
Received January 27, 2019, accepted February 11, 2019, date of publication February 15, 2019, date of current version March 8, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2899680

Authorized Equality Test on Identity-Based
Ciphertexts for Secret Data Sharing via
Cloud Storage
HONGBO LI1, QIONG HUANG 1, (Member, IEEE), SHA MA 1, JIAN SHEN 2, (Member, IEEE),
AND WILLY SUSILO 3, (Senior Member, IEEE)
1College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
2School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China
3School of Computing and Information Technology, University of Wollongong, Wollongong, NSW 2522, Australia

Corresponding author: Qiong Huang (qhuang@scau.edu.cn)

This work was supported in part by the Pearl River Nova Program of Guangzhou under Grant 201610010037, in part by the Guangdong
Natural Science Funds for Distinguished Young Scholar under Grant 2014A030306021, in part by the National Natural Science
Foundation of China under Grant 61872152 and Grant 61872409, in part by the Guangdong Program for Special Support of Top-Notch
Young Professionals under Grant 2015TQ01X796, and in part by the Graduate Student Overseas Study Program of South China
Agricultural University under Grant 2018LHPY025.

ABSTRACT With the higher rate of using cloud storage, protecting data privacy becomes an important
issue. Themost effective solution is to encrypt data before uploading to the cloud. However, how to efficiently
search over data encrypted with different keys is still an open problem. To address this problem, we introduce
a new notion of the identity-based encryption with equality test supporting flexible authorization (IBEET-
FA). It supports the test of whether two ciphertexts encrypted under the different keys encapsulate the same
message, and in the meanwhile supports fine-grained authorization of the test. Based on the equality test on
ciphertexts, there is a direct way to support an authorized user to search over ciphertexts of different users,
which accelerates secret data sharing among a group of users. Besides, IBEET-FA does not suffer from the
complex key management problem of its counterpart in the traditional public key infrastructure. We propose
a concrete construction of IBEET-FA and prove it to be securely based on simple mathematical assumptions.
The experimental results show that our IBEET-FA scheme is efficient and can satisfy various types of search
over encrypted data.

INDEX TERMS Equality test, identity-based encryption, flexible authorization, cloud storage, data sharing.

I. INTRODUCTION
Cloud computing is becoming increasingly popular in recent
decades [1], [2]. Among all the cloud services, cloud stor-
age is receiving a growing number of attention and applica-
tions [3]. The cloud service provider (CSP) provides large
storage-space for users [4]. Users can outsource their data
to the cloud and access the data via any network-connected
device at any time, which saves local storage space and
reduces data management burden. However, there are con-
cerns about the leakage of data and user privacy. Even in a
private cloud, there also are some concerns about data leakage
in case of some adversary obtaining the password of the

The associate editor coordinating the review of this manuscript and
approving it for publication was Sedat Akleylek.

cloud manager and breaking into the cloud. Encrypting data
before outsourcing is the most effective method to solve this
problem. Let all data in the cloud be encrypted with different
encryption keys. Even if an adversary broke into the cloud
and obtained one or some decryption keys of the encrypted
data, other data will be protected from leakage. Furthermore,
in the real world, it is hard for an adversary to obtain these
decryption keys. Unfortunately, many traditional operations
on plaintexts cannot be directly applied to ciphertexts. For
example, searching function over encrypted data is not avail-
able while using basic encryption schemes.

Consider the following scenario illustrated in Figure 1.
In an enterprise, there is a group of employees who are
working for a secret project. To protect the business secret,
data sent to the employees are encrypted and stored into a

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

25409

https://orcid.org/0000-0002-7666-8985
https://orcid.org/0000-0003-4775-7062
https://orcid.org/0000-0003-0519-9058
https://orcid.org/0000-0002-1562-5105

H. Li et al.: Authorized Equality Test on Identity-Based Ciphertexts for Secret Data Sharing via Cloud Storage

FIGURE 1. Search over ciphertexts encrypted with different encryption
keys.

cloud. Usually, the encrypted data are encrypted with dif-
ferent encryption keys and may contain any kind of data,
e.g. images, contract documents, videos, etc. Generally, only
the one who holds the decryption key can decrypt the corre-
sponding encrypted data. However, it obstructs data sharing
among employees in the group. For example, Alice (in the
group) needs files related to a specific keywordw for business
purposes. It is hard to find these files from the cloud because
data are encrypted with different keys. Besides, it is not easy
for Alice to know who owns the files she wants to access.
Hence, it is desirable to have a way to search over these
ciphertexts. Furthermore, employees should have different
levels of permission to search over the ciphertexts, because
different employees have different authority.

Searchable symmetric encryption (SSE) [5] and public
key encryption with keyword search (PEKS) [6] can sup-
port searching function on ciphertexts, however, they can-
not feed the needs of the aforementioned scenario, as they
only support the search over encrypted data of a single user.
Public key encryption with equality test (PKEET) [7] is a
new primitive which supports the test of whether two cipher-
texts encrypted with different public keys encapsulate the
same message without decryption. While anyone could do
the test without permission in PKEET, it is not appropriate
in the aforementioned scenario. A recent variant of PKEET
called public key Encryption with equality test supporting
flexible authorization (PKEET-FA) [8], better suits the sce-
nario above, in which ciphertexts cannot be tested without
authorization. In PKEET-FA, an authorized user can check
whether two ciphertexts are decrypted the same plaintext
without decryption even if the two ciphertexts are encrypted
with different encryption keys. Hence, it can be transformed

into search progress if we set one of the two ciphertexts as a
search token. Furthermore, PKEET-FA supports four types of
authorization, which is more suitable for the aforementioned
scenario.

However, PKEET-FA works in the traditional Public Key
Infrastructure (PKI) and suffers from the complex problem of
public key management. Each user has to obtain a digital cer-
tificate on its public key from a certification authority (CA)
before using the key. The issue, verification, management
and revocation of certificates requires much effort. Identity-
Based Cryptography (IBC) was introduced by Shamir [9]
to solve this problem. In IBC, there is a trusted third party
called the Key Generation Center (KGC), which is in charge
of generating user secret keys according to their identities.
Each user can simply use its identity as the public key, for
example, email address, IP address and etc, and obtain its
secret key from the KGC via a secure channel. People can
send an encrypted message to a user even before the user gets
its secret key. Due to the advantage of IBC, it is desirable
and meaningful to transfer PKEET-FA to the identity-based
setting.

A. OUR CONTRIBUTIONS
In order to support searching over ciphertexts encrypted with
different public keys, in this paper, we introduce the notion of
identity-Based encryption with equality test supporting flex-
ible authorization (IBEET-FA), which is a variant of PKEET-
FA in the identity-based setting. In IBEET-FA, ciphertexts
are encrypted with the receiver’s identity, and an authorized
user can do the equality test on the ciphertexts. Furthermore,
IBEET-FA does not suffer from complex key management as
PKEET-FA.

We formally define IBEET-FA and present its security
models. Roughly, IBEET-FA considers two security require-
ments, one-wayness and indistinguishability. The former says
that if the adversary has the trapdoor, it cannot recover the
message from a given ciphertext. The latter says that if the
adversary is not given the trapdoor, it cannot distinguish
which message the given ciphertext contains.

To demonstrate the new notion, we present a concrete
construction of IBEET-FA from bilinear pairings. The con-
struction is communicationally efficient in the sense that all
the keys and trapdoors in the construction are short, each
containing a small constant number of group elements. The
construction is also computationally efficient, and experi-
mental results show that its computational costs are almost
the same as its counterpart in the PKI setting [8]. We prove
that our IBEET-FA scheme is secure under the given models
based on standard number-theoretic assumptions.

As far as we know, there is no efficient transform convert-
ing public key encryption (PKE) to identity-based encryption
(IBE). It is not a trivial task to build an IBEET-FA scheme,
although there is already a PKEET-FA construction in [8].
The difficulty lies in how to integrate the four types of autho-
rization into an IBE scheme.

25410 VOLUME 7, 2019

H. Li et al.: Authorized Equality Test on Identity-Based Ciphertexts for Secret Data Sharing via Cloud Storage

B. RELATED WORKS
Searchable encryption can be divided into two groups: sym-
metric searchable encryption [10] and public key search-
able encryption [6]. The topic of this paper belongs to the
latter.

The first searchable encryption scheme in public key set-
tings (denoted by PEKS) was proposed by Boneh et al. [6]
in 2004. In PEKS, people can share their private data with
friends, by encrypting the data under the friend’s public
key. The friend can use its secret key to compute the trap-
door of a keyword, and use the trapdoor to search over
the encrypted data. Since the introduction of PEKS, many
variants have been proposed. For example, some works focus
on fuzzy keyword search [11]–[13], some on flexible key-
word search [14], and some on trapdoor privacy [15]–[18].
In 2010, Yang et al. [7] proposed the notion of public key
encryption with equality test (PKEET), which allows a user to
directly compare whether two ciphertexts have the samemes-
sage. However, since anyone can do the comparison without
authorization, it may leak certain private information about
the data. Hence, researchers have studied how to construct
fine-grained authorization mechanisms in PKEET. To name
a few, Tang [19] proposed a PKEET scheme supporting
authorization, in which a test server can only perform an
equality test on ciphertexts encrypted with public keys of
two specific users. The restriction is due to that users have
to secretly share a tuple of session keys with each other
during authorization. To address this issue, Tang [20] pro-
posed another PKEET scheme called AoN-PKEET, which
supports user-level authorization. In AoN-PKEET, once the
test server obtains trapdoors from users, it will be able to
test all the ciphertexts encrypted with these users’ public
keys. Ma et al. [8] proposed a PKEET scheme with flex-
ible authorization, called PKEET-FA, which supports four
types of authorization, i.e. user-level authorization, cipher-
text level, user-specific ciphertext level and ciphertext-to-user
level authorizations (c.f. Fig. 2). To improve the computa-
tional efficiency, Lin et al. [21] proposed another PKEET-FA
scheme which does not use bilinear pairings. Xu et al. [22]
introduced the notion of verifiable PKEET, in which a user
can checkwhether the server performs the authorized equality
test honestly or not. Canard et al. [23] introduced a new
notion related to PKEET, called plaintext-checkable encryp-
tion, in which it is universally possible to check whether a
given ciphertext is the encryption of a given plaintext under
the key.

Ma [24] proposed the first identity-based encryption
scheme supporting equality test (IBEET) which is a combina-
tion of identity-based encryption and PKEET and simplifies
the complex certificate management in PKEET. However,
their scheme only supports the user-level authorization,
and the test server can perform the test on all cipher-
texts of users who issues trapdoors to the server. To the
best of our knowledge, currently, there is no IBEET
scheme in the literature supporting flexible and fine-grained
authorization.

We notice that the IBEET scheme in [24] does not achieve
one-wayness as claimed. Roughly speaking, after obtaining
trapdoor tdIDt of the challenge identity IDt , the adversary
re-randomizes the challenge ciphertext and submits the new
ciphertext to the decryption oracle to obtain the challenge
message, thus breaking the one-wayness. Hence, it is non-
trivial to build a secure IBEET-FA scheme.

To support a specified group of users to perform the equal-
ity test on ciphertexts., Zhu et al. [25] and Wang et al. [26],
respectively, proposed key-policy and ciphertext-policy
attribute-based encryption with equality test schemes.

C. ORGANIZATION
In the next section, we give a brief description of some
preliminaries. In Section III we give the definition of IBEET-
FA and propose an instance in Section IV. The security model
and security analysis is provided in Section V. We compare
our scheme with the PKEET-FA scheme [8] and present the
experiment results in Section VI. The paper is concluded in
Section VII.

II. PRELIMINARIES
A. BILINEAR PAIRING
Bilinear pairing is a mathematics tool which plays an impor-
tant role in public key cryptography [27]. It is a one-way
mapping from a cyclic groupG1 to another cyclic groupGT ,
e.g. ê : G1 × G1 → GT , where both G1 and GT are groups
of prime order p. It should satisfy the following properties.

• Bilinearity: For any g, h ∈ G1 and any a, b ∈ Zp,
it holds that ê(ga, hb) = ê(g, h)a·b.

• Non-degeneracy: For any generator g ∈ G1, ê(g, g)
should not be equal to the identity element of GT .

• Computability: For any g, h ∈ G1, ê(g, h) can be
computed in polynomial time.

B. MATHEMATICAL ASSUMPTIONS
1) BILINEAR DIFFIE-HELLMAN ASSUMPTION
Let G1 and GT be cyclic groups with the same prime order
p. Let g ∈ G1 be a generator of G1 and ê : G1 × G1 →

GT be a bilinear pairing. Given g, gx , gy, gz ∈ G1, where
x, y, z are randomly chosen from Zp, the Bilinear Diffie-
Hellman (BDH) problem [28], [29] is to compute ê(g, g)xyz.
The Bilinear Diffie-Hellman assumption says that for any
PPT adversary A, its advantage

AdvBDHA (k) def
= Pr[A(g, gx , gy, gz) = e(g, g)xyz]

is negligible in the security parameter k .

2) DECISIONAL BILINEAR DIFFIE-HELLMAN ASSUMPTION
Let G1,GT , ê, p, g be as above. Given gx , gy, gz ∈ G1
and Z ∈ GT , where x, y, z are randomly selected from
Zp, the Decisional Bilinear Diffie-Hellman (DBDH) problem
[28], [29] is to decide if Z = ê(g, g)xyz or Z = ê(g, g)r for
a random r ∈ Zp. The Decisional Bilinear Diffie-Hellman

VOLUME 7, 2019 25411

H. Li et al.: Authorized Equality Test on Identity-Based Ciphertexts for Secret Data Sharing via Cloud Storage

assumption says that for any PPT adversary A, its advantage

AdvDBDHA (k) def
= |Pr[A(g, gx , gy, gz, ê(g, g)xyz) = 1]

− Pr[A(g, gx , gy, gz, ê(g, g)r) = 1]|

is negligible in the security parameter k .

3) DISCRETE LOGARITHM ASSUMPTION
Let G be a cyclic group with prime order p. Let g ∈ G be
a generator of G and x is a random element of Zp. Given
G, p, g, gx , the Discrete Logarithm (DL) problem [30], [31] is
to compute the discrete logarithm x. The Discrete Logarithm
assumption says that for any PPT adversary A, its advantage

AdvDLA (k) def
= Pr[A(G, p, g, gx) = x]

is negligible in the security parameter k .

III. IBEET-FA DEFINITION
In this section we present the systemmodel and the algorithm
definitions of IBEET-FA.

A. SYSTEM MODEL
There are three parties in the system model of IBEET-FA, i.e.
a KGC, a cloud, a trusted proxy and a group of users. Firstly,
every user has one or more identities, e.g. email address, staff
number or phone number, etc.. In one round communication,
there should be two users act as a sender and a receiver,
respectively. For instance, the sender encrypts a keyword uti-
lizing the Encrypt algorithm of the IBEET-FA scheme, then
uploads the ciphertext to the cloud. After that, the receiver can
download and decrypt the ciphertext to obtain the encrypted
keyword. In another round of communication, there may be
another sender and another receiver. Using the same manner
above, the new sender sends an encrypted keyword to the
new receiver via the cloud. All the ciphertexts are stored in
the cloud and accessible to both of the two receivers. After
the two round communication, we assume the two receivers
need to compare whether the keyword they received are
same or not and the limitation is that the two receivers cannot
expose their keywords to each other. In this case, the two can
run theAut algorithms to the proxy authorized trapdoors, thus
the proxy can run the Test algorithm to check the equality of
the two encrypted keywords without decryption. Note that,
it directly is a searching method if one of the two trapdoors
is a search token. To support different level of permission,
in IBEET-FA, there are four types of authorized trapdoors
and corresponding Test algorithms. Figure 2 describes the
following four types of authorizations.

Type-1(User level authorization.) All ciphertexts of the
user can be compared with any ciphertext of any
user.

Type-2(Ciphertext level authorization.) A specific cipher-
text of the user can be compared with some cipher-
text of any user.

FIGURE 2. Different authorizations of ciphertexts in PKEET-FA [8]. (a) User
level authorization. (b) Ciphertext level authorization. (c) User-specific
ciphertext level authorization. (d) Ciphertext-to-user level authorization.

Type-3(User-specific ciphertext level authorization.)
A specific ciphertext of the user can be compared
with some ciphertext of a specific user.

Type-4(Ciphertext-to-user level authorization.) A specific
ciphertext of the user can be compared with any
other ciphertext. It is a combination of Type-1
authorization and Type-2 authorization.

B. ALGORITHMS
Definition 1 (IBEET-FA): An identity-based encryption

with equality test supporting flexible authorization (IBEET-
FA) consists of the following probabilistic polynomial-time
(PPT) algorithms.

1) Setup(1k): Given the security parameter k as input,
the algorithm outputs the global parameter K.

2) KeyGen(K): Given the global parameter K as input,
the algorithm outputs the master secret key msk and
master public key mpk.

3) Extract(ID,msk): The algorithm takes as input a user’s
identity ID and the master secret key msk, and outputs
the user’s secret key dkID.

4) Encrypt(M , ID,mpk): The algorithm takes as input a
message M , a user’s identity ID and the master public
key mpk, and outputs a ciphertext C .

5) Decrypt(C, ID,dkID,mpk): The algorithm takes as
input a ciphertext C , a user’s identity ID, its secret key
dkID and the master public key mpk, and outputs a
message M or ⊥ indicating decryption failure.

Type-1 (Authorization):
6) Aut1(IDi,dkIDi): Given a user’s identity IDi and its

secret key dkIDi , the algorithm outputs a Type-1 trap-
door td(i,1).

7) Test1(Ci, td(i,1),Cj, td(j,1)): The algorithm takes as
input two ciphertexts (Ci,Cj) and two Type-1 trapdoors
(td(i,1), td(j,1)), and outputs 1 if Ci and Cj contain the
same message and 0 otherwise.

25412 VOLUME 7, 2019

H. Li et al.: Authorized Equality Test on Identity-Based Ciphertexts for Secret Data Sharing via Cloud Storage

Type-2 Authorization:
8) Aut2(IDi,dkIDi ,Ci): Given a user’s identity IDi, its

secret key dkIDi and a ciphertext Ci, the algorithm
outputs a Type-2 trapdoor td(i,2,Ci).

9) Test2(Ci, td(i,2,Ci),Cj, td(j,2,Cj)): The algorithm takes
as input two ciphertexts (Ci,Cj) and two Type-2 trap-
doors (td(i,2,Ci), td(j,2,Cj)), and outputs 1 if Ci and Cj
contain the same message and 0 otherwise.

Type-3 Authorization:
10) Aut3(IDi,dki,Ci, IDj,Cj): The algorithm takes as

input two users’ identities (IDi, IDj), the secret key
dkIDi of user i, and two ciphertexts (Ci,Cj) encrypted
under IDi and IDj, respectively, and outputs a Type-
3 trapdoor td(i,3,Ci,Cj).

11) Test3(Ci, td(i,3,Ci,Cj),Cj, td(j,3,Cj,Ci)): The algorithm
takes as input two ciphertexts (Ci,Cj) and two Type-
3 trapdoors (td(i,3,Ci,Cj), td(j,3,Cj,Ci)), and outputs 1 if Ci
and Cj contain the same message and 0 otherwise.

Type-4 Authorization:
12) Aut4(IDi,dkIDi ,Ci): Given a user’s identity IDi and

and its secret key dkIDi , the algorithm outputs Type-
4 trapdoors td(i,4,Ci) and td(i,4).

13) Test4(Ci, td(i,4,Ci),Cj, td(j,4)): The algorithm takes as
input two ciphertexts (Ci,Cj) and two Type-4 trapdoors
(td(i,4,Ci), td(j,4)), and outputs 1 if Ci and Cj contain the
same message and 0 otherwise.

Remark: All the test algorithms should have the public
information (e.g. master public key and identity) of i and j
as input. Here we omit them for simplicity

IV. OUR IBEET-FA SCHEME
All the schemes make use of (symmetric) bilinear pairings.
Let G1 and GT be cyclic groups with prime order p, and ê :
G1 ×G1 → GT be a bilinear pairing. Let `1, `2, n such that
`1 ≤ `2 ≤ n be three non-negative integers and A be a string
of n bits. We denote by [A]`2`1 the substring of A which starts
from the `1-th bit and ends at the `2-th bit.
Our construction of IBEET-FA combines the ideas of

PKEET-FA [8] and IBEET [24] schemes. The secret key of
each user in IBEET-FA has two parts, one for trapdoor gen-
eration and the other for decryption. Our IBEET-FA scheme
works as below.

1) Setup(1k): Given the security parameter k , the algo-
rithm generates bilinear pairing parameters {G1,GT , p,
g, ê}, and chooses three cryptographic hash functions,
H1 : {0, 1}∗ → G1, H2 : GT × G3

1 → {0, 1}
2`1 and

H3 : GT ×G3
1 × {0, 1}

∗
→ {0, 1}2`2 , where `1 and `2

are the lengths of an element ofG1 andZp, respectively.
It outputs K = {G1,GT , p, g, ê,H1,H2, H3}.

2) KeyGen(K): Randomly choose s1, s2 ∈ Zp and com-
pute Y1 = gs1 ,Y2 = gs2 . Output the master secret key

msk = s = (s1, s2)

and master public key

mpk = Y = (Y1,Y2).

3) Extract(ID, s): Output the secret key dkID as follows:

dkID = (dkID,1,dkID,2),

where dkID,1 = H1(ID)s1 and dkID,2 = H1(ID)s2 .
4) Encrypt(M , ID,Y): Choose at random r1, r2, r3 ∈ Zp,

and compute the followings:

C1 = gr1 ,C2 = gr2 ,C4 = gr3 ,

C3 = (M r1‖H1(ID)r1·r2)

⊕H2(ê(H1(ID),Y1)r3 ,C1,C2,C4),

C5 = (M‖r1)⊕ H3(ê(H1(ID),Y2)r3 ,C1,C2,C3,C4).

Return the ciphertext C = (C1,C2,C3,C4,C5).
5) Decrypt(C, ID,dkID,Y): Compute

(M‖r1) = C5 ⊕ H3(ê(dkID,2,C4),C1,C2,C3,C4),

and

(A‖B) = C3 ⊕ H2(ê(dkID,1,C2),C1,C2,C4).

Output M if and only if all the following equations
hold:

C1 = gr1 , A = M r1 , ê(B, g) = ê(H1(ID)r1 ,C2).

6) Aut1(IDi,dkIDi): Output

td(i,1) := dkIDi,1 = H1(IDi)s1 .

7) Test1(Ci, td(i,1),Cj, td(j,1)): Compute

M
ri,1
i = [Ci,3 ⊕ H2(ê(td(i,1),Ci,4),

Ci,1,Ci,2,Ci,4)]
2`1−1
`1

,

M
rj,1
j = [Cj,3 ⊕ H2(ê(td(j,1),Cj,4),

Cj,1,Cj,2,Cj,4)]
2`1−1
`1

,

and output 1 if

ê(M
ri,1
i ,Cj,1) = ê(M

rj,1
j ,Ci,1) (1)

holds, and 0 otherwise.
8) Aut2(IDi,dkIDi ,Ci): Output

td(i,2,Ci) = [H2(ê(dkIDi,1,Ci,4),Ci,1,Ci,2,Ci,4)]
2`1−1
`1

= [H2(ê(H1(IDi)s1 , gri,3),Ci,1,Ci,2,

Ci,4)]
2`1−1
`1

.

9) Test2(Ci, td(i,2,Ci),Cj, td(j,2,Cj)): Compute

M
ri,1
i = [Ci,3]

2`1−1
`1

⊕ td(i,2,Ci),

M
rj,1
j = [Cj,3]

2`1−1
`1

⊕ td(j,2,Cj),

and output 1 if Eq. (1) holds, and 0 otherwise.

10) Aut3(IDi,dki,Ci, IDj,Cj): Compute

M
ri,1
i ‖H1(IDi)ri,1·ri,2

= Ci,3 ⊕ H2(ê(dkIDi,1,Ci,4),Ci,1,Ci,2,Ci,4),

VOLUME 7, 2019 25413

H. Li et al.: Authorized Equality Test on Identity-Based Ciphertexts for Secret Data Sharing via Cloud Storage

and compute

td(i,3,Ci,Cj) = (td(i,3,Ci,Cj),1, td(i,3,Ci,Cj),2),

where

td(i,3,Ci,Cj),1 = M
ri,1
i · H1(IDi)ri,1·ri,2 ,

td(i,3,Ci,Cj),2 = ê(H1(IDi)ri,1·ri,2 ,Cj,1).

Output td(i,3,Ci,Cj).
11) Test3(Ci, td(i,3,Ci,Cj),Cj, td(j,3,Cj,Ci)): Output 1 if

ê(Ci,1, td(j,3,Cj,Ci),1)

ê(Cj,1, td(i,3,Ci,Cj),1)
=
td(j,3,Cj,Ci),2
td(i,3,Ci,Cj),2

holds, and 0 otherwise.
12) Aut4(IDi,dkIDi ,Ci): Output

td(i,4,Ci) = td(i,2,Ci)
= [H2(ê(H1(IDi)s1 , gri,3),Ci,1,

Ci,2,i,4)]
2`1−1
`1

,

td(i,4) = td(i,1) = H1(IDi)s1 .

13) Test4(Ci, td(i,4,Ci),Cj, td(j,4)): Compute

M
ri,1
i = [Ci,3]

2`1−1
`1

⊕ td(i,4,Ci),

M
rj,1
j = [Cj,3 ⊕ H2(ê(td(j,1),Cj,4),Cj,1Cj,2,

Cj,4)]
2`1−1
`1

,

and output 1 if Eq. (1) holds, and 0 otherwise.

V. SECURITY ANALYSIS
In this section, we first define the security models of IBEET-
FA, then, based on the security model, we prove our IBEET-
FA scheme is OW-ID-CCA secure against Type-I adversaries
and IND-ID-CCA secure against Type-II adversaries in the
random oracle model.

A. SECURITY MODELS
Same as [8], we omit the security analysis of Type-4 autho-
rization as it can be obtained from Type-1 and Type-2 autho-
rizations. We take into account the following two types of
adversaries.
• Type-I: The adversary A1 with authorization tries to
retrieve the message M from the ciphertext.

• Type-II: The adversary A2 without authorization tries
to distinguish to which message a given ciphertext is
related.

Security against Type-I adversaries is the one-wayness
under chosen-identity and chosen ciphertext attacks (OW-
ID-CCA), and security against Type-II adversaries is the
indistinguishability under chosen-identity and chosen cipher-
text attacks (IND-ID-CCA). The two security properties are
defined via the following games.
Game I: LetA1 be a Type-I adversary. Assume that the tar-

get receiver has index t (1 ≤ t ≤ n). Consider the following
game played between a challenger C1 and the adversary A1.

1) Setup: C1 generates the public parameterK and master
public key mpk and sends them to A1.

2) Phase 1: A1 is allowed to issue the following queries
for polynomially many times.
• Extract queries: Given an identity IDi, C1 computes
and returns the corresponding secret key dkIDi .

• Decryption queries: Given (IDi,Ci), C1 decryptsCi
with respect to IDi, and returns the resultMi (which
might be ⊥) to A1.

• Authorization queries: For Type-α (α = 1, 2, 3)
authorization:
– given IDi, C1 returns tdi,1;
– given (IDi,Ci), C1 returns tdi,2,Ci ;
– given (IDi,Ci, IDj,Cj), C1 returns tdi,3,Ci,Cj .

3) Challenge:A1 picks a target identity IDt with the only
constraint that IDt did not appear in extract queries,
and sends it to the challenger. C1 then randomly picks
a messageM , computes C ← Encrypt(M , IDt ,mpk),
and returns C to the adversary.

4) Phase 2: A1 continues to issuing queries as in
Phase 1, with constraints that C did not appear in
decryption queries and IDt did not appear in extract
queries.

5) Guess: A1 returns a guessing message M ′ and wins
the game if M ′ = M .

We denote A1’s advantage in Game I by

AdvOW−ID−CCA,Type−αIBEET−FA,A1
(k) = Pr[M ′ = M].

Definition 2 (OW-ID-CCA): An IBEET-FA scheme is
one-way under chosen identity and chosen ciphertext attacks
(OW-ID-CCA secure) if for any PPT Type-I adversary A1,
its advantage AdvOW−ID−CCA,Type−αIBEET−FA,A1

(k) is negligible in the
security parameter k .
Game II: Let A2 be a Type-II adversary. Assume that

the target receiver has index t (1 ≤ t ≤ n). Consider
the following game played between a challenger C2 and the
adversary A2.
1) Setup: C2 generates the public parameterK and master

public key mpk, and sends them to A2.
2) Phase 1:A2 is allowed to issue queries for polynomi-

ally many times as in Game I.
3) Challenge: A2 submits two equal-length messages

M0,M1 and a target identity IDt , with the con-
straint that IDt did not appear in extract queries
nor Type-1 authorization queries. C2 then randomly
chooses a bit b ∈ {0, 1} and computes C∗ ←
Encrypt(Mb, IDt ,mpk). It returns C∗ to the adversary.

4) Phase 2: A2 continues to issuing queries as in
Phase 1, with the following constraints:
• (IDt ,C∗) did not appear in decryption queries,
• IDt did not appear in extract queries nor Type-1
authorization queries, and (IDt ,C∗) did not appear
in the authorization queries.

5) Guess: Finally, A outputs a bit b′ and wins the game
if b′ = b.

25414 VOLUME 7, 2019

H. Li et al.: Authorized Equality Test on Identity-Based Ciphertexts for Secret Data Sharing via Cloud Storage

We denote A2’s advantage in Game II by

AdvIND−ID−CCA,Type−αIBEET−FA,A2
(k) =

∣∣∣∣Pr[b′ = b]−
1
2

∣∣∣∣ .
Definition 3 (IND-ID-CCA): An IBEET-FA scheme is

indistinguishable under chosen identity and chosen cipher-
text attacks (IND-ID-CCA secure) if for any PPT Type-
II adversary A2, its advantage AdvIND−ID−CCA,Type−αIBEET−FA,A2

(k) is
negligible in the security parameter k .
Remark: If an IBEET-FA scheme is IND-ID-CCA secure,

no PPT adversary can generate a valid Type-3 trapdoor of
an unauthorized ciphertext with non-negligible probability.
Suppose that A′ is an adversary who can generate a valid
Type-3 trapdoor of an unauthorized ciphertext. We can use it
to build another algorithmA2 to break IND-ID-CCA security
with non-negligible advantage as follows:

1) A2 randomly chooses an identity ID′ and issues an
authorization query to obtain Type-1 trapdoor of ID′.

2) A2 produces a ciphertext C ′ of M0 under ID′.
3) Given the challenge ciphertext C∗, A2 runs A′ to gen-

erate a Type-3 trapdoor with respect toC∗ andC ′. Then
it runs the test algorithm to check whether C∗ and C ′

contain the same message, and determines the bit b′.
Similarly, there is no PPT adversary which is able to pro-

duce a valid Type-2 or Type-1 trapdoor of an unauthorized
ciphertext with non-negligible probability.

B. OW-ID-CCA SECURITY
Theorem 1 (OW-ID-CCA): Our IBEET-FA scheme above

is OW-ID-CCA secure against Type-I adversaries in the ran-
dom oracle model if BDH assumption holds.

Proof: LetA be a Type-I adversary against the OW-ID-
CCA security of our IBEET-FA scheme, and C be the chal-
lenger. Consider the following games. Below Si (i = 1, 2, 3)
denotes the the event that the adversary wins in Game i.
Game 1: This is the original Type-I game.
1) Setup: In this phase, the challenger C generates the

global parameter K, the master public key Y , and the
master secret key s as follows:

K = {G1,GT , p, g, ê},Y = (Y1,Y2) = (gs1 , gs2) ∈ G2
1,

s = (s1, s2) ∈ Z2
p.

The challenger makes K and Y public.
2) Phase 1: The adversary A is allowed to issue queries

to the following oracles.
• Hash Oracles: We assume the adversary A can
issue at most qH1 , qH2 , qH3 queries to hash oracles
OH1 ,OH2 ,OH3 , respectively, and it does not repeat
any query to the same oracle.
– OH1 : The oracle maintains a list LH1 =

{(ID, h,H1(ID))} which is initially empty.
Given an identity IDi, it randomly chooses hi←
Zp, returns H1(IDi) = ghi to A, and stores the
tuple (IDi, hi, ghi) into LH1 .

– OH2 : The oracle maintains a list LH2 =

{(T ,H2(T))} which is initially empty. Given
an input Ti, it randomly selects a string R ∈
{0, 1}2`1 , returns H2(Ti) = R to A, and stores
(Ti,R) in LH2 .

– OH3 : The oracle maintains a list LH3 =

{(T ,H3(T))} which is initially empty. Given
an input Ti, it randomly selects a string R ∈
{0, 1}2`2 , returns H3(Ti) = R to A, and stores
(Ti,R) in LH3 .

• Extract Oracle: Given an identity IDi, the oracle
runs the hash oracle OH1 to get the hash value
H1(IDi) and runs the Extract(IDi, s) algorithm to
generate the decryption key

dkIDi = (dkIDi,1,dkIDi,2)
= (H1(IDi)s1 ,H1(IDi)s2).

It returns dkIDi to A.
• Decrypt Oracle: Given an identity IDi and C =
(C1,C2,C3,C4,C5), the oracle OD runs the
extract oracle OE to get the decryption key dkIDi
and runs the Decrypt(C, IDi,dkIDi ,Y) to get a
message M (which might be ⊥ if the decryption
fails). It returns M to A.

• TrapdoorOracle: Given a trapdoor query (IDi, · · ·),
the oracleOT runs Extract(IDi, s) to get the secret
key dkIDi and runs Aut1(IDi,dkIDi) to generate the
Type-1 trapdoor td(i,1) = dkIDi,1 = H1(IDi)s1 of
IDi. With the Type-1 trapdoor, it can compute the
trapdoor of any other type. The oracle returns the
corresponding trapdoor.

3) Challenge: At some time, the adversary A submits
a challenge identity IDt , which did not appear in
the extract queries. Then, the challenger C randomly
selects a message M and runs Encrypt(M , IDt ,Y) to
generate a ciphertext C∗ = (C∗1 ,C

∗

2 ,C
∗

3 ,C
∗

4 ,C
∗

5) as
below, and returns C∗ to the adversary:

C∗1 = gr1 , C∗2 = gr2 , C∗4 = gr3 ,
C∗3 = (M r1‖H1(IDt)r1·r2)

⊕H2(ê(H1(IDt),Y1)r3 ,C∗1 ,C
∗

2 ,C
∗

4),
C∗5 = (M‖r1)⊕H3(ê(H1(IDt),Y2)r3 ,C∗1 ,C

∗

2 ,C
∗

3 ,C
∗

4).

4) Phase 2:A continues to issuing queries as in phase 1,
with constraints that IDt cannot be submitted toOE and
(IDt ,C∗) cannot be submitted to OD.

5) Guess: The adversary A outputs a plaintext M ′ and
wins if and only if M ′ = M . We have the following:

Pr[S1] = Pr[M ′ = M].

Game 2: It is the same as Game 1, except that the chal-
lenge ciphertext C∗ is computed as follows:

C∗1 = gr1 , C∗2 = gr2 , C∗4 = gr3 ,
C∗3 = (M r1‖H1(IDt)r1·r2)

⊕H2(ê(H1(IDt),Y1)r3 ,C∗1 ,C
∗

2 ,C
∗

4),
C∗5 = (M‖r1)⊕W1.

VOLUME 7, 2019 25415

H. Li et al.: Authorized Equality Test on Identity-Based Ciphertexts for Secret Data Sharing via Cloud Storage

The only difference is that we now use a random W1 to
replace H3(ê(H1(ID),Y2)r3 ,C∗1 ,C

∗

2 ,C
∗

3 ,C
∗

4). Notice that in
Game 1, H3(ê(H1(IDt),Y2)r3 , · · ·) in the challenge cipher-
text is random unless the adversary queried the hash input
(ê(H1(IDt),Y2)r3 , · · ·). Denote byE1 the event that the adver-
saryA queried (ê(H1(IDt),Y2)r3 , · · ·) toOH3 . If E1 does not
happen, Game 2 is identical to Game 1 in A’s view. We have
that

Pr[S2] = Pr[S1|E1]. (2)

Therefore, we have that

|Pr[S1]− Pr[S2]| ≤ Pr[E1]. (3)

Lemma 1: Pr[E1] is negligible if the BDH assumption
holds.

The proof is given later (on page 25416).
Game 3: It is the same as Game 2 except that C∗5 in

the challenge ciphertext is replaced with a random string of
length 2`2.
Notice that in Game 2, C∗5 is the exclusive OR of M‖r1

with a random string, and thus it is also random. Therefore,
the adversary’s view in Game 3 is identical to that in Game 2,
and we have that

Pr[S3] = Pr[S2]. (4)

Lemma 2: Pr[S3] is negligible if BDH assumption holds.
The proof is given later (on page 25417).
Combining Lemma 1 and 2 and Eqs. (3) and (4), we have

that

Pr[S1] ≤ Pr[S2]+ Pr[E1] = Pr[S3]+ Pr[E1] ≤ negl(k).

This completes the proof of Theorem 1.
Proof of Lemma 1: Assuming that event E1 happens with

probability εE1 in Game 1 (page 25415). We build an algo-
rithm B to solve the BDH problem.
Given (G1,GT , p, ê, g, g1 = gx1 , g2 = gx2 , g3 = gx3),

where x1, x2, x3 are random elements of Zp, algorithm B
randomly chooses s1← Zp, and sets

mpk = Y = (Y1,Y2) = (gs1 , g1),

and keeps s1 secretly. Notice that the second component of
msk is s2 = x1, which is unknown to B. It randomly chooses
t∗ ← {1, · · · , p} as its guess of the index of the challenge
identity chosen by the adversary. B then gives the system
parameter and mpk to the adversary, and answers its queries
as below.

1) Phase 1: The adversary A is allowed to issue queries
to the following oracles.
• OH1 : If the input identity IDi is the t∗-th query,
B sets hi = ⊥ and returns H1(IDi) = g2.
Otherwise, it randomly chooses hi ← Zp and
returns H1(IDi) = ghi . In either case, B stores
(IDi, hi,H1(IDi)) into the list LH1 (which is ini-
tially empty).

• OH2 : Same with that in Game 2 (page 25415).

• OH3 : Same with that in Game 2 (page 25415).
• Extract OracleOE : Given an identity IDi, if it is the
t∗-th query to OH1 , B aborts the game. Otherwise,
it retrieves the tuple (IDi, hi,H1(IDi)) from LH1 ,
and computes the secret key as below:

dkIDi = (dkIDi,1,dkIDi,2) = (Y hi1 ,Y
hi
2).

B returns dkIDi to the adversary.
• Decrypt Oracle OD: Given an identity IDi and
a ciphertext C = (C1,C2,C3,C4,C5), if IDi
is not the t∗-th query to OH1 , B runs the
Extract Oracle OE to obtain the corresponding
secret key dkIDi , and returns the decryption result
Decrypt(C, IDi,dkIDi ,Y) to A. Otherwise, B tra-
verses the list LH3 and computes (M‖r1) =
C5 ⊕ H3(T) for each tuple (T ,H3(T)) with T =
(T1,C1,C2,C3,C4). It stops traversing if all equa-
tions below hold:

C1 = gr1 , A = M r1 ,

ê(B, g) = ê(H1(IDi)r1 ,C2),

where (A‖B) = C3 ⊕H2(ê(H1(IDi)s1 ,C2), · · ·). If
there is no such an M , B returns ⊥.

• Trapdoor Oracle OT : Same with that in Game 2
(page 25415).

2) Challenge: At some point, the adversary A submits a
challenge identity IDt . If IDt is not the t∗-th query to
OH1 , B aborts the game; otherwise, B randomly selects
a message Mt and computes the challenge ciphertext
C∗ = (C∗1 ,C

∗

2 ,C
∗

3 ,C
∗

4 ,C
∗

5) as below, and returns C∗

to the adversary:

C∗1 = gr12 , C∗2 = gr2 , C∗4 = g3,

C∗3 = (M r1
t ‖g

r1·r2
2)⊕ H2(ê(g2,C∗4)

s1 ,C∗1 ,C
∗

2 ,C
∗

4),

C∗5 = (Mt‖r1)⊕W1,

where r1, r2, r3 ∈ Z3
p are random.

3) Phase 2: The adversary continues to issuing queries
as in Phase 1. The constraints are that the challenge
identity IDt did not appear in Extract queries, and
(IDt ,C∗) did not appear in Decrypt queries.

4) Guess: Finally,A outputs a plaintextM ′t , and wins the
game if M ′t = Mt .

Notice that if B’s guess of t∗ is correct, i.e. IDt∗ is chosen
by the adversary as the challenge identity, the view of the
adversary is identical to that in a real attack. Denote by abt the
event that B aborts. Due to the random choice of t∗, we have
that Pr[abt] ≥ 1/qH1 .

Conditioned on that B does not abort, if A did
not query OH3 with input (ê(H1(IDt),Y2)x3 , · · ·) =

(ê(g, g)x1 x2 x3 , · · ·), the corresponding hash value is random
to A. Besides, C∗5 is also random. Therefore, the challenge
ciphertext hides the messageMt perfectly, and the probability
that the adversary finds the correct Mt is negligible. Hence,
with overwhelming probability A queried OH3 with input

25416 VOLUME 7, 2019

H. Li et al.: Authorized Equality Test on Identity-Based Ciphertexts for Secret Data Sharing via Cloud Storage

ê(g, g)x1 x2 x3 . B randomly picks a tuple (T ,H3(T)) from the
list LH3 , where T = (T1, · · · ,T5), and outputs T1. The
probability that the output of B is the solution to the given
BDH problem instance is at least εE1/qH1qH3−negl(k). If εE1
is non-negligible, so is B’s advantage in breaking the BDH
assumption. Therefore, the event E1 happens with negligible
probability.

This completes the proof of Lemma 1.
Proof of Lemma 2: If Pr[S3] in Game 3 (page 25416) is

non-negligible, we can build an algorithmB to solve the BDH
problem. Given (G1,GT , p, ê, g, g1 = gx1 , g2 = gx2 , g3 =
gx3), where x1, x2, x3 are random elements of Zp, algorithm
B randomly chooses a number s2← Zp, and sets

mpk = Y = (Y1,Y2) = (g1, gs2),

and keeps s2 secretly. Notice that the first component of msk
is s1 = x1, which is unknown toB. It randomly chooses t∗←
{1, · · · , p} as its guess of the index of the challenge identity
chosen by the adversary. B then gives the system parameter
and mpk to the adversary, and answers its queries as below.
1) Phase 1: Same as that in the proof of Lemma 1.
2) Challenge: At some point, the adversary A submits a

challenge identity IDt . If IDt is not the t∗-th query to
OH1 , B aborts the game; otherwise, B randomly selects
a message Mt and computes the challenge ciphertext
C∗ = (C∗1 ,C

∗

2 ,C
∗

3 ,C
∗

4 ,C
∗

5) as below, and returns C∗

to the adversary:

C∗1 = gr12 , C∗2 = gr2 , C∗4 = g3,

C∗3 = (M r1
t ‖g

r1·r2
2)⊕ H2(Z ,C∗1 ,C

∗

2 ,C
∗

4),

C∗5 = W2,

where r1, r2, r3 ∈ Z3
p and Z ∈ GT are random.

3) Phase 2: The adversary continues to issuing queries
as in Phase 1. The constraints are that the challenge
identity IDt did not appear in Extract queries, and
(IDt ,C∗) did not appear in Decrypt queries.

4) Guess:A outputs a messageM ′t , and wins the game if
M ′t = Mt .

Denote by abt the eventB aborts the game. Notice that ifB
does not abort the game, the view of the adversary is identical
to a real attack. Same as that in the proof of Lemma 1 we have
Pr[abt] ≥ 1/qH1 .

Suppose that B does not abort. If A did not query OH2

with input (ê(H1(IDt),Y1)x3 , · · ·) = (ê(g, g)x1 x2 x3 , · · ·),
the corresponding hash value is totally random to A. There-
fore the challenge ciphertext hides the messageMt perfectly,
and A has negligible probability to find Mt . Thus, with
overwhelming probability A issues a query to OH2 on input
(ê(g, g)x1 x2 x3 , · · ·), B randomly picks a tuple (T ,H2(T))
from the list LH2 , where T = (T1, · · · ,T4). The probability
that T1 is the solution of the given BDH instance will be at
least Pr[S3]/qH1qH2 . Hence Pr[S3] is negligible if the BDH
assumption holds.

This completes the proof of Lemma 2.

C. IND-ID-CCA SECURITY
Theorem 2 (IND-ID-CCA): Our proposed IBEET-FA

scheme is IND-ID-CCA secure in the random oracle model
if DBDH assumption holds.

Proof: Assume that A2 is a Type-II adversary who
breaks the IND-ID-CCA security of our proposed IBEET-FA
scheme with advantage ε2. Then we construct an algorithm B
to solve the DBDH problem. Let (G1,GT , p, ê, g) be bilinear
pairing parameters as described in the scheme, and let CDBDH
be the challenger of DBDH problem.

Given (g, gx1 , gx2 , gx3 ,Z) where Z is either equal to
ê(g, g)x1 x2 x3 (i.e. b = 0) or a random element of GT (i.e.
b = 1), B randomly selects s1 ← Zp and sets the master
public key mpk = Y = (Y1,Y2) = (gx1·s1 , gx1). Suppose that
the adversaryA2 issues at most qH1 , qH2 , qH3 queries to hash
oracles OH1 ,OH2 ,OH3 , respectively. B chooses at random
t∗ ← {1, · · · , qH1} (as a guess of which identity would be
chosen as the challenge identity by the adversary), and gives
the system public parameters and mpk to the adversary A2,
and answers A2’s queries as below.

1) Phase 1:A2 is allowed to issue the following oracles.
Again, we assume that the adversary does not repeat a
query to the same oracle.

• Hash Oracles:

– OH1 : Given the i-th distinct query IDi, if i = t∗,
B sets hi = ⊥ and H1(IDt∗) = gx2 ; otherwise,
it randomly selects hi ← Zp and sets H1(Ti) =
ghi . In either case, B returns H1(IDi) to the
adversary, and stores (IDi, hi,H1(IDi)) into a list
LH1 which is initially empty.

– OH2 : Same as that in the proof of Theorem 1.
– OH3 : Same as that in the proof of Theorem 1.

• Extract Oracle: Given an identity IDi, B retrieves
the corresponding tuple (IDi, hi,H1(IDi)) from
LH1 . If hi = ⊥, which means that IDi is the t∗-
th query to OH1 , B aborts and outputs a random
bit b′. Otherwise, B computes the secret key

dkIDi = (dkIDi,1,dkIDi,2) = (Y hi1 ,Y
hi
2),

and returns dkIDi .
• Decryption Oracle: Given an identity IDi and
a ciphertext C = (C1,C2,C3,C4,C5), B runs
the following algorithm and gets the result =
M‖T ′ or ⊥. B returns M or ⊥. T ′ will be used by
the trapdoor oracle.

• Trapdoor Oracle: Given the identity IDi, B runs
the hash oracle OH1 to get the value H1(IDi) and
returns the trapdoor according to the following
cases.

– Type-1: Given IDi, if IDi = IDt∗ , B aborts and
outputs a random bit b′. Otherwise, B returns
(IDi, hi,H1(IDi)) from LH1 , and computes

tdi,1 = dkIDi,1 = Y hi1 .

VOLUME 7, 2019 25417

H. Li et al.: Authorized Equality Test on Identity-Based Ciphertexts for Secret Data Sharing via Cloud Storage

Algorithm 1
1: result = ⊥
2: for each (T ,H3(T)) ∈ LH3 do
3: parse T as T = (T1,T2,T3,T4)
4: compute (M ||r1) = C5 ⊕ H3(T)
5: if C1 = M r1 ∧ T2 = C1 ∧ T3 = C2 ∧ T4 = C4 then
6: for each (T ′,H2(T ′)) ∈ LH2 do
7: parse T ′ as T ′ = (T ′1,T

′

2,T
′

3,T
′

4,T
′

5)
8: compute A = [C3 ⊕ H2(T ′)]

2l1−1
l1

9: if A = M r1 ∧ T ′2 = C1 ∧ T ′3 = C2 ∧ T ′4 =
C3 ∧ T ′5 = C4 then

10: result = M‖T ′

11: return result
12: end if
13: end for
14: end if
15: end for
16: return result

– Type-2: Given (IDi,Ci), if IDi 6= IDt∗ , return

tdi,2 = H2(ê(dkIDi,1,Ci,2),Ci,1,Ci,2,Ci,4)

= H2(ê(Y
hi
1 , g

ri,2), · · ·).

Otherwise, B runs the decryption oracle OD to
get the value result . If result = ⊥, return ⊥,
otherwise, return tdi,2 = H2(T ′)

– Type-3: Given (IDi,Ci), (IDj,Cj), if IDi 6=
IDt∗ , return tdi,3 = (tdi,3,1, tdi,3,2) where

tdi,3,1 = [Ci,3 ⊕ H2(ê(dkIDi,1,Ci,4), · · ·)]
`1−1
0

· [Ci,3 ⊕ H2(ê(dkIDi,1,Ci,4), · · ·)]
2`1−1
`1

= M
ri,1
i · H1(IDi)ri,1·ri,2 ,

tdi,3,2 = ê([Ci,3 ⊕ H2(ê(dkIDi,1,

Ci,4), · · ·)]
`1−1
0 ,Cj,1)

= ê(H1(IDi)ri,1·ri,2 ,Cj,1).

Otherwise, B runs the Type-2 trapdoor oracle
with input (IDi,Ci). Denote the output by tdi,2.
Finally, B returns tdi,3 = (tdi,3,1, tdi,3,2) where

tdi,3,1 = [Ci,3 ⊕ tdi,2]
`1−1
0 · [Ci,3 ⊕ tdi,2]

2`1−1
`1

,

tdi,3,2 = ê([Ci,3 ⊕ tdi,2]
`1−1
0 ,Cj,1).

Notice that every query to H2 mentioned above
should include Ci,1,Ci,2,Ci,4. We omit them here
for simplicity.

2) Challenge: The adversary submits a challenge identity
IDt and two message M0,M1. If IDt 6= IDt∗ , B aborts
and outputs a random bit b′. Otherwise, B tosses a coin
b̂ ∈ {0, 1} and encrypts Mb̂ by computing

C∗1 = gr1 , C∗2 = gr2 , C∗4 = gx3 ,

C∗3 = (M r1
b̂
‖H1(IDt)r1·r2)⊕ H2(Z s1 ,C∗1 ,C

∗

2 ,C
∗

4),

C∗5 = (Mb̂‖r1)⊕ H3(Z ,C∗1 ,C
∗

2 ,C
∗

3 ,C
∗

4).

B returns the ciphertext C∗ = (C∗1 ,C
∗

2 ,C
∗

3 ,C
∗

4 ,C
∗

5) to
the adversary.

3) Phase 2: A continues to issuing queries as in Phase
1 with the following constraints:
a) (IDt ,C∗) did not appear in decryption queries;
b) IDt did not appear in extract queries nor Type-1

trapdoor queries, and (IDt ,C∗) did not appear in
Type-2,3,4 trapdoor queries.

4) Guess: A outputs a bit b̂′. If b̂′ = b̂, B outputs a bit
b′ = 0; otherwise, it outputs b′ = 1.

Notice that in the game above, B aborts and outputs a
random bit if its guess of the challenge identity is wrong,
i.e. IDt∗ 6= IDt . Denote this event by abt, and we have that
Pr[abt] ≥ 1/qH1 . Conditioned on that abt does not occur,
if Z = ê(g, g)x1 x2 x3 , i.e. b = 0, the view ofA2 is identical to
that in a real attack, andA2 wins the game with advantage ε2.
If Z is a random element of GT , i.e. b = 1, all components
of the challenge ciphertext are random and reveal nothing
about the bit b̂, thus the adversary wins the game only with
probability at most 1/2. So we have that

Pr[b′ = b|abt]
= Pr[b′ = 0 ∧ b = 0|abt]+ Pr[b′ = 1 ∧ b = 1|abt]

=
1
2
+
ε2

2
.

Therefore, we have that

Pr[b′ = b] = Pr[b′ = b ∧ abt]+ Pr[b′ = b ∧ abt]

≥
1
2
+
ε2

2
·

1
qH1

.

If ε2 is non-negligible, so is
∣∣∣Pr[b′ = b]− 1

2

∣∣∣. This completes
the proof of Theorem 2.

VI. EFFICIENCY ANALYSIS AND COMPARISON
In this section we analyze the efficiency of our IBEET-FA
scheme, and compare the scheme with some related works,
e.g. the PKEET-FA scheme [8], VPKEET [22] and the IBEET
scheme [24], in terms of security, communicational com-
plexity and computational complexity. Table 1 shows that
our scheme has a comparable communicational complexity
and the same level of security with PKEET-FA and IBEET.
Table 2 shows that the computational costs of our scheme
are comparable with PKEET-FA and IBEET schemes. In the
tables we use |G1|, |GT | and |Zp| to denote the bit length of an
element in G1, GT and Zp, respectively, and use Pairing and
Exp to denote the computational cost of evaluating a bilinear
pairing and a modular exponentiation, respectively.

Due to the functional similarity, we implemented our
scheme and PKEET-FA scheme in order to do a detailed
comparison. The experiment platform is a VMware [32] vir-
tual machine (VMware Workstation 12 Pro v12.1.1), with
a two-core CPU and 4 GB memory and running Ubuntu
16.04 32-bit. The host machine has a quad-core 3.40GHz
Intel i7-6700 CPU and 8 GB memory, and runs Windows 7
professional. We used the Type-A pairing in PBC library [33]

25418 VOLUME 7, 2019

H. Li et al.: Authorized Equality Test on Identity-Based Ciphertexts for Secret Data Sharing via Cloud Storage

TABLE 1. Comparison of communicational complexity and security.

TABLE 2. Comparison of computational complexity.

FIGURE 3. Efficiency comparison of encryption and decryption with
PKEET-FA [8].

to implement the schemes. The elliptic curve y2 = x3 + x
over the field Fp with prime p ≡ 3 mod 4 [33] was used in
the experiment, and the prime p is

p = A7A73868E95FBA886EDEF8CE96E7217E364BB

946F5ED839628D1F80010940622A7AFDAF9B049

744A459E54DAB7BA5BE92539E8FF9B4F30A3C

F6230C28E284D97.

Figure 3 shows that the computational costs of Encrypt
andDecrypt algorithms of our IBEET-FA scheme are slightly
higher than but still comparable with those of PKEET-
FA scheme [8]. Figure 4 shows the computational costs of
authorization algorithms of the two schemes. The running
time of Type-2 and Type-3 authorization algorithms of the
two schemes increase linearly with the repetition numbers.
The running time of Aut1 is constant. Although our Aut2

FIGURE 4. Efficiency comparison of authorization with PKEET-FA [8].

FIGURE 5. Efficiency comparison of test with PKEET-FA [8].

algorithm has a slightly lower efficiency than that of PKEET-
FA, our Aut3 algorithm is more efficient.

Figure 5 shows the computational costs of test algo-
rithms. Our Test1 algorithm is slightly slower than that of

VOLUME 7, 2019 25419

H. Li et al.: Authorized Equality Test on Identity-Based Ciphertexts for Secret Data Sharing via Cloud Storage

PKEET-FA, but the other test algorithms of our scheme are
almost as efficient as those of PKEET-FA. Generally, our
IBEET-FA scheme has almost the same computational effi-
ciency with PKEET-FA scheme [8].

VII. CONCLUSION AND FUTURE WORK
In this paper, we introduced a new notion of identity-based
encryption, called IBEET-FA, which supports flexible and
authorized equality test on ciphertexts. The notion can be
applied to search over ciphertexts encrypted with different
public keys in IBE settings. We gave the security models of
IBEET-FA and proposed a concrete construction, which was
proved to be secure under the given model based on standard
mathematical assumptions. Compared with its counterpart in
the PKI setting, our scheme has almost the same efficiency
and furthermore does not suffer from the complex key man-
agement issue.

Our IBEET-FA scheme is based on bilinear pairing, which
is still computationally expensive. In future work, we con-
sider constructing IBEET-FA schemes without using bilinear
pairing.

REFERENCES
[1] J. Shen, T. Zhou, D. He, Y. Zhang, X. Sun, and Y. Xiang, ‘‘Block design-

based key agreement for group data sharing in cloud computing,’’ IEEE
Trans. Dependable Secure Comput., to be published.

[2] A. Kiayias, O. Oksuz, A. Russell, Q. Tang, and B. Wang, ‘‘Efficient
encrypted keyword search for multi-user data sharing,’’ in Proc. Eur. Symp.
Res. Comput. Secur. Cham, Switzerland: Springer, 2016, pp. 173–195.
doi: 10.1007/978-3-319-45744-4_9.

[3] J. Shen, T. Zhou, X. Chen, J. Li, and W. Susilo, ‘‘Anonymous and trace-
able group data sharing in cloud computing,’’ IEEE Trans. Inf. Forensics
Security, vol. 13, no. 4, pp. 912–925, Apr. 2018.

[4] Y. Li, Y. Yu, G. Min, W. Susilo, J. Ni, and K.-R. Choo, ‘‘Fuzzy
identity-based data integrity auditing for reliable cloud storage systems,’’
IEEE Trans. Dependable Secure Comput., vol. 16, no. 1, pp. 72–83,
Jan./Feb. 2019.

[5] D. X. Song, D. Wagner, and A. Perrig, ‘‘Practical techniques for searches
on encrypted data,’’ in Proc. IEEE Symp. Secur. Privacy, May 2000,
pp. 44–55.

[6] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, ‘‘Public
key encryption with keyword search,’’ in Proc. Int. Conf. Theory Appl.
Cryptograph. Techn. Berlin, Germany: Springer, 2004, pp. 506–522.

[7] G. Yang, C. H. Tan, Q. Huang, and D. S. Wong, ‘‘Probabilistic public key
encryption with equality test,’’ in Proc. Cryptographers’s Track RSA Conf.
Berlin, Germany: Springer, 2010, pp. 119–131.

[8] S. Ma, Q. Huang, M. Zhang, and B. Yang, ‘‘Efficient public key encryption
with equality test supporting flexible authorization,’’ IEEE Trans. Inf.
Forensics Security, vol. 10, no. 3, pp. 458–470, Mar. 2015.

[9] A. Shamir, ‘‘Identity-based cryptosystems and signature schemes,’’ in
Advances in Cryptology. Berlin, Germany: Springer, 1984, pp. 47–53.

[10] G. S. Poh, J.-J. Chin, W.-C. Yau, K.-K. R. Choo, and M. S. Mohamad,
‘‘Searchable Symmetric Encryption: Designs and Challenges,’’ACMCom-
put. Surv., vol. 50, no. 3, pp. 40:1–40:37, 2017.

[11] M. Chuah and W. Hu, ‘‘Privacy-aware bedtree based solution for fuzzy
multi-keyword search over encrypted data,’’ inProc. 31st Int. Conf. Distrib.
Comput. Syst. Workshops, Jun. 2011, pp. 273–281.

[12] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, ‘‘Privacy-preserving multi-
keyword ranked search over encrypted cloud data,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 1, pp. 222–233, Jan. 2014.

[13] H. Li, D. Liu, Y. Dai, T. H. Luan, and X. S. Shen, ‘‘Enabling efficient multi-
keyword ranked search over encrypted mobile cloud data through blind
storage,’’ IEEE Trans. Emerg. Topics Comput., vol. 3, no. 1, pp. 127–138,
Mar. 2015.

[14] D. J. Park, K. Kim, and P. J. Lee, ‘‘Public key encryption with conjunctive
field keyword search,’’ in Proc. Int. Workshop Inf. Secur. Appl. Berlin,
Germany: Springer, 2004, pp. 73–86.

[15] J. W. Byun, H. S. Rhee, H.-A. Park, and D.-H. Lee, ‘‘Off-line keyword
guessing attacks on recent keyword search schemes over encrypted data,’’
in Proc. Workshop Secure Data Manage.Berlin, Germany: Springer, 2006,
pp. 75–83.

[16] W.-C. Yau, S.-H. Heng, andB.-M.Goi, ‘‘Off-line keyword guessing attacks
on recent public key encryption with keyword search schemes,’’ in Proc.
Int. Conf. Autonomic Trusted Comput. Berlin, Germany: Springer, 2008,
pp. 100–105.

[17] H. S. Rhee, W. Susilo, and H.-J. Kim, ‘‘Secure searchable public key
encryption scheme against keyword guessing attacks,’’ IEICE Electron.
Express, vol. 6, no. 5, pp. 237–243, 2009.

[18] C. Liu, L. Zhu, M. Wang, and Y.-A. Tan, ‘‘Search pattern leakage in
searchable encryption: Attacks and new construction,’’ Inf. Sci., vol. 265,
pp. 176–188, May 2014.

[19] Q. Tang, ‘‘Towards public key encryption scheme supporting equality
test with fine-grained authorization,’’ in Proc. Australas. Conf. Inf. Secur.
Privacy. Berlin, Germany: Springer, 2011, pp. 389–406.

[20] Q. Tang, ‘‘Public key encryption supporting plaintext equality test and
user-specified authorization,’’ Secur. Commun. Netw., vol. 5, no. 12,
pp. 1351–1362, 2012.

[21] X.-J. Lin, H. Qu, and X. Zhang, ‘‘Public key encryption support-
ing equality test and flexible authorization without bilinear pairings,’’
Cryptol. ePrint Arch., Tech. Rep. 2016/277, 2016. [Online]. Available:
https://eprint.iacr.org/2016/277

[22] Y. Xu, M. Wang, H. Zhong, J. Cui, L. Liu, and V. N. L. Franqueira,
‘‘Verifiable public key encryption scheme with equality test in 5G net-
works,’’ IEEE Access, vol. 5, pp. 12702–12713, 2017.

[23] S. Canard, G. Fuchsbauer, A. Gouget, and F. Laguillaumie, ‘‘Plaintext-
checkable encryption,’’ in Cryptographers’ Track at the RSA Conference.
Berlin, Germany: Springer, 2012, pp. 332–348.

[24] S. Ma, ‘‘Identity-based encryption with outsourced equality test in cloud
computing,’’ Inf. Sci., vol. 328, pp. 389–402, Jan. 2016.

[25] H. Zhu, L. Wang, H. Ahmad, and X. Niu, ‘‘Key-policy attribute-based
encryption with equality test in cloud computing,’’ IEEE Access, vol. 5,
pp. 20428–20439, 2017.

[26] Q. Wang, L. Peng, H. Xiong, J. Sun, and Z. Qin, ‘‘Ciphertext-policy
attribute-based encryption with delegated equality test in cloud comput-
ing,’’ IEEE Access, vol. 6, pp. 760–771, 2018.

[27] D. Boneh and M. Franklin, ‘‘Identity-based encryption from the weil
pairing,’’ in Proc. Annu. Int. Cryptol. Conf. Berlin, Germany: Springer,
2001, pp. 213–229.

[28] F. Bao, R. H. Deng, and H. Zhu, ‘‘Variations of Diffie-Hellman problem,’’
in Proc. Int. Conf. Inf. Commun. Secur. Berlin, Germany: Springer, 2003,
pp. 301–312.

[29] X. Boyen, ‘‘The uber-assumption family,’’ in Pairing-Based
Cryptography—Pairing. Berlin, Germany: Springer, Sep. 2008, pp. 39–56.

[30] W. Diffie and M. E. Hellman, ‘‘New directions in cryptography,’’ IEEE
Trans. Inf. Theory, vol. IT-22, no. 6, pp. 644–654, Nov. 1976.

[31] J. Katz and Y. Lindell, Introduction to Modern Cryptography, 2nd ed.
Boca Raton, FL, USA: CRC Press, 2014.

[32] VMware. (2017). [Online]. Available: http://www.vmware.com
[33] B. Lynn et al. (2013). Pairing-Based Cryptography Library. [Online].

Available: https://crypto.stanford.edu/pbc/

HONGBO LI received the B.S. and M.S.
degrees from South China Agricultural University,
Guangzhou, China, where he is currently pursuing
the Ph.D. degree with the College of Mathematics
and Informatics. His research interests include
applied cryptography and cloud security.

QIONG HUANG received the B.S. and M.S.
degrees from Fudan University, in 2003 and 2006,
respectively, and the Ph.D. degree from the City
University of Hong Kong, in 2010. He is currently
a Professor with the College of Mathematics and
Informatics, South China Agricultural University,
Guangzhou, China. His research interests include
cryptography and information security, in par-
ticular, and cryptographic protocols design and
analysis.

25420 VOLUME 7, 2019

http://dx.doi.org/10.1007/978-3-319-45744-4_9

H. Li et al.: Authorized Equality Test on Identity-Based Ciphertexts for Secret Data Sharing via Cloud Storage

SHA MA received the B.S. and M.S. degrees from
Wuhan University, in 2004 and 2006, respectively,
and the Ph.D. degree from South China Agri-
cultural University, Guangzhou, China, in 2012,
where she is currently an Associate Professor with
the College of Mathematics and Informatics. Her
research interests include applied cryptography
and security in cloud computing.

JIAN SHEN received the M.E. and Ph.D. degrees
in computer science from Chosun University,
South Korea, in 2009 and 2012, respectively. Since
2012, he has been a Professor with the Nanjing
University of Information Science and Technol-
ogy, Nanjing, China. His current research interests
include public key cryptography, secure data shar-
ing, and data auditing in cloud.

WILLY SUSILO (SM’01) received the Ph.D.
degree in computer science from the University of
Wollongong, Australia. He is currently a Profes-
sor, the Head of School of Computing and Infor-
mation Technology, and the Director of Institute
of Cybersecurity and Cryptology with the Uni-
versity of Wollongong. He has authored or co-
authored over 300 research papers in the area of
cybersecurity and cryptology. His main research
interests include cybersecurity, cryptography, and

information security. He served as a Program Committee Member in dozens
of international conferences. He was a recipient of the prestigious ARC
Future Fellow by the Australian Research Council and the Researcher of
the Year Award in 2016 by the University of Wollongong. His work has
been cited over 9000 times in Google Scholar. He is the Editor-in-Chief
of the Information journal. He is currently serving as an Associate Edi-
tor for several international journals, including Computer Standards and
Interfaces (Elsevier) and the International Journal of Information Security
(Springer).

VOLUME 7, 2019 25421

	INTRODUCTION
	OUR CONTRIBUTIONS
	RELATED WORKS
	ORGANIZATION

	PRELIMINARIES
	BILINEAR PAIRING
	MATHEMATICAL ASSUMPTIONS
	BILINEAR DIFFIE-HELLMAN ASSUMPTION
	DECISIONAL BILINEAR DIFFIE-HELLMAN ASSUMPTION
	DISCRETE LOGARITHM ASSUMPTION

	IBEET-FA DEFINITION
	SYSTEM MODEL
	ALGORITHMS

	OUR IBEET-FA SCHEME
	SECURITY ANALYSIS
	SECURITY MODELS
	OW-ID-CCA SECURITY
	IND-ID-CCA SECURITY

	EFFICIENCY ANALYSIS AND COMPARISON
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	HONGBO LI
	QIONG HUANG
	SHA MA
	JIAN SHEN
	WILLY SUSILO

