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ABSTRACT Lidar has received a lot of attention due to its precise ranging accuracy. Ground points filtering
is an important task in point clouds processing. It’s a challenge to model the ground surface and filter the
point clouds accurately in the case of complex ground undulations, occlusions, and sparse point clouds.
A novel ground surface modeling method based on a hybrid regression technique is proposed in this paper.
The method integrates Gaussian process regression (GPR) and robust locally weighted regression (RLWR)
by dividing the point clouds that are projected on the polar grid map into radial and circumferential filtering
processes to form a hybrid regression model, which has the ability to eliminate the influence of outliers and
model the ground surface robustly. First, the RLWR combinedwith gradient filter is applied to fit the sampled
points in the radial direction, which will exclude outliers and get the fitting ground line. All radial fitting
lines constitute the seed skeleton of the whole plane. Then, based on the seeds in the same circumferential
of the skeleton, the GPR is applied to construct the ground surface model. The comparative experiments are
implemented quantitatively and qualitatively on the simulated point clouds and measured data. The results
show that the proposed method performs well in most real scenarios, even in the cases of ground undulation,
occlusion, and sparse point clouds.

INDEX TERMS Lidar, point clouds, ground filtering, Gaussian process regression (GPR), robust locally
weighted regression (RLWR).

I. INTRODUCTION
In the field of mobile mapping, Lidar becomes a standard
sensor with high accuracy [1]. Lidar can construct the 3D
environment with point clouds for environment perception,
which is of significance for complex industrial architectures
representation [2], autonomous driving development [3], [4],
and intelligent transportation construction [5].

Classifying the point clouds into ground and non-ground
is an important task in point clouds processing. Filtering
out the ground points can effectively reduce the compu-
tational complexity of aboveground objects classification,
feature extraction, and objects detection [6], [7]. The same
argument is valid when the objective is to extract the curbs
and footpath with the filtered ground points [8]. To divide
the point clouds into ground and non-ground, many filter-
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ing methods have been proposed. According to [8] and [9],
the filtering methods can be classified as morphology-based
filtering [10], [11], elevation maps filtering [12], [13], model-
based filtering [5], [14], etc. The theories of the first two
methods are intuitive and the methods are easy to imple-
ment. In [15], a scan-line-based filtering algorithm is pro-
posed. The error rate of the ground extraction is 0.674%.
In [16], a histogram-based method is utilized for ground
removal to reduce the volume of data. The model-based
method is an effective way to construct the complex ground
surface model, in which Markov Random Field (MRF)
and Gaussian Process Regression (GPR) are commonly
used.

In [5], a MRF model with a belief propagation (BP) algo-
rithm is applied for road extraction. A robust road detection
method is proposed in [17] with the inference algorithm based
on MRF and Loopy Belief Propagation (LBP). Motivated
by [5] and [17], a cost-based ground measurement model
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incorporated into a MRF and a LBP is proposed to filter the
ground [9]. The true positive rate of the classification can be
higher than 92% in both simple rough terrain and complex
off-road environment. Conditional Random Field (CRF) is
a variant of MRF. In [18], a machine learning approach to
automatically extract digital terrain models is proposed. The
overall error rate of the method is 3.46% in the case of
ignoring scattering and multiple returns.

Another popular model-based filtering method is based on
GPR. In [14], Gaussian Process Incremental Sample Consen-
sus (GP-INSAC) andMesh Based Segmentation are proposed
for filtering the point clouds received from the Velodyne
scanner. After evaluating these methods on several sets of
hand labeled data, the match percentages of the two methods
are 89% and 92%, respectively. In [19], a fast ground filtering
method with a 2D polar grid map is proposed. Compared with
RBNN algorithm and 2.5D projection method, the method
has the advantage in computation. Based on [14] and [19],
a GP-Based method is proposed [3] and gets a trade-off
between the high filtering accuracy of [14] and high operating
rate of [19].

Motivated by themethod in [3], a hybrid regressionmethod
is proposed to model the ground surface and filter the ground
points. The robust locally weighted regression (RLWR) tech-
niques [8], which can eliminate the influence of outliers in fit-
ting, are applied for building the seed skeleton with sampled
point clouds from polar grid map. Then, the seed skeleton is
divided into concentric rings to predict the elevation model
of the ground surface with GPR. After obtaining the ground
surface elevation model, a predefined height threshold is used
for filtering the ground points. The major advantages of the
proposed method are two-fold. First, the hybrid regression
process can eliminate the influence of outliers on the model-
ing and avoid specifying local parameters when predicting the
surface model with sparse point clouds. The second advan-
tage is about the application of the continuity of whole plane
with 1D fitting in two orthogonal directions instead of 2D
processing. With the continuity of two directions, the method
can model the ground surface accurately.

The main objective of this study is to demonstrate a novel
ground surface modeling method for 3D point clouds filter-
ing. The basic knowledge of GPR and RLWR is described
in section II. The proposed ground surface modeling method
is detailed in section III. The comparative experiments and
discussions are shown in section IV. Concluding remarks are
given in section V.

II. PRELIMINARIES
In this section, the basic knowledge of polar grid map, GPR,
and RLWR are introduced, respectively. In the field of intel-
ligent vehicles, the superiority of building the polar grid map
is that it can adapt to the distribution of point clouds and
effectively reduce the dimension of data. RLWR and GPR
are two kinds of regression techniques that can be applied to
model the ground surface [8], [20].

FIGURE 1. The projection process of point clouds on polar grid map. The
red sectors represent segments, the yellow ring denotes circle. The
overlap of a segment and a circle is called a bin. 1α is the angle of
segments. 1r is the radial length.

A. POINT CLOUDS REPRESENTATION
Considering the physical characteristics of the vehicle-
mounted Lidar, for example HDL-64E, the polar grid map
is utilized to represent the received point clouds P =

{p1, p2, . . . , pNP}, where NP represents the number of points
in a frame of point clouds. pi = (xi, yi, zi), i = 1, 2, . . . ,NP is
the Euclidean coordinate of the point. The point clouds data
are projected onto a horizontal plane and are denoted by polar
coordinates. The point clouds can be divided into M sectors
as well as N circular segmentations. The sectors have the
same central angle, and the circular segmentations are a series
of concentric rings. In this paper, the sector and the circular
segmentation are called segment and circle, respectively. The
overlap of a segment and a circle is represented by a bin. The
division process is shown in Fig. 1.

The position of point pi can be expressed by segment and
circle as follows.

seg(pi) =
⌈
atan2(xi, yi)

1α

⌉
(1)

cir(pi) =


√
x2i + y

2
i

1r

 (2)

where d·e denotes the ceil operation, atan2(·) is utilized to
compute the angle between the vector Ev = (xi, yi) and the pos-
itive x-axis, whose range is [0, 2π ).1α and1r are the angle
and radial length that are used to divide the segments and
circles, respectively. Pm denotes the set of points in segment
m. Pnm denotes the points in binmn , wherem and n represent the
sequence numbers of segment and circle, respectively.

Pm = {pi|seg(pi) = m} (3)

Pnm = {pi|seg(pi) = m, cir(pi) = n} (4)

In each bin, the points with the lowest height zi constitute
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a set PL in the whole plane.

PL = {pi|pi ∈ Pmn , zi = min({zmn }),

n = 1, 2, . . . ,N ,m = 1, 2, . . . ,M} (5)

The lowest points in segment m constitutes the set SLm.

SLm = {pi|pi ∈ PL ∩ pi ∈ Pm} (6)

However, not all the points in PL are ground points since
some of them could be from vehicles, trees, buildings or false
measures. The most likely points are selected as initial seeds
by RLWR as described in section II.C. In this paper, the seeds
means a skeleton of the ground, based on which the surface
of the whole ground can be modelled.

B. GAUSSIAN PROCESS REGRESSION
1) PREDICTION
Regression is a supervised learning method, which can
be used in prediction of continuous quantities. In general,
the input vector is denoted as x and the output is denoted
as y. The dataset D of ND observations is denoted as D =
{(xi, yi)|i = 1, . . . ,ND}. The goal of regression is to move
from the finite training data D to a function f that makes
predictions for all possible input values [21].

A Gaussian process provides a powerful basis for mod-
elling spatially correlated and possibly uncertain data [3].
The mean functionm(x) and covariance function k(x, x ′) will
completely specify a Gaussian process as

f (x) ∼ N (m(x), k(x, x ′)) (7)

m(x) = E[f (x)] (8)

k(x, x ′) = E[(f (x)− m(x))(f (x ′)− m(x ′))] (9)

where x and x ′ are the independent variables, f (x) is the
function value at location x, and E represents mathematical
expectations. For national simplicity, the mean function m(x)
is usually set to zero [21]. The covariance function specifies
the relationship between pairs of random variables. The com-
monly used covariance function is the squared exponential
function [3].

k(xi, xj) = σ 2
f · exp(−

(xi − xj)2

2l2
)+ σ 2

n δij (10)

where l is called length-scale, σ 2
f is the signal variance, and

σ 2
n is the noise variance. These three parameters form the

hyperparameters set θ = (l, σ 2
f , σ

2
n ). δij is a Kronecker delta,

which is one if and only if i = j and zero otherwise.
The joint distribution of the outputs of the training samples,

f = {f (xi)}, i = 1, 2, . . . ,ND, and the test outputs f∗ at
location x∗ can be defined as[

f
f∗

]
∼ N

(
0,
[
K (X ,X ) K (X , x∗)
K (x∗,X ) K (x∗, x∗)

])
(11)

where X = {xi|i = 1, 2, . . . ,ND} is the set of training inputs,
and x∗ is the test input. K (X ,X ) is the covariance matrix,
K (X ,X ) = {k(xi, xj)}1≤i,j≤ND ∈ RND×ND , and similarly for

the K (X , x∗), K (x∗, x∗) and K (x∗,X ). The prediction equa-
tions for GPR at location x∗ are as follows [21].

f ∗ = K (x∗,X )K (X ,X )−1f (12)

V[f∗] = K (x∗, x∗)− K (x∗,X )K (X ,X )−1K (X , x∗) (13)

where f ∗ andV[f∗] are the mean and covariance of f∗, respec-
tively. f ∗ is regarded as the prediction value at location x∗.
V[f∗] denotes the accuracy of the prediction.

As described in section III, the azimuth α is utilized as
independent variable and point height z is regarded as the
function value at location α. The point height at location αx
can be predicted with Nα initial seeds {(αi, zi)|i = 1, . . . ,Nα}
in the same circle and equation (12).

2) LEARNING HYPERPARAMETERS
Before making a prediction, the hyperparameters in equa-
tion (10) should be determined first, which is called learning
hyperparameters.

It is assumed that {(Xq,Y q)}Qq=1 is a set of training data that
contains Q groups of training samples, each training sample
is of the form (Xq,Y q), where Xq = {xq1 , x

q
2 , . . . , x

q
nq} is

a set of independent variables of the qth group, which has
nq elements. The elements in Y q = {yq1, y

q
2, . . . , y

q
nq} are

the corresponding dependent variables. It is assumed that the
groups are conditionally independent. Since the distribution
of y is y ∼ N (0,Kq), the logarithm marginal likelihood of
y is shown in (14). The hyperparameters can be obtained by
maximizing the logarithm marginal likelihood [21].

Q∑
q=1

log p(Y q|Xq, θ) = −
1
2

Q∑
q=1

(Y q)TK−1q Y q

−
1
2

Q∑
q=1

log
∣∣Kq∣∣

−
log 2π

2

Q∑
q=1

nq (14)

where Kq is the covariance matrix of noisy Y q, and can be
calculated using (10). In order to maximize the marginal
likelihood in (14) and obtain the hyperparameters, the partial
derivatives of the marginal likelihood are shown as follows.

∂

∂θ

Q∑
q=1

log p(Y q|Xq, θ)

=
1
2

Q∑
q=1

tr
((
aq(aq)T − K−1q

) ∂Kq
∂θ

)
whereaq = K−1q Y q

(15)

where tr(·) denotes the trace of the matrix. ∂Kq
∂θ

is a matrix
of elementwise derivatives. The partial derivatives of the
covariance matrix are shown below.

∂Kq(xi, xj)
∂l

= σ 2
f exp(−

(xi − xj)2

2l2
) ·

(xi − xj)2

l3
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∂Kq(xi, xj)
∂σf

= 2σf exp(−
(xi − xj)2

2l2
)

∂Kq(xi, xj)
∂σn

= 2σnδij (16)

Then, the gradient based optimizer is advantageous to seek
the hyperparameters [22].

C. ROBUST LOCALLY WEIGHTED REGRESSION
Cleveland [23] proposed the RLWR algorithm to smooth
the scatterplot and enhance the visual information, which
can fit the undulating ground with the idea of piecewise
fitting. RLWR can reduce the impact of outliers on the fitting.
The relationship of dependent and independent variables are
assumed to be modelled as

yi = g(xi)+ εi (17)

where xi and yi(i = 1, 2, . . . , n) are independent and depen-
dent variables, respectively, and εi are independent and nor-
mally distributed randomvariables. The estimated parameters
of g(·) are obtained by minimizing the sum of error squares

n∑
i=1

B(
εi

6s
)ω(xi)ε2i (18)

where εi = yi − g(xi) are the residuals from the current
fitted values, and s is the median of |εi|. The bisquare weight
function B(x) and ‘‘tricube’’ weight functionω(x) are defined
as follows [8].

B(x) =

{
(1− x2)2 for |x| < 1
0 for |x| ≥ 1

(19)

ω(xi) =

(1− (
d(xi, xj)

maxj∈N (xi) d(xi, xj)
)3)3 j ∈ N (xi)

0 j /∈ N (xi)
(20)

where d(xi, xj) represents the distance between xi and xj along
x direction, and N (xi) denotes the local neighborhood of xi.
There are k observations that are closet to xi along x-space
in N (xi). In this paper, the radial distance r and height z of
the point clouds are regarded as independent variable and
dependent variable, respectively.More detailed description of
RLWR can be found in [8].

III. GROUND SURFACE MODELLING BASED ON
HYBRID REGRESSION
The undulations of ground in the real scene are complicated.
Ground points filtering solely based on the heights of the
point clouds can not always be reliable. GPR-based method
is effective on ground surface modelling, which can predict
the height of the ground anywhere based on some credible
ground points. In Lidar scanning scenarios, the occlusion and
sparse scanning points are inevitable. Existing GPR-based
method [3] can not predict the ground height accurately in
the case of occlusion, and constructing the reference points
of the model with fixed range thresholds can not meet the
requirement of actual environments. In this section, a filtering

method based on hybrid regression is introduced in detail.
The points will be labeled as ground or non-ground after
filtering.

A. HYPERPARAMETERS OF GPR
Before filtering, the process of learning hyperparameters
is described in this section. The set {(A′n,Z

′
n)}

N
n=1 obtained

in N circles is applied to obtain the hyperparameters
θ = (l, σf , σn). A′n is obtained by extending An =

{αn1, α
n
2, . . . , α

n
Nα }, which is the set of azimuth in circle n.

αi = atan2(xi, yi) (21)

Z ′n is extended by Zn = {zn1, z
n
2, . . . , z

n
Nα }, which is the

corresponding heights of An. In each circle, considering the
periodicity of the azimuth, the seeds that are near 0 and 2π
need to be extended. The extension process is shown in (22)
and Fig. 2.

A0 = {α|α ∈ αn ∩ α ∈ [0,Tα]} + 2π

A2π = {α|α ∈ αn ∩ α ∈ [2π − Tα, 2π ]} − 2π

A′n = An ∪ A0 ∪ A2π (22)

where Tα represents the extension range of azimuth. After
extension, the independent variables of the training azimuth
are in [−Tα, 2π + Tα].
In Fig. 2, the blue points represent the original seeds in

a circle, which belong to [0, 2π ). Due to the periodicity of
the circle, each point is associated with the points on both
sides. For the points that are near 0 and 2π , the continu-
ity of the other side is missing. Therefore, the points near
edges are extended. However, after extension, there are many
repeated pairs of points in each circle. It is shown in (10)
that the covariance function decreases sharply as the dis-
tance between two points increases. Therefore, the covariance
function from the farther point in each pair is almost zero
and considered to be negligible. With the learning process in
section II.B, the hyperparameters that are suitable for GPR in
circle direction are obtained.

FIGURE 2. The process of azimuth extension. The blue points represent
the original seeds. The magenta pentagrams are the extended points.

B. GROUND SURFACE MODELLING
The 3D point clouds processed in this paper are acquired in
road environment mainly using vehicle-mounted Velodyne
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Lidar HDL-64E. The ground terrains in actual scene are often
complex. The abrupt changes of the ground in the case of
lawns, steep slopes and railways will cause difficulties in
ground filtering. In addition, when the point clouds are miss-
ing due to obstructions in some areas, the ground continuity
will be broken, which will reduce the accuracy of ground
prediction as well. To tackle these issues, the model that is
constituted by a hybrid regression method is proposed in this
section. This method consists of the following sequence of
four steps.

1) Polar grid mapping. The 3D point clouds are projected
onto the x−y plane. The points in radiusRpc are divided
into M segments and N circles using (1) and (2). Rpc
denotes the range of grid map. The point clouds totally
contain M × N bins. In each segment m, the lowest
sampled points set SLm is obtained with (6).

2) The RLWR filtering method in [8] is performed on
SLm in each segment m. After iteration, the heights
of points in SLm are replaced by the fitted ground
heights to constitute set SL ′m. The aboveground outliers
in SL ′m are filtered and fitted to the equivalent ground
heights. The line gradient that is fitted by the neigh-
boring points around each point in SL ′m constitutes
set gradm.

3) All the points in SL ′m are filtered through a gradient fil-
ter. Generally speaking, the gradient of a ground point
is less than 10 degrees. The points whose gradients
are more than 10 degrees are replaced with the nearest
point whose gradient is less than 10 degrees. It is worth
noting that the points with large gradients are obtained
because of a small local neighborhood parameter k .
Large k will remove more aboveground outliers, but
at the expense of losing local structural information of
the ground. Since the actual ground environment often
includes a variety of topographic structures, a small k
parameter combined with the gradient filter is used to
construct the seed skeleton structure.

4) Based on the seed skeleton, GPR in circumference is
applied to model the ground surface with the seeds
in each circle. The seeds in the edges 0 and 2π are

FIGURE 3. The flowchart of the hybrid regression method.

Algorithm 1 Ground Surface Filtering With a Hybrid
Regression Method

Input: P = (p1, p2, . . . , pNp )
T , 1α, 1r , Rpc, k ,

θ = (l, σf , σn), Tg
Output: Label of each point

1 M =
⌈
2π
1α

⌉
,N =

⌈
Rpc
1r

⌉
;

2 (SLm,Pnm) = PolarGridMap(P,M ,N );
3 seed = ∅;
4 for m = 1 : M do
5 (SL ′m, gradm) = RLWR(SLm, k);
6 sdm = GradientFilter(SL ′m, gradm);
7 seed = seed ∪ sdm;
8 end
9 for n = 1:N do
10 sdn = CircleSeed(seed, n);
11 sdn = AzimuthExtend(sdn);
12 for m = 1:M do
13 ẑnm = GPR(sdn,Pnm, θ);
14 pointlabel = HeightFilter(ẑnm,P

n
m,Tg);

15 end
16 end

extended by the aforementioned method. For each bin
in circle n, it is assumed that the maximum azimuth and
the minimum azimuth that a bin overlaps are αmax and
αmin, respectively. ᾱ = (αmax + αmin)

/
2 is taken as the

input of the model. The predictive height is regarded as
the mean height of the bin. The height of each point in
bin Pnm is compared with the predictive height. If the
height difference is less than Tg, the point is filtered as
ground, otherwise labeled as non-ground.

The flowchart of the hybrid regression method is shown
in Fig. 3, and the filtering process is shown in Algo-
rithm 1. The inputs include the original point clouds set
P, the angular resolution 1α, the distance resolution 1r ,
the range of grid map Rpc, the local neighborhood param-
eter for RLWR process k , the set of hyperparameters θ ,
and the filtering threshold Tg. After the hybrid regres-
sion analysis, each point in P is labelled as ground or
non-ground.

C. COMPARISON WITH EXISTING
REGRESSION-BASED METHODS
The proposed hybrid regression method has the ability to
eliminate the outliers and can robustly construct the ground
surface model. The RLWR process and the GPR process are
complementary in groundmodeling. RLWRfiltering can pro-
vide more robust initial seeds to construct the seed skeleton
for GPR, while the GPR process can reduce the dependence
of filtering on parameters. Therefore, the combination of
RLWR process and GPR process makes the ground filtering
more robust in the face of complex terrain. Compared with
the state-of-the-art regression-based methods in [3] and [8],
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the distinctions are listed as follows.
• Unlike the GPR-basedmethod in [3] that seeks the initial
seeds with fixed height and fixed radius, the proposed
method can provide a robust seed skeleton structure with
RLWR process, which is more robust when filtering
undulate ground.

• The filtering method with RLWR in [8] uses common
filtering results in x − z and y− z profiles as the ground
points. However, the proposed method is more suitable
for filtering of point clouds received from mobile Lidar.
The processing in radial and circumferential direction
are more consistent with the distribution of point clouds.

• The hybrid regression method combines the advan-
tages of RLWR-based method and GPR-based method.
In radial direction, RLWR is utilized to winnow out
the aboveground points and construct the seed skeleton.
In circumferential direction, GPR is used to predict the
ground model, which reduces the dependence on param-
eters of the method. In this way, the continuity of the
whole plane is utilized to construct the ground model.

• When the point clouds are sparse, the GPR-based
method construct the sparse seeds skeleton so that the
uncertainty of the prediction becomes large. RLWR
filtering is sensitive to the choice of local neighbor-
hood parameter in different point clouds density. For
the hybrid regression method, small local neighborhood
parameter combinedwith gradient filter makes the radial
filtering insensitive to point clouds density. Meanwhile,
when the Lidar scanning lines are reduced, its tangential
sparsity is much smaller than its radial sparsity. There-
fore, the circumferential GPR process with adequate
seed skeleton is usually less affected by the point clouds
density.

IV. RESULTS AND DISCUSSION
In this paper, the point clouds within a radiusRpc = 50m from
the Lidar is in the spotlight. The angle 1α that is applied to
divide the segments is set to 2 degrees. Taking into account
the characteristics of point clouds received by the vehicle-
mounted Lidar, the area with radius in [0, 20] (m) is divided
by radial length 1r = 0.2m and the area with radius in
[20, 50](m) is divided by 1r = 0.5m. Hence, in a scan,
there are totally 180 segments and 160 circles. The angular
extension Tα is empirically set to 0.3π . Other parameters are
set as follows: l = 0.1935, σf = 0.2415, σn = 0.0396.

A. DATASET
In this study, the simulated point clouds and the measured
datasets are utilized to verify the performance of the proposed
method. The measured datasets include ten labelled scans
dataset [24], the KITTI dataset [25] and the point clouds of
Quanergy M81.

1https://www.dropbox.com/sh/3s5th10h0vosj51/AAAwxex4okJ9LirNUH
BLZeYUa?dl=0

1) THE SIMULATED POINT CLOUDS
In the simulation experiments, the parameters of Velodyne
HDL-64E are utilized to simulate the ground model. The
height of the Lidar from the ground is 1.8m. The vertical
scanning range is (−24.8,+2) degrees, in which only the
negative angle scanning line can get the ground returns.
The horizontal scanning point is downsampled, which are
taken every 2 degrees. To simulate the undulating ground,
a sinusoidal function is used to model the ground heights. The
range measurement accuracy is set to 2cm. An example of the
simulated point clouds are shown in Fig. 4.

FIGURE 4. An example of the simulated point clouds. The period and
amplitude of ground undulation are 50m and 0.5m, respectively.

In the experiments, the ground undulations can be simu-
lated by changing the period and amplitude of the sinusoidal
function. In Fig. 4, the missing of point clouds at [30m,40m]
along x-axis is caused by the occlusion due to ground undu-
lations.

2) TEN LABELLED SCANS DATASET
The ten labelled scans are collected by a Velodyne Lidar
mounted on a moving vehicle through the urban in Boston
area (Fig. 5(a)), which contains the label of each point.
Fig. 6(a) shows the third scan of the dataset. There are ground ,
car , fence, house, person, street_sign, tree and other in the
scene. In the original label, only the ground of the road and
a fraction of slopes are labelled as ground . Some non-road
ground surface is labelled as other (For example, the magenta
points in the red rectangle.). The purpose of this paper is to
segment the entire ground surface, therefore, some ground
points that were once labelled as other are relabeled as
ground . The other labels are integrated and relabeled as non-
ground. The relabeled scan of Fig. 6(a) is shown in Fig. 6(b).
All ten scans are relabeled manually to amend the mislabeled
points. The ground and non-ground numbers of each scan are
listed in Table. 1.

3) KITTI DATASET
The KITTI dataset is an open Lidar dataset. The dataset
has been recorded from a moving platform, which was
equipped with two high-resolution color and two grayscale
video cameras, a Velodyne laser scanner and a combined
GPS/IMU system that can provide high-precision GPS
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FIGURE 5. The optical images of the two datasets. (a) An example of the urban scenes in Boston where the ten labelled scans were
collected. (b) An example of the road scene in KITTI dataset.

FIGURE 6. Relabeled point clouds in ten labelled scans dataset. (a) Original labelled point clouds. The magenta points in red rectangle is
mislabeled as other . (b) Relabeled point clouds. All points are divided into ground and non-ground. The ground are denoted by the orange
points. The non-ground are denoted by the blue points.

TABLE 1. The relabeled ground and non-ground points of the ten labelled scans dataset.

measurements and IMU accelerations. The images of the
environments are shown in Fig. 5(b). The scenes in this
dataset have more complex ground terrains, such as lawns,
slopes, and railways. Since the environment of this dataset
is complex without supported ground truth, we have man-
ually labelled 5 representative pieces of point clouds. The
numbers of ground and non-ground points in each pieces
are shown in Table. 2 and the point clouds are shown
in Fig. 13–Fig. 16.

4) THE DATASETS OF QUANERGY M8
Quanergy M8 has eight scanning layers with the vertical
scanning range of 20 degrees (−17 degrees to +3 degrees).
The scanning frequency of the data used in the experiments

TABLE 2. The manually labelled 5 pieces of point clouds in KITTI dataset.

is 10Hz. The Lidar is stationary on a slope and is about
0.8m above the ground. Taking into account the height of
Lidar, the ground filtering ranges are set to 30m. The first ten
scans of point clouds are labelled manually for experiments.
The ground and non-ground numbers of each scan are listed
in Table. 3. Fig. 7 shows an example of 3D point clouds
of M8.
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TABLE 3. The manually labelled ground and non-ground points of Quanergy M8.

FIGURE 7. The 3D point clouds obtained from M8. Different colors denote
different scanning lines of the Lidar. (a) 3D view. (b) Side view.

B. COMPARISON METHODS INTRODUCTIONS
The comparison methods in this paper includes the
histogram-based method in [26], the GPR-based method
in [3] and the RLWR-based method in [8]. In this section,
the conditions and the filtering processes of the three methods
are described.

In histogram-based method, the histogram statistics are
performed on the heights of point clouds. The width of bins
in the histogram is set to 0.2m. If there is only one peak in the
histogram, the position of the peak is regarded as the height
of ground h. The points whose heights are less than h+Tg are
filtered out as ground points. Tg is a predefined threshold and
is set to 0.3m. If there are multiple peaks in the histogram,
the peak at the lowest position is considered to be the height
of ground.

The process of the GPR-based method is the same as in [3].
Since the ground complexity of the two datasets is different,
the filtering thresholds Tg are set to 0.15m and 0.3m for ten
labelled dataset and KITTI dataset, respectively.

The RLWR-based method used in this paper is slightly
different from the original method in [8]. As shown in [8],
it takes 336.51s to filter the point clouds with 32822 points.
Since the number of points in each frame in KITTI is
more than one hundred thousand, filtering the ground points
by original RLWR will take a long time. In this paper,
the RLWR is implemented on the lowest points of the bins
in each segment . The fitting height h is taken as the average
height of the bin and all the points in that bin is filtered
with h + Tg. Tg is the predefined threshold that is set to
0.2m and 0.4m for ten labelled dataset and KITTI dataset,
respectively.

FIGURE 8. The Root Mean Square Error results of four methods. (a) and
(b) show the variation of RMSE values with the period and height,
respectively. The red dashed line indicates a threshold of 0.3m.

C. GROUND MODELING OF SIMULATED POINT CLOUDS
In the simulation experiments, the Root Mean Square Error
(RMSE) is utilized to measure the modelling accuracy of
different methods.

RMSE =

√√√√ 1
Nz

Nz∑
n=1

(ẑn − zn)2 (23)

where ẑn and zn represent the height prediction and ground
truth of point n, respectively. Nz is the number of points in
the point cloud.

The modeling results are shown in Figure. 8. In
Figure. 8(a), the ground height is set to 0.5m. In Figure. 8(b),
the period is set to 150m.

In Fig. 8, as the ground undulation period decreases, or the
undulation amplitude increases, the RMSE of all filtering
methods increases. Among these methods, the hybrid regres-
sion method performs the best at all periods and amplitudes.
It is worth noting that when the period is 10m, the RMSE
of GPR-based method is smaller than the value in the period
of 30m. This is because the fixed range used by the GPR-
based method to find the initial seeds is 30m. When the
period is less than 30m, the initial seeds can be found in
multiple periods. Although some ground undulation details
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TABLE 4. The filtering results of the proposed method and compared methods on ten labelled scans dataset.

are missing, more ground seeds will be obtained. Therefore,
the points that are predicted accurately become more and the
RMSE value becomes smaller than RMSE in period = 30m.
As a result, if RMSE= 0.3m (the red dashed line in Fig. 8)

is set as a threshold to judge whether the modeling is accu-
rate or not, under the experimental conditions, the hybrid
regression filtering performs well in the case where the
ground undulation period is larger than 30m and the height
difference is less than 2.4m, which shows that the proposed
method can filter most common undulating ground in real
scenes in theory.

D. GROUND SURFACE FILTERING ON THE FLAT
URBAN SCENES
In this section, ten labelled scans dataset are utilized to val-
idate the performance of the hybrid regression method. k is
set to 20 in RLWR stage and Tg is set to 0.2m. The evaluation
indexes in [8] and [27] are employed in comparison, which
consists Type I and Type II errors, total error and accuracy.

TypeIerror =
FP

TP+ FP
(24)

TypeIIerror =
FN

FN + TN
(25)

Totalerror =
FP+ FN

TP+ FP+ FN + TN
(26)

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(27)

where TP is the number of ground points that are segmented
correctly. TN is the number of non-ground points that are
segmented correctly. FP is the number of ground points that
are segmented as non-ground. FN is the number of non-
ground points that are segmented as ground.

The comparative results are shown in Table. 4. The filtering
accuracy by the proposed method reaches 98.18%, which is
0.51% higher than GPR-basedmethod, 3.51% higher than the
histogram-based method, and 0.91% higher than the RLWR
filtering. The ground truth and filtering results of the 5th
frame in ten labelled dataset are shown in Fig. 9, Fig. 10
and Fig. 11, respectively. As shown in Fig. 9, the ground
in red rectangle (Marked 3) is a slope. Since GPR-based
method uses fixed height threshold to find the initial seeds
and model the ground surface, it is difficult to construct a
complete ground seeds with a slope that rapidly falls outside
the threshold. The inaccurate model reduce the efficiency
of filtering, which is shown in Fig. 10(a). The filtering of
the histogram method in Fig. 10(b) is also affected by the
slope. Slowly changed ground height does not affect the peak
position of the histogram but increase the range of the height.
The fixed height threshold can not satisfy the requirement
of undulating ground filtering. In the case of sloped ground,
the hybrid regression method and RLWR filtering perform
well, which are shown in Fig. 10(c) and Fig. 11(a)(d).

FIGURE 9. The ground truth of the 5th frame in ten labelled dataset. The details of partial enlargement of piece 1, 2, and 3 are
shown in 3D view. The orange points indicate the ground, and the blue points indicate the aboveground objects.
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FIGURE 10. The filtering results of the 5th frame in ten labelled dataset. (a), (b), and (c) are the filtering results of GPR-based
method, histogram-based method and hybrid regression method, respectively. The orange points indicate the ground, and the
blue points indicate the aboveground objects.

FIGURE 11. The filtering results of the 5th frame in ten labelled dataset. (a) RLWR filtering result with k = 20. (b) Detail of partial
enlargement of Piece 1 of (a). (c) Filtering result of piece 1 with hybrid regression method. (d) RLWR filtering result with k = 70. (e)
Detail of partial enlargement of piece 2 of (d). (f) Filtering result of piece 2 with hybrid regression method. The orange points
indicate the ground, and the blue points indicate the aboveground objects.

Fig. 11(a) and (d) show the filtering results of RLWR
method with k = 20 and k = 70, respectively. As shown
in (a) and (d), most ground points are filtered correctly.
However, no matter whether k takes a large value or a small
value, there are some cases where the ground points cannot be
accurately filtered out. In general, small local neighborhood
parameter k is helpful to fit the local change of the ground.
But some vertical walls and trees will be mistakenly filtered

to the ground. The partial enlargement of the red circle area
(Piece 1) of Fig. 11(a) is shown in Fig. 11(b). Large k can
smooth the ground, but it reduces the local changes of the
ground height and will easily get erroneous filtering. The par-
tial enlargement of the red circle area (Piece 2) in Fig. 11(d)
is shown in Fig. 11(e). The ground point clouds that are near
the vehicle are mislabelled. The proposed hybrid regression
method uses the gradient filter and GPR process to solve
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FIGURE 12. The optical images of the four scenes. (a) The image of 0057 dataset. (b) and (c) are the images of 0056 dataset. (d) The image
of 0051 dataset.

FIGURE 13. The ground truth of point clouds in 0057 dataset. The details of partial enlargement of piece 1 and 2 are shown in 3D
view. The orange points indicate the ground, and the blue points indicate the aboveground objects.

the problem of parameter selection. The details of partial
enlargement of hybrid regression filtering at the same areas
as (b) and (e) are shown in (c) and (f), respectively, which
shows better performance than RLWR filtering.

E. GROUND SURFACE MODELLING ON THE COMPLEX
ROAD SCENES
Some frames of point clouds in 2011_09_26_drive_0051,
2011_09_26_drive_0056 and 2011_09_26_drive_0057

datasets from KITTI website are utilized to validate the per-
formance of the filtering methods. The grounds in these three
datasets are more complex compared with the ten labelled
scans dataset. As shown in Fig. 12, the ground has various
morphologies, including roads, railways, lawns and so on.
In order to fit the complex ground better, the local parameter
k is set to 10 in this section, and the threshold Tg is set to
0.4m. The filtering results of several typical scans are shown
below.

FIGURE 14. The filtering results of point clouds in 0057 dataset. The orange points indicate the ground, and the blue points indicate the
aboveground objects.
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In Fig. 13, two pieces in the scene represent typical undu-
lating ground. From the partially enlarged side view of the
two pieces, it can be seen that the relative height of the ground
changes by more than 1m. The loss of initial seeds results in
a modelling failure with GPR, as shown in Fig. 14(a). The
filtering of other three methods can be regarded as identical
with the result from visual inspection. More detailed statisti-
cal results are shown in Table. 5. Among the four methods,
the proposed method reaches the highest accuracy of 76.81%.

Fig. 15 shows the filtering cases when the point clouds are
partially missed due to occlusion. As seen in Fig. 12(b) and
(c), the scene includes a variety of ground terrains such as
lawn, road, and railway. The ground self-occlusion caused

by height changes of different terrains results in the points
missing in some areas. The filtering results from the four
methods are shown in Table. 6. For the points before and
after the blank area, the relevancy between the radial points
is weak, which will result in a large deviation of the pre-
diction with GPR model. RLWR-based method will smooth
the ground surface near the occlusion and cannot fit the
local ground undulation well. The histogram-based method
focuses only on the distribution of the most ground points,
not on the ground details, so the filtering results are not accu-
rate enough. In total, in the case of occlusion, the proposed
method shows good filtering performance with the accuracy
of 91.38%.

TABLE 5. The filtering results of the proposed method and compared methods on piece1 and piece2.

FIGURE 15. The filtering results of point clouds in 0056 dataset. (a)-(d) denote the results of scene one. (e)-(h) denote the results of scene two. The
orange points indicate the ground, and the blue points indicate the aboveground objects.

TABLE 6. The filtering results of the proposed method and compared methods on piece 3 and piece 4.
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FIGURE 16. The filtering results of point clouds in 0051 dataset. The orange points indicate the ground, and the blue points indicate the
aboveground objects.

TABLE 7. The filtering results of the proposed method and compared methods on piece 5.

Fig. 16 shows the filtering results with sparse point clouds.
In this scene, the histogram-based method gets poor filtering
results. The histogram-based method is greatly affected by
the fluctuation of the ground heights. It can only filter out the
flat ground points ignoring the details of the ground. TheGPR
method may be affected by the increase distance in radial
direction when processing sparse point clouds. RLWR and
the proposed filtering obtain similar results in this case. The
filtering results are displayed in Table. 7.

Broadly speaking, from the filtering results in Table. 5,
6 and 7, RLWR filtering, GPR-based filtering and the pro-
posed method are more robust than histogram-based method
in case of undulating ground, occlusion and sparse point
clouds. The histogram-based method is sensitive to the height
distribution of the ground. The accuracy of GPR-based
method will decrease in case of sparse point clouds. The
correlation between the radial points weakens and the pre-
diction error of the model increases. RLWR filtering per-
forms well in the case of gently changed ground. Com-
pared with RLWR, the hybrid regression method can get
higher filtering accuracy with the actual ground with multiple
terrains.

F. GROUND SURFACE FILTERING OF SPARSE
POINT CLOUDS
The sparse point clouds from Quanergy M8, an eight-layer
lidar, are experimented in this section. Considering that the
point clouds of M8 are sparse, the radial length 1r of polar
grid map is set to 0.1m in the range of 20m and 0.3m outside
the range of 20m. Fig. 17 shows one scan of filtering results
of the manually labelled data. The filtering results are shown
in Table. 8.
The filtering results in Fig. 17 are consistent with the statis-

tical results in Table. 8. Since the GPR-based method uses the
height threshold to collect the initial seeds, the obtained seeds
are limited when the ground is a slope, which results in pre-
dicting the ground height inaccurately. The histogram-based
method is also inaccurate for modelling slopes. By comparing
Table. 4 and Table. 8, it can be seen that the filtering results
of RLWR-based method and the proposed hybrid regression
method are both affected by the sparse point clouds. Due to
the sparse point clouds, the point numbers are less in some
segments, making it difficult to fit the ground line exactly.
For example, the point clouds are sparse near the line y = 0
in Fig.17, so the error between the fitting line and the real

TABLE 8. The filtering results of the proposed method and compared methods on point clouds of Quanergy M8.
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FIGURE 17. The filtering results of point clouds of Quangery M8. The orange points indicate the ground, and the blue points indicate the
aboveground objects.

TABLE 9. The pros and cons of the proposed hybrid regression method.

TABLE 10. The computational time on a frame of the point clouds of
Quanergy M8.

ground will be large. Therefore, in Fig. 17(b) and (d), some
ground points are misclassified as non-ground points. Never-
theless, the proposed hybrid regression method still achieves
89%filtering accuracy on such undulating groundwith sparse
point clouds, which is the best result among the comparison
methods.

G. ABOUT THE HYBRID REGRESSION METHOD
As seen in the experiments of simulated point clouds
and the measured data, the proposed hybrid regression
method models the ground well even in the cases of
ground undulation, occlusion, and sparse point clouds. How-
ever, the proposed method also has some shortcomings.
The pros and cons of the proposed method are listed as
follows.

V. CONCLUSIONS
A novel ground surface modelling method based on a hybrid
regression method is proposed to filter the ground of 3D point
clouds in this paper. The filtering based on hybrid regression
has the ability to eliminate the influence of the outliers and
can robustly model the actual ground surface. This method
constructs the ground seed skeleton with radial fitting and
predicts the ground height in circumferential direction based
on the ground seeds. In this way, the method uses the con-
tinuity of the whole plane and simplifies 2D modelling to
1D fitting. The comparative experiments with GPR-based fil-
tering, RLWR-based filtering and histogram-based filtering
show that the proposed method can perform well in most real
scenarios even in the cases of ground undulation, occlusion,
and sparse point clouds.
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