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ABSTRACT The ever-increasing requirements of wireless communications have inspired the search for a
bettermethod to tackle the problem of group sparse channel estimation in practical applications. Sparsitywith
group structure is encountered in numerous applications, but efforts to devise group sparse adaptive methods
remain scarce, especially under impulse noise with symmetric alpha stable (SαS) statistics. In this paper,
we propose an improved adaptive algorithm using the distortion constraints based group sparse recursive least
square (DC-GRLS) to exploit channel group sparsity and obtain robust performance under the background
of α stable noise. We introduce distortion constraints combined with the mixed norms (lp,q norm), to obtain
the relative balance between correctiveness and conservativeness. The MATLAB simulation results reveal
that the improved algorithm can improve robustness under α stable noise when compared with the lp,q group
algorithms and it can effectively predict the channel impulse response for a group sparse structure.

INDEX TERMS Group sparse structure, distortion constraints, mixed norms, symmetric alpha stable
statistics, GRLS channel estimation.

I. INTRODUCTION
Group sparsity channels are typically encountered in a
range of applications, such as source localization, cogni-
tive spectrum sensing, and underwater acoustic and channel
estimation applications [1], [2]. Energy distribution of the
channel impulse response consists of blocks rather than a uni-
form distribution over the whole time delay domain [3], [4];
thus scholars have conducted extensive research on chan-
nel estimation algorithms for sparse channels in recent
years [5], particularly to exploit the sparsity in channel
prediction via kinds of adaptive filters [6]–[8]. Acquisition
of steady-state offset and realize the channel tracking are
essential to improving the estimation performance [9], [10],
which is also applicable in wireless communication environ-
ments [11]. To improve sparse channel estimation perfor-
mance in practical wireless communication systems as much
as possible, development of the sparse recursive least squares
(RLS) type channel estimation algorithms offers a potential
solution [12]–[14]. This method has been proven as an
effective approach. Zhu et al. [15] proposed an improved
fast transversal filters for recursive least squares (FTRLS)
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filtering algorithm, which determined the amount of large
error and accumulated it, then constructed error feedback to
render the algorithm more stable. However, this algorithm is
not suitable for sparse channel estimation. Chen et al. [16]
proposed an RLS based fast adaptive sparse channel esti-
mation algorithm, wherein two sparse constraint functions,
L1-norm and L0-norm, are combined with different regu-
larization parameters to obtain robust channel estimation.
Eksioglu [3] presented a new analytic approximation for lp,0
norm to utilize it as a group sparse regularizer, this was
proven to be a better adaptive algorithm when a group sparse
structure applies, but only Gaussian noise was considered in
this paper. Zhu et al. [17] considered the RLS type based
sparse channel estimation algorithms under a non-Gaussian
noise background, where the non-Gaussian noise background
followed a generalized Gaussian distribution (GGD) model.
Pelekanakis and Chitre [18] extend the application of the
algorithm to an α-stable noise background, and denoted two
novel frameworks regarding how to design online adaptive
algorithms. The first framework combined robust nonlinear
methods with sparse-promoting L0-norm regularization to
obtain better sparse estimation performance; the second com-
bined non-linear methods with a natural gradient (NG) to
obtain better channel prediction. In this paper, sparse channel
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and non-Gaussian noise background are each considered.
When applied to group sparse structure channel estimation,
however the performance was not ideal.

The above papers, among many others, presented schol-
arly research on sparse channel estimation and group
sparse channel estimation to obtain better adaptive estima-
tion performance. Even so, efforts involving group sparse
adaptive algorithms remain relatively scarce, particularly
under non-Gaussian noise conditions. Recent work from
Zimmermann; et al. showed that noise signals in practice
(e.g., impulse noise), exhibit non-Gaussian behavior that
obeys an α stable distribution [19]. Accordingly, more effi-
cient channel estimation techniques will be needed in the
future to ensure channel estimation under the practical noise.

In this paper, we propose a novel group sparse adaptive pre-
diction algorithm by combining a distortion constraints with
the mixed lp,q pseudo-norm as a group sparse regularizer,
hereafter referred to as DC-distortion constraints based group
sparse recursive least squares (GRLS). Inspired Su et al. [20],
we believe that the quadratic complexity framework can
maintain a balance between correctiveness and conservative-
ness [21], [22], effectively suppressing instability caused by
impulse noise (i.e., frequent dramatic changes from ĥ[n− 1]
to ĥ[n] should decrease). We set the exponential approxi-
mation to the mixed lp,0 pseudo-norm as part of the novel
algorithm to promote group sparsity. In an attempt to develop
the algorithm, we combine sub-gradients, including the l∞,1
and lp,1 norm, with the distortion constraints for compari-
son. Numerous simulations suggest that our proposed sparse
online estimation algorithm is effective for the group sparse
channel under non-Gaussian noise.

The reminder of this paper is organized as follows.
Section II introduces the system model, including the noise
background model. Section III presents the novel algorithm
and describes the derived the corresponding implementation
process. The proposed algorithm is evaluated through simu-
lations in Section IV, and we analyze the performance of the
DC-GRLS algorithm on the basis of the experiments. Finally,
Section V concludes the paper.

II. SYSTEM MODEL
In this paper, we consider a baseband channel representation
of the channel with the linear input and output, as well as the
additive noise process. First, we identify an actual channel
impulse response for the communication system, expressed
as h[n] = [h0[n], h1[n], · · · , hN−1[n]]T at the series sample
time n. The constructed h[n] is known with a group or block
structure to the coefficient for ĥ[n] as described above. Then
the noisy output signal can be shown as:

y[n] = h[n]T x[n]+ w[n]. (1)

where x[n] = [x[n], x[n − 1], · · · , x[n − N + 1]] denotes
the samples of the input signal at time n, and w[n] denotes
the additive noise affecting the system output. The purpose
of adaptive channel estimation is to estimate the unknown

channel vector h[n] using the known training signal x[n] and
received signal y[n].

We assume that the actual baseband noise in the com-
munication system is independent and identically distributed
(i.i.d). Given the issues considered in this paper, we assume
that w[n] follows the symmetric alpha stable (SαS) distribu-
tion with a characteristic function as follows:

ϕ(w) = e−γ |w|
α

. (2)

where α ∈ (0, 2] is the characteristic exponent to describe
the non-Gaussian degree, a smaller α corresponds to higher
frequency pulses. Additionally, γ > 0 is the location param-
eter to describe the spread of the distribution. It should be
note that when α = 2, the probability density function (PDF)
of the SαS distribution is equal to the Gaussian distribution,
which reflects its versatility in describing actual system noise.
Formathematical and practical reasons, we restrict the PDF to
α ∈ (1, 2] for the SαS distribution; it is rare to find a condition
for α < 1 in practical communication systems [23], [24].

Generally, we analyze the performance of the algorithm in
a communication system with different signal-to-noise ratio
(SNR). When α 6= 2 and α 6= 1, the SαS noise does
not have a closed form PDF; therefore, we must define the
generalized signal to noise ratio (GSNR) for the channel
estimation system:

GSNR(dB) = 10log10
σsps
2γ α

. (3)

where ps is the signal power and σs is the ratio of the sample
interval. γ 2/α denotes the noise dispersion, and GSNR =
Es/N0 when α = 2, which is consistent with Gaussian noise.

III. DISTORTION -CONSTRAINT -BASED MIXED-NORM
GROUP SPARSE RLS ALGORITHM
In this section, we propose the DC-GRLS algorithm
combined with distortion constraints; based on a general
framework for online prediction algorithms proposed byKon-
stantinos Pelekanakis. We hope the adaptive estimation algo-
rithm will be conservative and corrective when applied to
a group sparse channel under non-Gaussian noise, thus the
efficient cost function can be expressed as:

J [n] = f (ē[n])+ δD(ĥ[n], ĥ[n− 1]). (4)

where δ denote a non-negative regularization parameter to
maintain a relative balance between correctiveness and con-
servativeness. Here, f (ē[n]) is the loss function, andD(·) is the
distance function (i.e., the scalar distance function between
ĥ[n] and ĥ[n− 1]). More importantly, this framework allows
itself to incorporating additional constraints to obtained better
prediction for ĥ[n], and serving as the basis for many adaptive
algorithms, as seen in [25]–[27]. Our main work is based on
this framework.

A. IMPROVED CONSTRAINT FRAMEWORK
Based on the above mentioned algorithmic framework, dis-
tortion constraints for preventing drastic changes and group
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sparseness constraints can be integrated into a single objec-
tive function:

J [n] =
n∑

i=n−L+1

f (ē[i])+ δD(ĥ[n], ĥ[n− 1])+ ζ f (h). (5)

Here

D(ĥ[n], ĥ[n− 1]) = r[n]TP[n− 1]r[n]. (6)

f (h) = ‖ h ‖p,q . (7)

The first term is the loss function f (ē[i]) to ensure robust-
ness against the outliers. ζ is the regularization parameter,
and L (usually L ≤ 10) is the length of the detection
window (variable and limited by the channel and hardware
requirements). To simplify the algorithm and yield less mis-
adjustment in sparse channels, we select f (ē[i]) =| ē[i] |1 as
the new loss function to accommodate the large impulse.

The matrix P[n] is a K ×K Riemannian metric tensor, it is
a self-adjoint and positive matrix. The term is

D(ĥ[n], ĥ[n− 1]) = r[n]TP[n− 1]r[n]. (8)

We use it to represent the Riemannian distance between
ĥ[n] and ĥ[n − 1]. According to the description in [36],
the ordinary Euclidean gradient does not have the fastest
convergence speed in Riemannian spaces, hence why regular-
izing J [n] with a Riemannian is a better choice to accelerate
convergence of the target coefficient.

We must also determine how to select the proper P[n]
for the channel with group sparse structure. We refer to the
scheme in [28] and [29], where the parameter space of a
sparse channel may be visualized as a space with wrap-
ping: the Euclidean distance is smaller than any distance
in the direction orthogonal to the coordinate axis. Then
we set P[n]−1 = G[n], where G[n] is a proportionate
diagonal matrix with elements gk [n]

K−1
k=0 , and calculated as

follows:

gk [n] =
1− β
2K
+ (1+ β)

| ĥk [n] |1
2 ‖ ĥ ‖1 +ε

. (9)

where ε should be a positive and small constant to make
sure that the algorithm does not run correctly during the
iteration. β should be chosen according to the sparseness of
the channel, where β ∈ (0, 0.5) indicates that channel is
very sparse. δ can be obtained through δ = (1 − β)δ′/2K in
ref [7].
ζ f (h) is an incorporated additional constraint to develop

group structured algorithms for block-sparsity aware adaptive
filtering. We assume the group structure is priori known in
this paper. As shown in (10), hgi ∈ RN , the new expression
for the group structure of vectors is as follows:

{hgi}k =

{
hk , if k ∈ gi;
0, if k /∈ gi.

(10)

where k = 0, · · · ,N − 1. We set the channel by zeroing all
values of the coefficient vector h except the positions where

hgi located. To develop new group sparsity cognizant GRLS
algorithms, we define G as the total number of groups and
with no overlap between each other:

gi ∩ gj = �, i 6= j, gi, gj ∈ G. (11)

Next, we give the sub-gradient of mixed norms and induce
them as regularizing penalty functions into cost function (5).

B. GROUP SPARSITY AND MIXED NORMS
The mixed lp,q norm corresponding to the proposed group
channel is defined as:

‖ h ‖p,q = (
G∑
i=1

(‖ hgi ‖p)
q)−q

= (
G∑
i=1

(
q∑

k∈gik
p
k

/p))1/q. (12)

Eq. (12) is convex when p, q ∈ [1,∞]; However,
the expression for actual group sparsity is the mixed pseudo-
norm, which can be described as

‖ h ‖p,0=
G∑
i=1

I (‖ hgi ‖p). (13)

The structure presented in (13) is non-convex and not
applicable to the sub-gradient analysis. Therefore, we adopt
two special mixed norms as promoters of group sparsity. One
is l2,1 that utilized in [16]

‖ h ‖2,1=
G∑
i=1

‖ hgi ‖2=
G∑
i=1

(
∑
k∈gi

h2k )
1/2. (14)

The other is a novel approximation mixed norm based on lp,0

‖ h ‖p,0≈
G∑
i=1

‖ h ‖p,0η= G−
G∑
i=1

e−η‖hgi‖p . (15)

where η is a small and positive constant. The sub-gradients
of these functions will be calculated as new constraint in
the following sections to obtain better performance in group
sparse channel estimation.

C. DISTORTION CONSTRAINT BASED GROUP
SPARSE RLS ALGORITHM
The upgraded equation of the channel estimation algorithm
can be derived from∇r[n]J [n] = 0, which can be calculated as

∇r[n]J [n] = ∇r[n](
n∑

i=n−L+1

f (ē[i]))

+∇r[n](r[n]TP[n− 1]r[n])

+∇r[n](ζ f (h)). (16)
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where J [n] is given by (5), and each of the above terms can
be computed individually as

∇r[n](
n∑

i=n−L+1

f (ē[i]))

= −

n∑
i=n−L+1

ψ(ē[i])x[i]

= −

n∑
i=n−L+1

q(ē[i])ē[i]x[i]

= −

n∑
i=n−L+1

q(ē[i])(ē[i]− x[i]T r[n])x[i]

= −

n∑
i=n−L+1

q(ē[i])ē[i]x[i]

+

n∑
i=n−L+1

q(ē[i])(x[i]x[i]T )r[n]

= −X [n]Q[n]e[n]+ X [n]Q[n]X [n]T r[n]. (17)

where Q[n] is an L*L diagonal matrix with elements q(e[i]).
For the second term we have:

∇r[n](δr[n]TP[n− 1]r[n]) = δP[n− 1]r[n]. (18)

∇r[n](ζ f (h)) is computed as follows:
1)
if f (h) =‖ h ‖2,1, the sub-gradients ∇r[n](ζ f (h)) can be

calculated as

∇r[n](ζ f (h)) =
G∑
i=1

ζ∇r[n] ‖ hgi ‖2

≈

G∑
i=1

ζhgi
‖ hgi ‖2 +σ

. (19)

where we use sub-gradient approximation to simplify the
calculation progress, and σ is again a small and positive
constant. To calculate of the iteration, we present V[n] as

V [n] =
G∑
i=1

hgi
‖ hgi ‖2 +σ

. (20)

2) if f (h) =‖ h ‖p,0, the sub-gradients ∇r[n](ζ f (h)) can be
calculated as

∇r[n](ζ f (h)) =
G∑
i=1

ζη∇r[n]{‖ hgi ‖p}e
−η‖hgi‖p . (21)

Similarly, to simplify this algorithm, it can be expressed as
e−η|x| ≈ (1 − η | x |)+ when | x |≤ 1/η. Thus, (21) can be
expressed more succinctly as

∇r[n](ζ f (h))=
G∑
i=1

ζη∇r[n]{‖ hgi ‖p}(1−η ‖ hgi ‖p)+. (22)

(f (x))+ indicates the maximum value of (0, f(x)). Accord-
ing to research on the algorithm, only the cases of p = 1

and p = 2 are considered. When p = 1, the matching sub-
gradient can be presented as

∇r[n](ζ f (h)) =
G∑
i=1

ζηsgn(hgi )(1− η ‖ hgi ‖1)+. (23)

where the corresponding V[n] is

V [n] =
G∑
i=1

ηsgn(hgi )(1− η ‖ hgi ‖1)+. (24)

When p = 2, the corresponding sub-gradient can be
computed as

∇r[n](ζ f (h)) =
G∑
i=1

ζη∇r[n]{‖ hgi ‖p}(1− η ‖ hgi ‖2)+

≈

G∑
i=1

ζη

‖ hgi ‖2 +σ
(1− η ‖ hgi ‖2)+. (25)

where the corresponding V[n] is

V [n] =
G∑
i=1

η

‖ hgi ‖2 +σ
(1− η ‖ hgi ‖2)+. (26)

D. CHANNEL UPDATE EQUATION FOR DC-GRLS
The derivation process of the novel algorithmwas specifically
described in the previous section. The following equations
represent the main process for group sparse channel estima-
tion with distortion constraints.

By setting ∇r[n]J [n] = 0, and combining(17),(18), and
(19) (or (22)), we obtain

X [n]Q[n]e[n]∗

= r[n](δP[n− 1]+ X [n]Q[n]X [n]∗)+ ζv[n]. (27)

r[n] = (δP[n− 1]+ X [n]Q[n]X [n]T )−1

(x[n]Q[n]e[n]− ζV [n])

= (δP[n− 1]+ X [n]Q[n]X [n]T )−1x[n]Q[n]e[n]

− (δP[n− 1]+ X [n]Q[n]X [n]T )−1ζV [n]. (28)

In this equation, we aim to solve the problem related to
non-linear impulse h[n], which determins the V [n] and r[n].
To simplify the calculation process for r[n], we assume that
V [n] ' V [n − 1]; then, combined with the matrix inversion
theorem, we obtain

r[n] =
k[n]

X [n]T k[n]+ δQ[n]−1
e[n]

−
ζ

δ
(P[n− 1]−1 − K [n]X [n]T

× (P[n− 1]−1)T )V [n− 1]. (29)

where r[n] = ĥ[n] − ĥ[n − 1]. Next, we have the update
process for prediction algorithms ( taking the l1,0 norm as an
example)

e[n] = y[n]− X [n]T ĥ[n− 1],

k[n] = P[n− 1]−1X [n],
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K [n] =
k[n]

X [n]T k[n]+ δQ[n]−1
,

P[n]−1 = P[n− 1]−1 − K [n]X [n]T (P[n− 1]−1)T ,

Vk [n] =
K∑
k=1

ηsgn(hgk )(1− η ‖ hgk ‖1)+,

ĥ[n] = ĥ[n− 1]+ µK [n]e[n]−
ζµ

δ
P[n]−1V [n− 1].

where µ ∈ (0, 1] is the step-length parameter. X [n], P[n] and
Q[n] have been defined in previous section. Initialization of
the algorithm starts with ĥ[0] = 0.

IV. SIMULATION RESULTS
We have presented theoretical analysis of the novel algorithm
for group sparse channel estimation under non-Gaussian
noise. In this section, we test the performance of the proposed
algorithm in a group of sparse channels with known prior
information through numerous simulations.

A. NOTATIONS
Observation noise follows the SαS distribution, and the char-
acteristic α ∈ (1.5, 2] will be more consistent with the
measured results [30]. The SNR is defined as Eq (3). The
system impulse response h has total 64 coefficients including
G = 16 blocks with 4 coefficients per block. N is the number
of non-zero blocks that can be selected for performance
tests of the proposed algorithms. The typical group sparse
channel we constructed with 4 non-zero blocks is shown
in Fig. 1.

FIGURE 1. Group sparse channel with 4 non-zero groups
of 64 coefficients.

The simulation parameters are as follows:
β = 0.5 indicates the sparseness of the channel, L = 4

is the length of the observation window, δ′ = 10 when
calculating δ, ζ = 5 ·10−4 denotes the regulation parameters,
η = 10 is a constant and µ = 0.1 for the updated step-
size. The performance measure is the average mean squared
deviation (MSD), defined as MSD = 10log(‖ h − ĥ ‖22 / ‖
h ‖22).
As shown in Fig. 2, the received signal with additive non-

Gaussian noise was applied in the simulations to test the
algorithm’s performance.

FIGURE 2. Received signal with additive α stable noise, SNR = 10 dB,
α = 1.6.

B. SIMULATION RESULTS
The channel to be estimated with α-stable noise was
described in the previous section. Here, we will compare the
performance of the algorithms with different SNR and differ-
ent noise characteristic exponents. We select l2,0-GRLS and
basic RLS algorithms for comparison, whereas RLSA is the
basic algorithm and l2,0-GRLS algorithm perform best when
applied to group sparse channel estimation under Gaussian
noise.

FIGURE 3. Prediction curves of DC-GRLS algorithms for different α and
SNR, and the comparison with the traditional GRLS algorithms (α = 1.5,
SNR = 10 dB, N = 2).

As indicated in Fig. 3, characteristic exponents α = 1.5,
signal to noise ratio SNR = 10 dB, and the non-zeros
groups N = 2. We considered the DC-GRLS algorithms with
l1,0, l2,0, and l2,1 norms and compared them with the tradi-
tional GRLS prediction algorithms. The prediction of DC-
GRLS(l2,0) algorithm returned lower MSD than traditional
GRLS algorithms while the DC-GRLS algorithms with (l1,0)
and ((l2,1)) are very similar to each other.

Then, we set characteristic exponents α = 1.7, and SNR =
10 dB. Prediction results are depicted in Fig. 4. The DC-
GRLS(l2,0) algorithm was consistently robust and exhibited
the lowest MSD for α = 1.7 whereas the DC-GRLS(l1,0)
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FIGURE 4. Prediction curves of DC-GRLS algorithms for different α and
SNR, and the comparison with the traditional GRLS algorithms (α = 1.7,
SNR = 10 dB, non-zero blocks N = 2).

FIGURE 5. Prediction curves of DC-GRLS algorithms and the comparison
with the traditional GRLS algorithms (α = 1.5, SNR = 20 dB, non-zero
blocks N = 2).

and DC-GRLS(l2,1) algorithms did not show superiority
obviously.

Comparisons with higher SNR are shown in Fig. 5 and
Fig. 6. We set SNR = 20 dB and α = 1.5 and 1.7 for
simulations to compare the algorithm performance. The DC-
GRLS(l2,0) algorithm was consistently robust and have a
faster convergence rate when SNR = 20 dB; therefore,
simulations have verified the effectiveness of the proposed
DC-GRLS algorithm.

To further test the performance of the proposed algorithm,
we conducted simulations by superimposing actual noise on
the group sparse channel for comparison.

In the simulations, we could not obtain an accurate char-
acteristic exponent of the actual noise; we could only set the
SNR ≈ 10 dB. Simulation result are shown in Fig. 7.

FIGURE 6. Prediction curves of DC-GRLS algorithms and the comparison
with the traditional GRLS algorithms (α = 1.7, SNR = 20 dB, non-zero
blocks N = 2).

FIGURE 7. Prediction curves of DC-GRLS algorithms and the comparison
with the traditional GRLS algorithms; for actual noise with SNR ≈ 10 dB,
non-zero blocks of priori known channel N = 2.

Algorithm performance declined under actual noise. The
RLS algorithm could not obtain a good performance when
cope with the prediction under actual noise. We also find that
The prediction process of l2,0-GRLS algorithm was unstable,
while DC-GRLS(l2,0) still shows the superiority of other
algorithms. Thus it proves that the novel algorithm we pro-
posed in this paper is practical. For comparison, we increased
the signal to noise ratio to SNR ≈ 20 dB, and the prediction
MSD curves are shown in Fig. 8.

The proposed algorithm also showed good adaptability
when we increased the SNR. The convergence speed was also
faster than with a lower SNR, and the MSD was close to
the simulation results. The performance of channel estima-
tion algorithms improved when increased the SNR, and DC-
GRLS(l2,0) still shows the superiority of other algorithms.
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FIGURE 8. Prediction curves of DC-GRLS algorithms and the comparison
with the traditional GRLS algorithms, SNR ≈ 20 dB, non-zero blocks of
priori known channel N = 2.

FIGURE 9. Prediction curves of DC-GRLS algorithms and the comparison
with the traditional GRLS algorithms, SNR ≈ 20 dB, non-zero blocks of
priori known channel N = 3.

We then set the non-zero blocks of the channel N = 3
(the channel contained priori known 128 coefficients). The
noise captured the actual noise sequence, and SNR ≈

10 dB; other simulation parameters for the proposed algo-
rithm were described in the notation section. Fig. 9 illus-
trates the MSD curves when N = 3 for the group sparse
channel.

Channel information and the prediction results are listed
in Table.1 for comparison. The real values are the coefficients
of the priori channel we constructed, and estimation results
are the prediction results. The predicted results approxi-
mated the actual value, indicating that the proposed algo-
rithm can accurately predict the group sparse channel impulse
response.

TABLE 1. Comparison of the coefficients of the priori channel and
corresponding prediction results of the channel.

V. CONCLUSION
A novel adaptive group sparse channel estimation algorithms
has been introduced in this paper. A prediction algorithm
based on a combination of distortion constraint and mixed
norm was derived. The focus of this paper was on improving
algorithm performance in the presence of SαS noise. The
distortion constraint maintained a relative balance between
correctiveness and conservativeness, induced by the loss
function, whereas the mixed-norms were a good choice to
promote the group sparsity. Fitted noise and the actual noise
were each considered in the experiment. Simulations demon-
strated that our adaptive algorithm is more robust and accu-
rate when predicting the group sparse channel under SαS
noise, thus outperforming previously developed systems.
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