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ABSTRACT An outer-independent Italian dominating function (OIIDF) on a graph G with vertex set V (G)
is defined as a function f : V (G)→ {0, 1, 2}, such that every vertex v ∈ V (G) with f (v) = 0 has at least two
neighbors assigned 1 under f or one neighborwwith f (w) = 2, and the set {u ∈ V | f (u) = 0} is independent.
The weight of an OIIDF f is the valuew(f ) =

∑
u∈V (G) f (u). The minimumweight of an OIIDF on a graphG

is called the outer-independent Italian domination number γoiI (G) of G. In this paper, we initiate the study
of the outer-independent Italian domination number and present the bounds on the outer-independent Italian
domination number in terms of the order, diameter, and vertex cover number. In addition, we establish the
lower and upper bounds on γoiI (T ) when T is a tree and characterize all extremal trees constructively.We also
give the Nordhaus–Gaddum-type inequalities.

INDEX TERMS Outer-independent Italian domination, Italian domination, trees.

I. INTRODUCTION
In this paper, we consider finite, undirected and simple graphs
G with vertex set V = V (G) and edge set E = E(G), where
the order of G is n(G) = |V | . For every vertex v ∈ V (G),
the open neighborhood of v is the set NG(v) = N (v) =
{u ∈ V (G) | uv ∈ E(G)} and its closed neighborhood is
the set NG[v] = N [v] = N (v) ∪ {v}. The degree of a vertex
v ∈ V is d(v) = |N (v)|. A leaf is a vertex of degree one,
and a support vertex is a vertex adjacent to a leaf. We denote
the sets of all leaves and all support vertices of G by L(G)
and S(G), respectively. Denote also by S1(T ) the set of all
support vertices of T that are adjacent to only one leaf and let
S2(T ) = S(G) − S1(T ). The diameter of a graph G, denoted
by diam(G), is the greatest distance between two vertices of
G. We write Pn for the path of order n, Cn for the cycle of
length n, Kp,q for the complete bipartite graph and G for the
complement graph of G.

The associate editor coordinating the review of this manuscript and
approving it for publication was Remigiusz Wisniewski.

A set I ⊆ V (G) is independent if no two vertices in I are
adjacent. The maximum cardinality of an independent set in
G equals the independence number β0(G). A vertex cover of
a graph G is a set of vertices that covers all the edges. The
minimum cardinality of a vertex cover is denoted by α0(G).
The following result is given in [9].
Theorem 1: Let G be a graph. A subset I of V (G) is

independent if and only if V (G) − I is a vertex cover of G.
In particular, β0(G) = |V (G)| − α0(G).
The notion of Italian domination in graphs was introduced

in [12], where it was called Roman {2}-domination and
weak {2}-domination. The concept was studied further in [3]
and [4]. An Italian dominating function (IDF) on a graph G
is a function f : V (G) → {0, 1, 2} such that every vertex
v ∈ V (G) with f (v) = 0 has at least two neighbors assigned
1 under f or one neighbor w with f (w) = 2. The weight of
an IDF f is the value w(f ) =

∑
u∈V (G) f (u). The minimum

weight of an IDF on a graphG is called the Italian domination
number γI (G) of G. For an IDF f on G, let V

f
i = {v ∈ V (G) :

f (v) = i} for i = 0, 1, 2. Since these three sets determine f
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uniquely, we can equivalently write f = (V f
0 ,V

f
1 ,V

f
2 ). If H

is a subgraph of G and f an IDF on G, then we denote the
restriction of f on H by f |H . The following lower bound on
the Italian domination number established in [12].
Theorem 2: If G is a connected graph of order n and

maximum degree 1, then γI (G) ≥ 2n/(1+ 2).
For Italian domination one can think of each vertex repre-

senting a location in the Roman Empire and each edge being
a road between two locations. A location is said to be pro-
tected if one of the following holds: (a) at least one legion is
stationed in it or (b) it is with no legion and has a neighboring
locationwith two legions or at least two neighboring locations
with one legion each. A location having no legion is thought
of as being vulnerable. In addition, if such a location has one
of its neighboring locations with no legion stationed in it, then
it is considered to be even more vulnerable. The best protec-
tion for a vulnerable location is to be completely surrounded
only by neighboring locations with legions. This leads us to
seek an Italian dominating function f = (V f

0 ,V
f
1 ,V

f
2 ) for

which V f
0 is independent, that is f is an OIIDF.

In this paper, we initiate the study of outer-independent
Italian dominating functions f = (V0,V1,V2) for which V0
is an independent set. The minimum weight of an OIIDF
on a graph G is called the outer independent Italian dom-
ination number of G and it is denoted by γoiI (G). Clearly
γI (G) ≤ γoiI (G). An OIIDF with minimum weight in a
graph G will be referred to as a γoiI -function on G. Since any
outer-independent Italian dominating function is an Italian
dominating function, we have

γoiI (G) ≥ γI (G) (1)

We establish various bounds on the outer-independent
Italian domination number in terms of the order, diameter
and vertex cover number. In particular, we give lower and
upper bounds on γoiI (T ) when T is a tree, and we charac-
terize all extreme trees constructively. Moreover, we provide
Nordhaus-Gaddum bounds for γoiI (G)+ γoiI (G), where G is
the complement graph of G.
In what follows we shall consider only graphs without

isolated vertices.

II. PRELIMINARY RESULTS
In this section we present the basic properties of outer-
independent Italian domination. We first provide six
observations.
Observation 1: If f = (V0,V1,V2) is an γoiI -function

on G, then
i) each vertex of V2 (if any) has a private neighbor in V0.

ii) V1 ∪ V2 is an outer-dominating set in G.
iii) V − V0 is a vertex cover of G. In particular

γoiI (G) ≥ α0(G).
Observation 2: For any non-complete graph G having at

least one edge, there exists an γoiI -function f = (V0,V1,V2)
of G such that V0 6= ∅.
Observation 3: If G is an n-order graph then γoiI (G) ≤ n.

The equality holds if and only if 1(G) ≤ 1.

Observation 4: If H is a complete subgraph of a graph G,
then γoiI (G) ≥ |V (H )| − 1.
Next we determine the exact value of the outer-independent
Italian domination number for some classes of graphs.
We start with the complete graphs and bipartite complete
graphs whose proofs are easy to see.
Observation 5: For n ≥ 1, γoiI (Kn) = n− 1.
Observation 6: For integers p ≥ q ≥ 1,

γoiI (Kp,q) =
{
2 if q = 1.
q if q ≥ 2.

Proposition 1: For n ≥ 3, γoiI (Cn) = d n2e.
Proof: By Theorem 2 and inequality (1) we have

γoiI (Cn) ≥ d n2e. To prove the inverse inequality, let Cn :=
(v1v2 . . . vn) and define f : V (G)→ {0, 1, 2} by f (v2i−1) = 1
and f (v2i) = 0 for 1 ≤ i ≤ n/2 when n is even, and by
f (vn) = 1, f (v2i−1) = 1 and f (v2i) = 0 for 1 ≤ i ≤ (n− 1)/2
when n is odd. Clearly f is an OIIDF of G of weight d n2e
implying that γoiI (Cn) ≤ d n2e. Thus γoiI (Cn) = d

n
2e. �

Next we determine outer-independent Italian domina-
tion number of paths. Recall that a (outer-independent)
2-dominating set of a graph G is a set D of vertices of
G such that every vertex not in S is dominated at least
twice (and V (G) \ S is independent). The minimum cardi-
nality of a (outer-independent) 2-dominating set of G is the
(outer-independent) 2-domination number γ2(G) (γ oi2 (G)).
Clearly by assigning a 1 to each vertex of a minimum
outer-independent 2-dominating set of a graph G and a 0 to
other vertices, we obtain an OIIDF of G and this implies that

γoiI (G) ≤ γ oi2 (G). (2)

Fink and Jacobson [13] have established a lower bound on
the 2-domination number for every tree in term of its order.
Theorem 3: If T is a tree of order n, then γ2(T ) ≥

(n+ 1)/2.
Proposition 2: For n ≥ 1, γoiI (Pn) = d n+12 e.
Proof: First let n is odd. Theorem 2 and inequality (1)

imply that γoiI (Pn) ≥ d n2e = d
n+1
2 e. To prove the inverse

inequality, let Pn := v1v2 . . . vn and define f : V (G) →
{0, 1, 2} by f (v2i−1) = 1 for 1 ≤ i ≤ (n + 1)/2 and f (x) =
0 otherwise. Clearly f is an OIDF of G of weight d n+12 e
yielding γoiI (Pn) ≤ d n+12 e. Therefore γoiI (Pn) = d

n+1
2 e in

this case.
Now let n is even. Clearly, the function f : V (G) →
{0, 1, 2} defined by f (vn) = 1, f (v2i−1) = 1 for 1 ≤ i ≤ n/2
and f (x) = 0 otherwise, is an OIDF of G of weight d n+12 e
and so γoiI (Pn) ≤ d n+12 e. To prove the inverse inequality, let
Pn := v1v2 . . . vn and f = (V0,V1,V2) be a γoiI (Pn)-function
such that |V2| is as small as possible. If |V2| ≥ 1 and vi ∈ V2,
then by the choice of f we have f (vi−1) = f (vi+1) = 0 and the
function g = ((V0 \{vi−1, vi+1})∪{vi},V1∪{vi−1, vi+1},V2 \
{vi}) is a γoiI (Pn)-function which contradicts the choice of f .
Hence V2 = ∅. Then V1 is a 2-dominating set of G and we
conclude from Theorem 3 that γoiI (Pn) = ω(f ) = |V1| ≥
n+1
2 . Since γoiI (Pn) is integer, we have γoiI (Pn) ≥ d n+12 e.
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Thus γoiI (Pn) = d
n+1
2 e in this case and the proof is

complete. �
A function f : V (G) → {0, 1, 2} is an outer-independent
Roman dominating function (OIRDF) on G if every ver-
tex u ∈ V for which f (u) = 0 is adjacent to at least
one vertex v for which f (v) = 2 and {v | f (v) = 0} is
an independent set. The outer-independent Roman domina-
tion number γoiR(G) is the minimum weight of an OIRDF
on G. Outer-independent Roman domination was intro-
duced by Abdollahzadeh Ahangar et al. [1]. Clearly, any
outer-independent Roman dominating function on a graph G
is an OIIDF of G and so

γoiR(G) ≥ γoiI (G). (3)

Abdollahzadeh Ahangar et al. proved the following bounds
γoiR(G).
Proposition 3: If G is a connected triangle-free graph of

order n ≥ 2 and maximum degree 1, then γoiR(G) ≤ n −
1+ 1.
Proposition 4: Let G be a connected graph of order n. If G

has girth g <∞, then γoiR(G) ≤ n+
⌈ g
2

⌉
− g.

Next results are immediate consequences of Propositions 3, 4
and inequality (3).
Corollary 1: If G is a connected triangle-free graph of

order n ≥ 2 and maximum degree 1, then γoiR(G) ≤ n −
1+ 1. d This bound is sharp for all stars K1,n−1, n ≥ 2.
Corollary 2: Let G be a connected graph of order n. If G

has girth g <∞, then γoiR(G) ≤ n+
⌈ g
2

⌉
− g.

III. BOUNDS
In this section we present some sharp bounds on γoiI (G).
Theorem 4: For any connected graph G of order n ≥ 2

with minimum degree δ and maximum degree 1,

γoiI (G) ≥ dnδ/(δ +1)e.

This bound is sharp for cycles and complete bipartite graphs
Kn,n (n ≥ 2).

Proof: Let f = (V0,V1,V2) be an arbitrary γoiI (G)-
function. Suppose first that V0 = ∅. Then γoiI (G) = |V1| =
n. Observe that if G contains a vertex y of degree at least two,
then we can reduce the weight of f by assigning 0 to y which
is a contradiction. Thus 1 = 1 yielding G = K2 and so
γoiI (G) = 2 > dnδ/(δ + 1)e. Assume that V0 6= ∅. Since
V0 is independent, we obtain δ|V0| ≤ 1(|V2| + |V1|). Using
the fact that n = |V2| + |V1| + |V0|, we obtain

δn/(δ +1) ≤ |V2| + |V1| ≤ 2|V2| + |V1| = γoiI (G).

Since γoiI (G) is an integer, we deduce that γoiI (G) ≥ dnδ/
(δ +1)e. �
Corollary 3: If G is a regular graph of order n ≥ 2, then

γoiI (G) ≥ dn/2e.
Corollary 4: Let G be a connected graph of order n ≥ 2

and δ = 1, then γoiI (G) ≥ dn/(1+ 1)e.
Theorem 5: For a graph G the following hold.

(i) Each minimum vertex cover of G contains all vertices
in S2(G). There exists a minimum vertex cover of G
containing S(G).

(ii) γoiI (G) ≤ α0(G)+ |S(G)| ≤ 2α0(G).
(iii) If δ(G) ≥ 2 then γoiI (G) = α0(G) = n(G)− β0(G).

Proof: (i) Obvious.
(ii) By (i) there is a vertex cover F of G such that S(G) ⊆

F and |F | = α0(G). The set V (G) − F is independent (by
Theorem 1) and then each its non-leaf vertex is adjacent to
at least 2 vertices of F . Hence the function f = (V (G) −
F;F−S(G); S(G)) is an OIIDF onG. Thus γoiI (G) ≤ w(f ) =
|F | + S(G) = α0(G)+ |S(G)|. It remains to note that clearly
α0(G) ≥ |S(G)|.
(iii) If δ(G) ≥ 2 then |S(G)| = 0 and by (ii), γoiI (G) ≤

α0(G). On the other hand, by Observation 1 (Item (iii)) we
have γoiI (G) ≥ α0(G). Thus γoiI (G) = α0(G). The last
equality follows by Theorem 1. �
The bounds in Theorem 5(ii) are attainable. Let G be a

graph each vertex of which is either a leaf or a support vertex.
If each support vertex of G is adjacent to at least 2 leaves,
then clearly S(G) is a minimum cover set and f = (V (G) −
S(G); ∅; S(G)) is an OIIRDF on G of minimum weight. Thus
γoiI (G) = α0(G)+ |S(G)| = 2α0(G).
Next result is an immediate consequence of

Theorem 5(iii).
Corollary 5: For any graph G of order n with δ(G) ≥ 2,

γoiI (G) ≤ 2α′(G)

where α′(G) is the matching number of G.
We will say that a graph G is a vertex cover outer

independent Italian graph, a VCOI-Italian graph for short,
if γoiI (G) = 2α0(G).
Theorem 6: A graph G is VCOI-Italian if and only if the

function f = (V (G)− S(G),∅, S(G)) is a γoiI -function on G.
Proof: Suppose thatG is a VCOI-Italian graph. By The-

orem 5, S(G) is a minimum vertex cover of G. Hence f =
(V (G)− S(G),∅, S(G)) is a γoiI -function on G.
Assume now that f = (V (G) − S(G),∅, S(G)) is a γoiI -

function on G. Then γoiI (G) = 2|S(G)| and S(G) is a vertex
cover of G. Now by Theorem 5, S(G) is a minimum vertex
cover of G and so G is VCOI-Italian. �
Proposition 5: Let H be an induced subgraph of a

graph G. Then γoiI (G) ≤ γoiI (H )+ |V (G)| − |V (H )|.
Proof: Let f be a γoiI -function onH . Define an OIIDF h

on G as follows: h(x) = f (x) when x ∈ V (H ) and h(x) = 1
otherwise. Sincew(h) = w(f )+|V (G)|−|V (H )|, we obtained
the desired inequality. �
Corollary 6: Let G be a connected graph of order n.

If diam(G) = d ≥ 2, then γoiI (G) ≤ n−
⌊ d
2

⌋
.

Proof: Let Pd+1 be a diametral path in G. By Proposi-
tions 2 and 5 we have

γoiI (G) ≤ γoiI (Pd+1)+ |V (G)| − |V (Pd+1)|

=

⌈
d+2
2

⌉
+ n− (d + 1)

= n−
⌊ d
2

⌋
.

�
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Applying Corollary 6, we can characterize all graphs G of
order n with γoiI (G) = n− 1.
Theorem 7: Let G be a connected graph of order n ≥ 3.

Then γoiI (G) = n− 1 if and only if G ∈ {P3,P4,Kn} or G is
obtained from a complete graph Kt (t ≥ 3) by adding at most
one pendant edge at each vertex of Kt .

Proof: If G ∈ {P3,P4,Kn} or G is obtained from a
complete graph Kt (t ≥ 3) by adding at most one pendant
edge at each vertex ofKt , then it is easy too see that γoiI (G) =
n− 1.

Conversely, let γoiI (G) = n − 1. By Corollary 6, we have
diam(G) ≤ 3. If diam(G) = 1, then G is a complete graph
and we are done. Assume that 2 ≤ diam(G) ≤ 3. If G has an
induced subgraph isomorphic to K1,3 centered at x and with
leaves x1, x2, x3, then assigning a 2 to x, a 0 to x1, x2, x3 and a
1 to other vertices introduces an OIIDF of G of weight n− 2,
a contradiction. Hence G is K1,3-free graph. We consider two
cases.

Case 1. diam(G) = 3.
Let P := v1v2v3v4 be a diametrical path in G. If n = 4,

then G = P4 and we are done. Assume that n ≥ 5. If v1
is adjacent to a vertex w ∈ V (G) − V (P), then the function
({v1, v3},V (G) − {v1, v3},∅) is an OIIDF of G of weight
n − 2 which is a contradiction. This implies that d(v1) = 1.
Similarly, we have d(v4) = 1. Since G is K1,3-free, v1 is
the unique leaf adjacent to v2 and v4 is the unique leaf
adjacent to v3. Also since G is K1,3-free, we conclude that
N [v2]− {v1} = N [v3]− {v4} and that N [v2]− {v1} induces a
complete subgraph of G. Since diam(G) = 3, each vertex
in V (G) − (N [x2] ∪ {v4}) must be adjacent to a vertex in
N (v2)∩N (v3) andmust be an end vertex of a diametrical path.
Thus each vertex in V (G)−(N [x2]∪{v4}) has degree 1. Using
above argument, we deduce that any vertex in N (v2) ∩ N (v3)
is adjacent to at most one leaf and so G is obtained from a
complete graph Kt (t ≥ 3) by adding at most one pendant
edge at each vertex of Kt .
Case 2. diam(G) = 2.
If n = 3, then we have G ∈ {P3,K3} and we are done.

Let n ≥ 4 and v a vertex of G with maximum degree. Since
diam(G) = 2, v has 2 nonadjacent neighbors, say v1 and
v2. If d(v1), d(v2) ≥ 2, then the function ({v1, v2},V (G) −
{v1, v2},∅) is an OIIDF of G of weight n − 2 which is
a contradiction. Assume that d(v1) = 1. It follows from
diam(G) = 2 that v2 is adjacent to all neighbors of v but v1.
Since G is a K1,3-free graph, G − v1 is a complete graph.
Thus G is obtained from the complete graph Kn−1 by adding
a pendant edge at a vertex and this completes the proof. �
Nordhaus and Gaddum [10] found sharp bounds on the

sum and product of the chromatic numbers of a graph and
its complement. Since then such results have been given
for several parameters; see for example [11]. Jafari Rad and
Krzywkowski [6] proved the following Nordhaus-Gaddum
type result for outer-independent 2-domination number.
Theorem 8: For any graph G on n vertices,

γ oi2 (G)+ γ oi2 (G) ≤ 2n,

with equality if and only if G ∈ {K1,K2,K2}. Moreover,
γ oi2 (G)+ γ oi2 (G) = 2n− 1 if and only if G or G is a complete
graph or a path P3.
Here we provide similar inequalities for the outer indepen-

dent Italian domination number.
Theorem 9: For any graph G on n vertices,

n− 1 ≤ γoiI (G)+ γoiI (G) ≤ 2n.

Both bound are attainable. Moreover, (a) γoiI (G) + γoiI
(G) = 2n if and only if G ∈ {K1,K2,K2}, and (b) γoiI (G) +
γoiI (G) = 2n − 1 if and only if n ≥ 3 and G ∈

{Kn,Kn,P3,P3}.
Proof: The right inequality follows from Theorem 8 and

inequality (2). Now we prove the left equality. If γoiI (G) = n
or/and γoiI (G) = n then we are done. So, let γoiI (G) ≤ n− 1
and γoiI (G) ≤ n − 1. Suppose f = (V0,V1,V2) is a γoiI (G)-
function. Since γoiI (G) ≤ n − 1, we have V0 6= ∅. By defi-
nition, V0 is a clique in G and we deduce from Observation 4
that

γoiI (G)+ γoiI (G) = w(f )+ |V0| − 1

= |V1| + 2|V2| + |V0| − 1

= |V1| + |V2| + |V0| − 1

≥ n− 1, (4)

as required. If G is the graph obtained from the complete
bipartite graph K5,5 with bipartition (X ,Y ) by deleting three
perfect matchings fromK5,5 and adding all edges between the
vertices of X , then clearly γoiI (G)+ γoiI (G) = n− 1. �

IV. TREES
A. AN UPPER BOUND IN TERMS OF ORDER
Denote by Fvr,t the tree obtained from a star K1,r+t , r+ t ≥ 1,
with a central vertex v, by subdividing exactly t edges once.
Clearly γoiI (Fvr,t ) ≤ 3|V (Fvr,t )|/4 whenever (r, t) 6= (1, 0)
and the equality holds if and only if (r, t) = (1, 1), i.e. for
Fv1,1 = P4. Our first result in this section shows that γoiI (T ) ≤
3n
4 for any tree of order n ≥ 3.
Theorem 10: Let T be a tree of order n ≥ 3. Then

γoiI (T ) ≤ 3n
4 .

Proof: It is easy to verify that the theorem holds for all
trees with diameter at most three. Suppose, to the contrary,
that there exists a tree T on n vertices such that γoiI (T ) > 3n

4 .
In addition choose T so that n is as small as possible. Then
diam(T ) ≥ 4. Let P := u1u2 . . . ur (k ≥ 5) be a diametrical
path in T with the property that d(u2) is as large as possible.
We distinguish the following three cases depending on the
degrees of u2 and u3.
Case 1: d(u2) ≥ 3.
Denote by T ′ the component of T−u2u3 containing u3. By

the choice of T there is an OIIDF f ′ on T ′ with w(f ′) ≤ 3n(T )
4 .

Define an OIIDF f on T with f (x) = f ′(x) for x ∈ V (T ′),
f (u2) = 2 and f (y) = 0 for any leaf y adjacent to u2. Then
γoiI (T ) ≤ w(f ) = w(f ′) + 2 ≤ 3(n−3)

4 + 2 < 3n
4 , which is a

contradiction.
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Case 2: d(u2) = d(u3) = 2.
Let T ′ = T − N [u2], and f ′ an OIIDF on T ′ with w(f ′) ≤

3n(T )
4 . Define an OIIDF f on T so that f (x) = f ′(x) for all

x ∈ V (T ′), f (u2) = 0 and f (u1) = f (u3) = 1. This implies
that γoiI (T ) ≤ w(f ) = w(f ′) + 2 ≤ 3(n−3)

4 + 2 < 3n
4 ,

a contradiction again.
Case 3: d(u2) = 2 and d(u3) ≥ 3.
Denote by T ′ and T ′′ the components of T − u3u4, where

u4 ∈ V (T ′). Let f ′ be an OIIDF on T ′ with w(f ′) ≤ 3n(T ′)
4 .

Note that T ′′ = Fv3l−t,t , where l = dT (u3)− 1 ≥ t ≥ 1.
Assume first that u3 is adjacent to a leaf. Define an OIIDF

f ′′ on T ′′ so that f ′′(u3) = 2, f ′′(y) = 0 for any neighbor y
of u3, and f ′′(z) = 1 for any other vertex z of T ′′. Now the
function f on G with f |T ′ = f ′ and f |T ′′ = f ′′ is an OIIDF on
T with γoiI (T ) ≤ w(f ) = w(f ′)+ w(f ′′) ≤ 3(n−l−t−1)

4 + 2+
t = 3n

4 +
5+t−3l

4 ≤
3n
4 , because of l > t ≥ 1, and this leads

to a contradiction.
It remains the case when t = l. Define now an OIIDF g

on T as follows: g|T ′ = f ′, g(u3) = 1, g(y) = 0 if y is a
neighbor of u3 in T ′′, and g(z) = 1 for each leaf of T ′′. But
then γoiI (T ) ≤ w(f ) = w(f ′)+1+t ≤ 3(n−2t−1)

4 +1+t < 3n
4 ,

because of t ≥ 2; a contradiction again. �
In the next theorem we give a constructive characterization

of all trees T with γoiI (T ) = 3n
4 . We need the following

definition. Let T be the family of all trees T that can be
obtained from a sequence of trees T1, T2, . . ., Tk for some
k ≥ 1, where T1 is P4 and T = Tk . If k ≥ 2 then Ti+1 is
obtained from Ti by the following Operation O1.
Operation O. If u ∈ V (Ti) is a non-leaf vertex, then Ti+1

is obtained from Ti by adding a path P4 and joining u to a
non-leaf vertex of P4.
Theorem 11: For an n-order tree T , γoiI (T ) = 3n

4 if and
only if T ∈ T .

Proof: Necessity: Let T be a tree of order n ≥ 3 with
γoiI (T ) = 3n

4 . We will prove that the following holds:

(P) T ∈ T and for each leaf x of T there is a γoiI -function
fx = (V0,V1,V2) on T such that N [x] ⊆ V1.

If n ≤ 4 then T = P4 and we are done. We proceed by
induction on n. Let n ≥ 5 and (P) hold for all trees of order
less than n. Let T be a tree of order n with γoiI (T ) = 3n

4 .
Clearly T 6= Fvr,t . Let P := v1v2, . . . , vk be a diametrical
path in T .

Claim 1. d(v2) = 2.
Proof: Suppose, to the contrary, that d(v2) ≥ 3. Let

x1, x2, . . . , xk (k ≥ 2) be the leaves adjacent to v2 and let
T ′ = T − {v2, x1, x2, . . . , xk}. Let f be any γoiI -function
on T ′. By Theorem 10, γoiI (T ′) ≤

3(n−k−1)
4 . Define now an

OIIDF g on T with g|T ′ = f , g(v2) = 2 and g(xi) = 0 for
each i. Noww(g) = w(f )+2 ≤ 3(n−k−1)

4 +2 = 3n−3k+5
4 < 3n

4
which is a contradiction. �
Denote by T ′′ the component of T − v3v4 containing v4. By
the choice of P and Claim 1, the other component of T −v3v4
is Fv3r,t , where t ≥ 1. Let h1 be a γoiI -function on T ′′ and h2
a γoiI -function on Fv3r,t . It is easy to see that we can choose
h2 so that h2(v3) 6= 0. But then the function h defined on T

as h|T ′′ = h1 and h|Fv3r,t = h2 is an OIIDF on T and 3n/4 =

γoiI (T ) ≤ w(h) = w(h1) + w(h2) = γoiI (T ′′) + γoiI (F
v3
r,t ) ≤

3|V (T ′′)|/4+3|V (Fv3r,t )|/4 = 3n/4. This immediately implies
γoiI (T ′′) = 3|V (T ′′)|/4 and Fv3r,t = Fv31,1 = P4. It follows
from the induction hypothesis that T ∈ T and for each leaf
x of T there is a γoiI -function fx = (V0,V1,V2) on T such
that N [x] ⊆ V1. In particular, each vertex of T ′′ is a leaf
or a support vertex. We claim that v4 is a support vertex.
If v4 is a leaf, then the function h : V (T ) → {0, 1, 2}
defined by h(v4) = h(v2) = 0, h(v3) = h(v1) = h(w) = 1
and h(x) = fv4 (x) otherwise, where w is the leaf adjacent
to v3, is an OIIDF on T of weight less than 3n/4 which is
a contradiction. Thus v4 is a support vertex. Now T can be
obtained from T ′′ by operation O and so T ∈ T . Since any
γoiI (T ′′)-function can be extended to a γoiI (T )-function by
assigning a 1 to v1, v3,w and a o to v2 or by assigning a 1 to
v1, v2,w and a o to v3, we conclude that (P) is valid and the
necessity is proved.
Sufficiency: Let T be a tree in T . Then there is a sequence

T1 = P4,T2, . . . ,Tk = T of trees in T , where if k ≥ 2,
then Ti+1 is obtained from Ti by Operation O. We proceed
by induction on the number of operations performed to con-
struct T . If k = 1 then we are done. So let k ≥ 2. Assume
that the result holds for each tree T ∈ T which can be
obtained from a sequence of operations of length k − 1 and
let T ′ = Tk−1. By the induction hypothesis, γoiI (T ′) =
3(n−4)

4 . Now we show that γoiI (T ) = 3n
4 . Let T = Tk be

obtained from T ′ = Tk−1 and a path P4 : wv3v2v1 by
adding an edge v3v4, where v4 is a non-leaf vertex of Tk−1.
Clearly, any γoiI (T ′)-function can be extended to an OIIDF
of T by assigning a 1 to v1, v3,w and a 0 to v2 implying
that γoiI (T ) ≤ γoiI (T ′) + 3 = 3n

4 . To prove the inverse
inequality, let f be an arbitrary γoiI -function on T . Clearly
f (w)+ f (v3)+ f (v2)+ f (v1) ≥ 3. If f (v4) ≥ 1, then f |T ′ is an
OIIDF of T ′ and so γoiI (T ) ≥ γoiI (T ′)+3 = 3n

4 . If f (v4) = 0,
then f must assign a positive weight to each neighbor of
v4 implying that f |T ′ is an OIIDF of T ′ and as above we
have γoiI (T ) ≥ 3n

4 . Thus γoiI (T ) =
3n
4 and the proof is

complete. �

B. LOWER BOUNDS
First we provide a lower bound on outer-independent Italian
domination number of a tree in terms of the order and the
number of leaves.
Theorem 12: For any tree T of order n ≥ 2,

γoiI (T ) ≥
n+ 3− `(T )

2
where `(T ) is the number of leaves of T . This bound is sharp
for stars and paths.

Proof: We proceed by induction on n. The result is
immediate for n = 2, 3. Let n ≥ 4 and the statement hold
for all trees of order less than n. Let T be a tree of order n.
If diam(T ) = 2, then T is a star and we have γoiI (T ) = 2 =
n+3−`(T )

2 and if diam(T ) = 3, then T is a double star and
we have γoiI (T ) ≥ 3 > n+3−`(T )

2 . Henceforth, we assume
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that diam(T ) ≥ 4. Let v1v2 . . . vk (k ≥ 5) be a diametrical
path in T and let f be a γoiI (T )-function such that f (v2) is
as large as possible. If d(v2) ≥ 3, then we may assume
that f (v2) = 2 and the function f , restricted to T − v1 is
an OIIDF and it follows from the induction hypothesis that
γoiI (T ) = ω(f ) ≥ n+3−`(T−v1)

2 =
n+3−`(T )

2 . Assume that
d(v2) = 2. If f (v2) = 2, then as above we can see that
γoiI (T ) ≥

n+3−`(T )
2 . Let f (v2) ≤ 1. We conclude from the

choice of f that f (v2) = 0, f (v1) = 1 and f (v3) ≥ 1. Now
the function f , restricted to T ′ = T −{v1, v2, v3} is an OIIDF
and by the induction hypothesis we have

γoiI (T ) = ω(f ) ≥
n+ 3− `(T ′)

2
≥
n+ 3− `(T )

2
.

This completes the proof. �
Next we establish a lower bound in terms of the diameter.
Lemma 1: If v is a leaf of a graph G, then γoiI (G − v) ≤

γoiI (G).
Proof: Let f = (V f

0 ,V
f
1 ,V

f
2 ) be a γoiI -function on G

and u the neighbor of v. If f (v) = 0 then f is an OIIDF on
G − v. If f (v) 6= 0 then the function g defined on G − v by
g(u) = 1 and g(x) = f (x) for x ∈ V (G)− {u, v} is an OIIDF
of G− v with w(g) ≤ w(f ). �
By Proposition 2 and Lemma 1, we immediately obtain the

following result.
Corollary 7: For any tree T with diam(T ) = d, γoiI (T ) ≥
d
d
2 e + 1.
Theorem 13: For any n-order tree T the following are

equivalent:
(i) γoiI (T ) = d

diam(T )
2 e + 1.

(ii) T is a path or T is a star or T is a tree obtained from a
path of even order by adding some pendant edges at one
of its support vertices.
Proof: The theorem is clearly truewhen d = diam(T ) ≤

2 or T is a path. So, let d ≥ 3, 1(T ) ≥ 3 and Pd+1 :
v1, v2, . . . , vd+1 a diametral path of T . (ii)⇐ (i) is obvious.
Hence we prove (i) ⇒ (ii). Let f be any γoiI -function on T .
Note first that the function f , restricted to Pd+1 is an OIIDF
on Pd+1 and so

dd/2e + 1 = γoiI (T ) = w(f ) ≥ w(f |Pd+1 ) ≥ γoiI (Pd+1)

= d(d + 2)/2e.

But then f |Pd+1 is a γoiI -function on Pd+1 and f (x) = 0
for all x ∈ V (T ) − V (Pd+1). It follows that f (vi) = 2 if
d(vi) ≥ 3. If f |Pd+1 (vi) = 2 for some 3 ≤ i ≤ d − 1, then the
function g : V (Pd+1) → {0, 1, 2} defined by g(vi) = 1 and
g(x) = f (x) otherwise, is an OIIDF on Pd+1 of weight less
that ω(f ) which leads to a contradiction. Thus f |Pd+1 (vi) ≤ 1
for each 3 ≤ i ≤ d − 1 implying that d(vi) = 2 for each 3 ≤
i ≤ d − 1. Since1(G) ≥ 3, we have d(v2) ≥ 3 or d(vd ) ≥ 3.
Thus f |Pd+1 (v2) = 2 or f |Pd+1 (vd ) = 2. If f |Pd+1 (v2) = 2 or
f |Pd+1 (vd ) = 2, then we can easily define an OIIDF on Pd+1
with weight less that ω(f ) which leads to a contradiction.
Hence either f |Pd+1 (v2) = 2 or f |Pd+1 (vd ) = 2. Assume
without loss of generality that f (v2) = 2 and f (vd ) = 0.
This implies that d(vd ) = 2. If d + 1 is odd, then we can

easily define an OIIDF on Pd+1 with weight less that ω(f )
which leads to a contradiction. Hence d + 1 is even. Thus T
is obtained from the path Pd+1 of even order by adding some
pendant edges at v2 and the proof is complete. �

V. CONCLUSION
As a variation of domination, the outer-independent dom-
ination was introduced and studied [5], [6]. More recently,
known as Roman-{2} domination [12], Italian domination
was proposed in 2016 and its study was continued by some
authors [3], [4]. This paper considers the combination of the
properties of the outer-independent domination and Italian
domination. We show bounds relating the outer-independent
Italian domination number to the vertex cover number,
order and diameter. Moreover, lower and upper bounds on
γoiI (T ) of a tree T , characterization of extremal graphs, and
Nordhaus-Gaddum type inequalities are given.
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