the number of musk data is greater than 12. To measure
the degree of the improvement, the overall average improv-
ing rate (AIR) is used. AIR is computed as (TWTMILPmax −

TWT hmax)/TWT
MILP
max × 100% where TWTMILPmax and TWT hmax

denote the total weighted tardiness values that are obtained
by Gurobi solver and the heuristic h, respectively. The AIRs
of the GA and SA are 8.293% and 8.238%, respectively.
In summary, the proposed GA and SA heuristics yield better
solutions in less time than the Gurobi solver. Many factors

TABLE 6. ANOVA for parameters of GA.

TABLE 7. ANOVA for parameters of SA.
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TABLE 8. Computational results for the 48 small problem instances.

TABLE 9. Performance comparison between GA and SA.

may influence the computing time; they include, for example,
CPU speed, memory size, operating system, compiler, and
the computer program. The proposed GA and SA heuristics
take no more than 3.2 seconds to solve small-scale problems,
which the Gurobi solver takes much longer to solve.

D. COMPARING RESULTS OF FCFS, SA AND GA
To validate the performance of the GA and SA, computational
experiments were carried out on the large problem set. Given
the computational complexity of the MDPSP, optimal solu-
tions to large problems are typically not readily obtainable.
Therefore, for each benchmark instance of the large problem

set, the AIR values of the GA and SA algorithms were calcu-
lated.

Table 9 presents the statistical average AIRs that were
obtained for the large problem set using the GA and SA.
This table presents the instances grouped by the values of
Mask data Size (N ), OPC Ratio (OPCR), Release Time
Range (RTR), Tightness of Due Date (TDD) and Mask
Data Weight Range (MDWR). The statistical results that
correspond to the three Tvalue values are separated by
a slash (Tvalue = 0.2/0.4/0.8). Since each problem is
solved five times, the maximum (MAX), average (AVE)
and minimum (MIN) AIRs are computed for each problem.
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The performances of the proposed GA and SA meta-
heuristics were compared using the four indices: MAX(N ,
OPTR, RTR, TDD, MDWR), AVE(N , OPTR, RTR, TDD,
MDWR),MIN(N ,OPTR,RTR,TDD,MDWR), and BS(N ,
OPTR,RTR, TDD,MDWR) which represents the maximum,
average, minimum values of AIRs for the problem classes that
are characterized by N, OPCR, RTR, TDD, andMDWR,while
BS denotes the number of best solutions that is identified by
the GA and SA heuristics to problems in the class that is
characterized by N, OPCR, RTR, TDD, and MDWR.

As seen in Table 9, the total MAX(N ,OPTR,RTR,TDD,
MDWR), AVE(N , OPTR, RTR, TDD, MDWR), MIN(N ,
OPTR,RTR,TDD,MDWR), and BS(N , OPTR,RTR,TDD,
MDWR) obtained by the proposed GA heuristic were
51.65/51.84/52, 50.29/50.63/50.88, 50.29/50.63/50.88, and
202/285/387, respectively. The corresponding values obtained
by SA were 52.48/52.56/52.61, 51.32/51.44/51.55, 49.96/
50.15/50.31, and 344/435/512, so both the proposed GA and
SA heuristics significantly outperform the FCFS method.

Evidently, a greater computing time enable larger AIRs to
be obtained by both the GA and SA. As the number of mask
data increases, the rates of improvement that are provided
by both the GA and SA are reduced, perhaps because of the
NP-hard property of MDPSP, only the linear time used in the
GA and the SA are not enough. Accordingly, more computing
time is required as the number of mask data is increased.

The AIRs at a lower OPC ratio are better, perhaps because
the bottleneck in a schedule is the OPC operation with a
high OPC ratio, so mask data are prone to delay. Evidently,
the AIRs with a shorter release time are better. Since more
mask data must wait for their release times when the mask
data have a longer range of release times, the processing of
these mask data are more likely to be finished later, and the
total weighted penalties (the denominator of AIR) is larger,
so the AIR divided by FCFS is smaller.

The tightness of due date affects the AIR. With a looser
due date, more mask data are unlikely to be delayed, and
smaller total weighted penalties (the denominator of AIR) are
obtained. Therefore, the AIR with a loose TDD is better than
that with a tight and a middle TDD. Evidently, the improve-
ment rates achieved using a smaller MDWR are better. Since
the weight values are large, the total weighted penalties (the
denominator of AIR) are also large and the AIR divided by
FCFS is smaller. These computational results clearly demon-
strate that the proposed GA and SA heuristics improve upon
the solutions that are obtained using the traditional (FCFS)
method. The experimental results clearly reveal that this work
reduces the gap between theoretical progress and industrial
practice.

V. CONCLUSIONS AND RECOMMENDATIONS FOR
FUTURE RESEARCH
Mask data preparation is part of the mask data processing
in the production of semiconductors, and its importance has
commonly been neglected. This work concerns the schedul-
ing problem in mask data processing, which is regarded

as the most critical stage in the photo-lithography process.
To reduce the gap between theoretical progress and indus-
trial practice, this work develops an ILP model of the mask
data processing scheduling problem and develops two meta-
heuristic algorithms - a simulated annealing (SA) algorithm
and a genetic algorithm (GA) - for solving the MDPSP with
total weighted tardiness. Experimental results reveal that the
GA and SA produce higher-quality MDPSP solutions than
the ILP model and the traditional FCFS method.

The MDPSP is a challenging issue with practical applica-
tions. Related problems, such as those with different objective
functions or a different number of machines in each stage, can
be solved in the future. Future research may also attempt to
use other meta-heuristics or to hybridize other algorithms to
solve the MDPSP.
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