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ABSTRACT Road curb detection is essential for autonomous vehicles to locate themselves and make a
rational decision, especially under road discontinuities, obstacle occlusions, and curved road scenarios.
However, an effective and systematic solution to this problem has remained elusive. In this paper, a robust
3D-LiDAR-based method for road curb detection and tracking in a structured environment is proposed.
The proposed method consists of four main stages: 1) a multi-feature based method is applied to extract
candidate points; 2) a density-based clustering method is proposed for classifying left and right candidate
points; 3) a candidate points filter (including distance filter and RANSAC filter) is proposed to remove
false points; and 4) a least-square algorithm is used to obtain road curb curve and the amplitude-limiting
Kalman filter is deployed to prevent false detection and miss detection. The comprehensive experiment
evaluations show that the proposed method can deal with straight and curved road without being influenced
by surrounding obstacles.

INDEX TERMS Autonomous vehicle, 3D-LiDAR, curb detection, point cloud.

I. INTRODUCTION
Both industry and research communities in autonomous
vehicle (AV) field are now putting increasing emphasis on
environmental perception technology because of its funda-
mental role to other functional modules. Road curb detection,
which always refers to the methods that extracting features
and distinguishing between driving corridors and restricted
areas, is the foremost part in environment perception. Road
curb features are also used to locate self-driving cars when
GPS signals are blocked by trees, bridges and tunnels in urban
environments. To get a robust and precise curb detection
result, various approaches have been introduced.

Vision-based methods have been extensively studied with
the development of computer vision technology. In [1], a rect-
angular elevation map was built by a stereovision system
Edge detection and Hough transformationmethods were used
to extract curb segments. In [2], the raw 3D points were
assigned to curb adjacent surfaces with Conditional Random
Field. Based on the result, curbs and surfaces were recon-
structed. A Naive Bayes framework was used to fuse multiple
features to get the highest probability road curb points in [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Razi Iqbal.

All these vision-based methods are effective under simple
driving scenarios; however, these methods are sensitive to
light and weather conditions and not robust enough in com-
plex scenarios. Besides, accurate distance information cannot
be guaranteed, which leads to that vision is difficult to fully
meet practical applications

Compared with vision-based method, LiDARs can provide
accurate distance information and are not affected by light
conditions [4]. In [5], an interactingmultiple model method is
proposed to detect road curb based on 2D-LiDAR. However,
the sparse data can hardly meet environmental perception
demand. In comparison with 2D-LiDAR, 3DLiDAR plays a
more and more important role as it provides a large number
of point cloud data with a 360-degree coverage as shown
in Fig. 1 In previous DARPA Challenge, many teams were
equipped with 3D-LiDARs to obtain environment informa-
tion [6]–[8]. Recently, Waymo, Baidu, and General Motors
choose 3D-LiDARs as main sensor to perception environ-
ment [9]–[11] The 3D-LiDAR has several advantages in AV
domain, however, when used in road curb detection, there
are also two major challenges that affect robustness: obsta-
cle interference and classification of left and right candi-
date points in curved road. To address these two challenges,
this paper uses three steps to extract curb points, including
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FIGURE 1. The point cloud obtained from 3D-LiDAR.

candidate points extraction, candidate points classification
and candidate points filtering.

A. RELATED WORK ON CANDIDATE POINTS EXTRACTION
For the problem of candidate points extraction, Sun et al. [12]
obtained candidate points based on height-jumping and slope
features in each layer, these two features are mutually redun-
dant which will contain too many false points and can-
not remove road surface points effectively Hu et al. [13]
extracted candidate points by curvature change and height
difference in raw point cloud, which would contain too
many obstacle points and increase computational burden.
In [14] and [15], candidate points were extracted based on
local normal saliency feature or supervoxels, which is not
suitable for sparse point cloud In [16] line segment feature
in sliding window was used to extract candidate points in
each layer, which did not work well when point cloud became
sparse in the distance.

All the aforementioned methods shared the drawback that
a single or multiple redundant feature are adopted to extract
candidate points, resulting inmiss detectionwith strict thresh-
old while false detection with loose threshold.

B. BRELATED WORK ON CANDIDATE
POINTS CLASSIFICATION
For the problem of classification of left and right candidate
points, most of researchers focused on the problem of straight
roads in which left and right candidate points are classified
just based on the direction of lateral coordinates, such as
[12], [13], and [16]–[18]. Xu et al. [20] extracted candidate
points based on energy function and refined left and right
candidate points using least cost path model. This method can
work well on curved road, but it needs add source point man-
ually which cannot be used in practice. In [15] supervoxels
were used to obtain candidate points, then the trajectory data
was used to classify left and right candidate points which can
only work offline and are not suitable for on-line applications
in self-driving. In [21], in order to solve the problem of curb
detection on curved road, a clustering method based on linear
discriminant analysis (LDA) [22] was proposed to divide
left and right candidate points. In [23] sliding-beam method

was proposed to obtain road segmentation line by using off-
ground data. And the road segmentation line was used to
classify left and right candidate points. Both [21] and [23] can
just linearly classify candidate points and they cannot work
well on large curvature road.

All the aforementioned methods shared the drawback of
being affected by road curvature, they all cannot correctly
distinguish left and right candidate points

C. RELATED WORK ON CANDIDATE POINTS FILTERING
For the problem of candidate points filtering, Sun et al. [12]
and Yang et al. [17] firstly classified candidate points into
segments with k-nearest neighbor method, then the segments
of less than three points were eliminated, which may filter out
isolated curb points. In [13] RANSAC line fitting algorithm
was used to filter out obstacle points, which would filter out
curb points when road was curved In [18] a regression filter
was introduced to make detection robust to occlusions. Both
of [13] and [18] could only remove obstacle points inside
road, however, they cannot deal with obstacles outside road,
such as the situation in which multiple roads are distributed in
parallel. Chen et al. [19] filtered candidate points byGaussian
Process, which depended heavily on the accuracy of the
selected seed points. In [14], candidate points were extracted
based on local normal saliency, then the distance to trajectory
was used to filter candidate points which is not suitable for
practical application.

All the aforementioned methods cannot effectively filter
out obstacles inside and outside road area, especially for
scenarios in which there are obstacles with the same feature
as road curbs, such as parallel roads, railway tracks.

In order to solve the above problems, we propose a new
robust method to extract road curbs from point cloud which
is not affected by obstacles and road curvature. The main
contributions of this paper are as follows:
• We propose a multi-feature loose-threshold layered
method for candidate points extraction which avoids
miss detections and too many false detections due to
single feature.

• We present a density-based clustering method for classi-
fying left and right candidate points which can correctly
classify left and right candidate points under various
road curvature.

• We design a two-step filtering method to remove false
points caused by obstacles inside and outside road.

The remainder of this paper is organized as follows. Section II
describes the overview of our method for road curb detection
and tracking. Section 3-4 describes each step of our method
in detail. Section 8 evaluates the proposed method through
comprehensive experiments. Section 9 summarizes the con-
tributions of this paper.

II. METHOD OVERVIEW
As shown in Fig. 2, the proposed method consists of five
main steps. It inputs a frame of point cloud acquired from
3D-LiDAR and outputs curb points and curb curves.
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FIGURE 2. The pipeline of road curb detection and tracking method.

A. DATA PREPROCESSING
Because of vehicle motion and the principle of LiDAR,
the raw point cloud is distorted. Thus, GPS/IMU is used to
correct point cloud based on linear interpolation In order to
remove obstacles above ground and reduce computational
burden, a piecewise plane-based segmentationmethod is used
to distinguish on-ground and off-ground points Only on-
ground points are used for curb point extraction.

B. CANDIDATE POINTS EXTRACTION
A multi-feature loose-threshold layered method is proposed
to increase the robustness of candidate points extraction.
Firstly, four spatial features are defined based on road model.
Then, the points that satisfy all spatial features are extracted.

C. CANDIDATE POINTS CLUSTERING
It is an important and difficult step to classify left and right
candidate points for road curb detection, especially in the case
of road with large curvature Thus, a density-based clustering
method is proposed to classify left and right candidate points.

D. CANDIDATE POINTS FILTERING
There are still many false points in candidate points, including
vehicles, pedestrians on road and buildings, railway tracks,
adjacent roads. In order to filter out these false points,
a two-step candidate points filtering method is proposed
which consists of distance filter and RANSAC filter.

E. CURB POINTS FITTING AND TRACKING
In this step, least square method is used to fit quadratic curve
based on curb points. In order to estimate road curb curve
smoothly and robustly, an Amplitude-Limiting Kalman filter
is used to smooth the fluctuation of road curb curve.

III. DATA PREPROCESSING
The proposed method uses 3D-LiDAR Velodyne HDL-64E
sensor which features up to 64 lasers vertically aligned from

+2◦ to −24.8◦ , and its rotating delivers a 360◦ horizontal
field of view. It generates a point cloud of 1000,000 points
per second with a range of 120 m and typical accuracy
of 5 cm [24].

In this paper, the Velodyne sensor is mounted on the top of
the AV. The cartesian coordinate system we define is shown
in Fig 3 Taking the center of the LiDAR as origin point,
the x axis points to the direction of driving, and the z axis
is vertically upward. The y axis points to the left side of the
direction of the AV forward direction.

FIGURE 3. The cartesian coordinate system of LiDAR.

FIGURE 4. The car motion is added to the laser rotation. Each point in the
data is not in the same coordinate system.

A. DISTORTION CORRECTION
According to the principle of LiDAR, it takes a certain period
of time for LiDAR swiping environment a circle. During a
scan period C , a mounted LiDAR can move, resulting in
a non-single viewpoint measurement. As shown in Fig 4,
the vehicle motion can be added to laser rotation causing the
LiDAR measurement to be distorted [25]. So, if the motion
of vehicle is not considered, the distorted 3D point cloud will
affect curb points extraction To solve this problem, we trans-
form all points into ending position in a frame.

Suppose that a scan period C is very short and the posi-
tion and pose of vehicle changes linearly in a scan period.
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FIGURE 5. An example of point cloud distortion correction. (a) The point cloud before
correction. (b) The point cloud after correction.

So, the pose and position of the vehicle at every moment
can be obtained by the interpolation of the position and pose
of between adjacent two frames. Assuming that the ending
horizontal rotation angle of current frame is θ1, the time
required for LiDAR rotation from pi to ending position is:

ti = C × (θ1 − θ2)/2π (1)

where, θ2 is the horizontal rotation angle of pi
Besides, the position and pose changes of each frame can

be obtained through GPS/IMU navigation system, including
roll αframe, pitch βframe, yaw γframe displacement xframeyframe
zframe Thus, the displacement matrix and pose matrix from pi
to ending position of current frame are calculated by linear
interpolation as follows:

Ti =
ti
C

[
xframe yframe zframe

]T (2)[
αθ2 βθ2 γθ2

]
=

ti
C

[
αframe βframe γframe

]
(3)

Then, the point pi correction process is as follows:

Ri = Rz(γθ2 )Ry(βθ2 )Rx(αθ2 ) (4)

p
′

i = Ripi + Ti (5)

where Rx ,Ry,Rz represent rotation matrices around x axis,
y axis and z axis, respectively. p

′

i is the point corrected. As it
can be seen in the red box in Fig. 5(a), laser line is duplicated
due to the rotation of vehicle. After distortion correction, the
laser line is not duplicated anymore (Fig 4(b))

For convenience of description, letP denote the undistorted
point cloud and each point be pli = [ xli yli zli ] where l is the
number of corresponding laser line.

B. GROUND SEGMENTATION
The proposed method in this paper focuses on road curb
extraction from point cloud. Since road curb is a part of

ground, we use ground segmentation to extract on-ground
points and remove off-ground points which usually consist
of trees, buildings and other objects.

Here we use a piecewise plane-based segmentation method
to distinguish on-ground and off-ground points. First, point
cloud P is divided into several segments based on x coordi-
nate. Then, RANSAC (Random sample consensus) method is
applied to fit plane in each segment [26]. By dividing point
cloud into segments, the method can basically deal with slope
road scenario. The extraction of on-ground points does not
require high precision because the curb detection method will
be further applied.

FIGURE 6. An example of ground segmentation. Where, on-ground points
are shown in blue, off-ground points are shown in gray.

In our method, the ‘‘rough’’ on-ground points provide
enough data for candidate points extraction in the next step
and reduce most of outliers simultaneously. In Fig 6 is an
example of ground segmentation method where on-ground
points shown in blue are used to extract curbs and off-ground
points are removed to reduce the cost of computation. For
convenience, let Pon denote on-ground points and Poff denote
off-ground points
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FIGURE 7. Road model.

IV. CANDIDATE POINTS EXTRACTION
A. ROAD CURB MODEL
In urban environments, it is clear that road surface is flat
and sidewalks are higher on both sides. Road curbs are about
10 to 30 cm 10 cm higher than road surface. An ideal road
model is shown in Fig. 7, in which the blue vertical planes
represent the left and right road curb, the green horizontal
planes represent sidewalks, and the gray horizontal plane
represents road surface.

B. CANDIDATE POINTS EXTRACTION
HDL-64E has 64 lasers, scanning surrounding area
in 360 degrees horizontally, each of which has its own vertical
azimuth. Based on this, on-ground points Pon are divided into
64 scanning layers to extract candidate points.

The algorithm of candidate points extraction is mainly
inspired by [12] and [23]. However, road curb is not always
regular and the effects of various lasers are different because
of varying scan ranges. When only a single feature is applied,
miss and false detections are inevitable, particularly when
road conditions are complex. Given that, a multi-feature
loose-threshold layered method is proposed to extract can-
didate points In our work four spatial features are defined
and each has a loose threshold The points that satisfy all
spatial feature are extracted for each scanning layer The
features applied in this paper are described in the following
sections.

1) HEIGHT DIFFERENCE BETWEEN NEIGHBORING POINTS
As shown in Fig 7, there is always a height difference between
road curb and road surface and the height of curb points of
same laser layer will obviously increase. So, height difference
and height standard deviation are selected as a feature of curb
points. The maximum and minimum values of z coordinates
of all points in the neighbors of pli are represented as Zmax
and Zmin respectively. Thus, the height difference feature is

defined as:

Theight1 ≤ Zmax − Zmin≤Theight2√∑
(zli − µ)2

nheight
≥ Theight3

where µ =
∑
zli

nheight
, nheight is the number of neighbors, zli

is z values of each neighbors and l is the number of the
corresponding laser line, Theight1,Theight2andTheight3 are the
thresholds of height difference feature.

2) SMOOTHNESS OF NEIGHBORING POINTS
The smoothing feature proposed by [27] is used to describe
the smoothness in the neighborhood of a point. For any
point pli, We use S to represent neighbors continuously col-
lected on both sides of pli. Thus, the smoothness feature is
defined as:

s =
1

|S| ‖Pli‖
·

∥∥∥∥∥∥∥∥∥∥∥
∑
Pj ∈ S
j 6= i

(pli − plj)

∥∥∥∥∥∥∥∥∥∥∥
s ≥ Tsmoothness

where, s is the smoothness value of pli, |S| is the cardinality
of STsmoothness is threshold of smoothness feature.

3) TANGENT VECTOR OF NEIGHBORING POINTS
The tangent vector feature proposed by [23] describes
the angle between two vectors originating from the same
point pli. The angle θli is defined as:

θli = cos−1
V1·V2
|V1| · |V2|

θli ≤ Ttangent

V1 =

[
n∑

k=1

(xl,i−k , xli),
n∑

k=1

(yl,i−k , yli)

]

V2 =

[
n∑

k=1

(xl,i+k , xi),
n∑

k=1

(yl,i+k , yli)

]

where, V1 and V2 are the vectors originating from point pli,
n is the number of neighbors Ttangent is threshold of tangent
vector feature. The angle between two vectors on road curb
is less than the angle between two vectors on road surface.
An example is shown in Fig 7, where A is a curb point, B is
a road surface point, there is an obvious difference between
the tangent vector angles of point A and point B.

4) HORIZONTAL DISTANCE OF ADJACENT POINTS
The horizontal distance feature proposed by [23] represents
the horizontal distance between two adjacent points in the
same laser line, as show in Fig 7. It sets the horizontal distance
threshold δxy,l when the point pli is on the flat road surface.
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It is defined by

δxy,l = Hs · cotθf ,l ·
πθa

180

where, Hs is the absolute value of the height of the scanning
point pliθl,f is the vertical azimuth of scanning line, θa is the
horizontal angular resolution of LiDAR If pli is selected as
candidate curb point, the horizontal distance between pli and
its adjacent point should be larger than δxy,l .

FIGURE 8. An example of candidate curb point extraction. a) On-ground
points. b) Candidate points.

Then all of the features are tested in the experiment and
loose thresholds are determined Since multiple features with
loose thresholds are used to extract candidate points, miss
detection can be well avoided and road surface points can
be removed very well even on slope and curved road. After
candidate points extraction, the extracted candidate points
Pcandidate are obtained, as shown in Fig 8

V. CANDIDATE POINTS CLUSTERING
In order to filter out false points in Pcandidate, candidate points
first need to be clustered into two classes, representing left
and right candidate points respectively. As far as I know, there
are very few effective methods to distinguish left and right
candidate points, especially for curved road. Most of litera-
tures simply classify left and right candidate points according
to lateral coordinates.

In order to solve the problem, a density-based clustering
method is proposed for classifying left and right candidate
points which is inspired by the DPCA (Density Peaks Clus-
tering Algorithm) [28] and DBSCAN (Density-based spatial
clustering of applications with noise) [29] The DPCAmethod
cannot effectively cluster candidate points into left and right
candidate points. Because each point is assigned to the same
cluster as its nearest neighbor of higher density [28], when
candidate points on one side are sparse and road width is
small, it is likely that the clustering will fail Besides, the
DBSCAN cannot determine cluster center and number of
clusters. The clustering algorithm proposed in this paper com-
bines the advantages of these two methods and overcomes
their disadvantages at the same time which can effectively
cluster candidate points into left and right candidate points.

A. CLUSTERING ALGORITHM EXPLAIN
The clustering algorithm consists of two steps: determination
of cluster centers and assigning each point to clusters. The
first step is inspired by DPCA and has basis in the assump-
tions that cluster centers are surrounded by neighbors with
lower local density and that they are at a relatively large
distance from any points with a higher local density [28]. For
convenience we make two definitions as follows:
Definition 1: (local density) The local density ρi of point i

is computed as

ρi =
∑
j

χ (dij − dc)

where χ (x)= 1 if x<0 and χ (x)= 0 otherwise. Basically,
ρi is equal to the number of points that are closer than dc
to point i dij is the distance between any two points, dc is
neighborhood threshold
Definition 2: (nearest higher density distance) The nearest

higher density distance of point i is measured by computing
the minimum distance between the point i and any other point
with higher density:

δi =
min
j:ρj>ρi (dij)

For the point with highest density, we conventionally take
δi = max j(dij).

The points that has both large local density and near-
est higher density distance are selected as cluster centers.
An example is shown in Fig.9 point 1 and point 9 are selected
as cluster centers.

The second step is inspired by DBSCAN which classified
points based on density-reachable principle. For convenience,
we make three definitions:
Definition 3: (neighbors of a point) The neighbors of point

i denoted by Ni is defined as follows:

Ni = {j ∈ D|dij ≤ dc}

where D is input dataset and |Ni| = ρi
Definition 4 (Directly Density-Reachable): The point i is

directly density-reachable from point j and point j is core
point if i ∈ Nj and ρj ≥ nmin, nmin is core point threshold.
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FIGURE 9. a) Point distribution. The number represents the local density order of each point. b)
Decision graph for the data. (Different colors correspond to different clusters).

Definition 5 (Density-Reachable): The point i is density-
reachable from point j if there is a chain of points
i1, · · · ,in, i1= j,in= i such that ik+1 is directly density-
reachable from ik

FIGURE 10. Density-reachable and directly density-reachable.

As shown in Fig. 10, point p is directly density-reachable
from m, and density-reachable from n and q. After the clus-
ter center is determined, all the points which is density-
reachable from the same cluster center are grouped into one
class.

B. CURB CLUSTERING ALGORITHM PROCESS
Input:

the candidate points Pcandidate, neighborhood threshold dc,
core point thresholdc nmin
Output:

left candidate points Pcandidate,l and right candidate
points Pcandidate,r .

Process:
1. Determination of cluster centers.
a) For each point i, compute local density ρi based on

neighborhood threshold dc.
b) For each point i, compute nearest higher density

distance δi.
c) For each point, compute decision value γi = ρiδi, select

two points pcenter,l,pcenter,r with the largest γi as the cluster
centers for left and right candidate points, where the sign of
y coordinates of these two centers are opposite.

2. Assign each point to cluster.
a) Select all the points that ρi ≥ nmin as core points to

form core point set Pcore. According to step 1, the two cluster
centers have large local density so add them to the core point
set Pcore.

b) In core point set Pcore, compute neighbors Ncore,i for
each point i based on threshold dc.
c) In candidate point set Pcandidate, compute neighbors

Ncandidate,i for each core point i.
d) Choose pcenter,l as seed point, retrieve all points in Pcore

that are density-reachable from the seed to obtain the left core
point set Pcore,l based on Ncore,i for each core point i.
e) For each core point i in Pcore,l , first add core point i to

Pcandidate,l , then add each point j in Ncandidate,i to Pcandidate,l
if point j is not clustered.

f) Choose pcenter,r as seed point, repeat step d and e to
obtain Pcandidate,r .

The parameter for clustering algorithm is neighborhood
threshold dc and core point threshold nmin The threshold dc
should be less than half of the width of road To prevent
missing isolated curb points, the threshold nmin should be
chosen as small as possible.

C. CLUSTERING EXAMPLES
The clustering algorithm selects the cluster centers by using
the idea of DPCA, and overcomes the defect of assigning
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FIGURE 11. Results of candidate points clustering on three different road curvatures.

point to the same cluster as its nearest neighbor of higher
density by using the idea of DBSCAN.

Results of our clustering algorithm about candidate points
clustering on three different curvature road are shown
in Fig. 11. The red points are left candidate points and the
blue points are right candidate points. As we can see, the algo-
rithm proposed in this paper can correctly classify left and
right road candidate points under different road curvature
conditions.

VI. CANDIDATE POINTS FILTERING
After candidate points extraction, there are also a variety
of false points, including vehicles, pedestrians on road and
buildings, railway tracks, adjacent roads, as shown in Fig 8.
So, a two-step filtering method is proposed to filter out false
points inside and outside road, which consists of distance
filter and RANSAC filter.

A. DISTANCE FILTER
The distance filter is used to remove false points caused
by objects outside road whose feature is similar to curbs
(e.g. buildings, railway tracks and parallel roads). Based on
the fact that curbs are usually the nearest obstacles of AV
on road, the distance filter searches the lateral nearest points
to AV. The first step of distance filter is to divide candidate
points of same laser line into two quadrants based on x value.
For each quadrant the closest point relative to longitudinal
axis (x) is preserved. The following equation represents the
distance filter applied in each laser’s quadrant:

fdist
(
qi,j
)
=

argmin
pi,j

∣∣yi,j∣∣

where qi,j is the j-th quadrant of i-th laser and yi,j is y value
of each candidate points. For each laser quadrant one nearest
point is preserved. The result of distance filter for Pcandidate,l
and Pcandidate,r is Pfilterdis,l and Pfilterdis,r , as shown in Fig 12.

FIGURE 12. An example of candidate points filtered by distance filter
(left is red, right is blue).

B. RANSAC FILTER
When obstacles as pedestrians and cars are present in road,
the distance filter will possibly detect them as curbs. These
obstacles can cause occlusion to sensor and make difficult
to identify actual curbs. The RANSAC filter is introduced
to remove points that located inside road. The RANSAC
algorithm based on the idea of random sampling consistency
is used to estimate the quadratic polynomial model from
candidate points filtered by distance filter and iterates con-
tinuously until the fitted model satisfies as many points as
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possible [26]. After RANSAC filter, all the points whose
distances from fitted model are less than threshold are pre-
served. The result of distance filter for Pfilterdis,l and Pfilterdis,l
is Pcurb,l and Pcurb,r , as shown in Fig 13, which is final curb
points.

FIGURE 13. An example of curb points obtained by RANSAC filter (left is
red, right is blue.

VII. ROAD CURB CURVE FITTING AND TRACKING
A. CURB CURVE FITTING
After curb points filtering, least square method is used to fit
quadratic curve based on Pcurb,l and Pcurb,r . The result is in
the following form:

y = ax2 + bx + c

The fitted road curb curve is represented as LlandLr . As show
in Fig 14, road curb curves are in green.

FIGURE 14. Result of curb curve fitting.

B. CURB CURVE TRACKING
The road curb curve obtained by least square method only
reflects current road condition, which is not smooth. So, it is
necessary to use Kalman filter to smooth the fluctuation of
curb curve. We build a curb curve prediction model and curb
curve measurement model based on accurate vehicle state
data from GPS/IMU system.

1) AMPLITUDE-LIMITING FILTER
Because false detections will have serious consequences for
the decision-making of AV, the Amplitude-Limiting filter

in [13] is used to remove false detections. Only if the result
of detection meets threshold requirement of Amplitude-
Limiting filter, the current curb curve is considered to be
effective and can be input to the update step of Kalman
filtering. Otherwise, the prediction of the previous frame is
used as final detection result. The requirement of Amplitude-
Limiting filter is as follows:∣∣aprevious − acurrent ∣∣ ≤ Ta∣∣bprevious − bcurrent ∣∣ ≤ Tb∣∣cprevious − ccurrent ∣∣ ≤ Tc
where, aprevious, bpreviousandcprevious represent the road
curb curves coefficients detected in previous frame.
acurrent , bcurrentandccurrent represent road curb curves coef-
ficients detected in current frame.

FIGURE 15. The coordinate frames of curb tracking.

2) CURB CURVE PREDICTION MODEL
The curb curve prediction model proposed in [30] is used
for tracking. As shown in Fig 15, the two coordinate frames
(xv,kyv,k ) and (xv,k+1yv,k+1) represent vehicle coordinate at
time k and k + 1 respectively for derivation of the curb curve
tracking algorithm. In order to track the fitted curb curve,
we choose three different points on the fitted curve Ll and
Lr to track which form points Dl and Dr . The three points
have constant x value.

The curb curve prediction model is defined as follows:

x (k+ 1) = A (k) x (k)+B (k)u(k)+ υ(k) (6)
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FIGURE 16. The results of four methods on straight road scenario (left is red, right is blue). In the red box is false points. a) Kang. b) Zhang. c) Zai.
d) Proposed.

where

x (k) =
[
x(k)
y(k)

]
u (k) =

[
1x(k)
1y(k)

]
A (k) =

[
−cos(γk ) sin(γk )
−sin(γk ) −con(γk )

]
B (k) =

[
− cos (γk) sin (γk)
− sin (γk) −con (γk)

]
x (k) and y(k) are coordinates of points in Dl and Dr ,
1x (k) and1y(k) are moving distance between two frames of
x-axis and y-axis, γk is yaw angle of AV Then the predicted
point position can be obtained by Equation (6) which relies
on the precision of GPS/IMU system.

3) CURB MEASUREMENT MODEL
After the points Dl and Dr are obtained the measurement
model is represented by

z (k)= x (k)+ν(k) (7)

where z (k) =
[
zx(k) zy(k)

]T is the measurement vector and
the measurement noise ν(k) is white Gaussian noise with a
covariance matrix R

4) TRACKING ALGORITHM PROCEDURE
Based on the prediction and measurement model above,
a Kalman filter is used to track curb curve to improve the
smoothness of curbs. The tracking algorithm is carried out
by the following steps:

1) Predict state and error covariance matrix at time k + 1
based on result of time k

x(k+ 1|k) = A (k) x (k)+ B (k)u (k)+ ω(k) (8)

P (k+ 1 | k) = A (k)P (k)AT (k)+Q (9)

where, x(k+ 1|k) is the prediction of state vector and x(k)
is the current state vector. P (k+ 1 | k) is the prediction of
error covariance and P(k) is the error covariance of current
state. The process noise ω(k) is white Gaussian noise with
covariance matrix Q

2) If the detection result does not meet the threshold
requirements of Amplitude-Limiting filter, x (k+ 1|k) is the
final result of the tracking algorithm. Otherwise, update the
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FIGURE 17. The results of four methods on curved road scenario (left is red, right is blue). In the red box is false points and in the blue box is the
point that has been misclassified. a) Kang. b) Zhang. c) Zai. d) Proposed.

state and the error covariance matrix as follows:

GK (k + 1) = P (k+ 1 | k) · [P (k+ 1 | k)+ R]−1 (10)

x (k+ 1) = x (k+ 1 | k)+GK (k+ 1)

× (z (k+ 1)− x(k+ 1|k)) (11)

P (k+ 1) = P (k+ 1 | k)−GK (k + 1)P (k+ 1 | k)

(12)

where, GK (k+ 1) is the Kalman filter gain, x (k+ 1) is the
final output of the tracking algorithm. After all the points
among Dl and Dr are tracked using Equations (8)-(12),
the road curb curves of two sides are obtained.

VIII. EXPERIMENT RESULTS
To test the robustness and the effectiveness of the proposed
method, experiments were conducted for both qualitative
and quantitative evaluation. The KITTI and Udacity dataset
[31] and [32] are used to evaluate the proposed algorithm.
These two datasets mainly cover urban and highway scenar-
ios. However, the datasets have no ground truth for road curbs
We have manually labeled curbs in each frame. The proposed
method is tested and evaluated on four typical scenarios
(straight road, curved road, obstacle inside road, obstacle
outside road). The algorithm is implemented by C + + and

PCL on Ubuntu 16.04. All experiments were performed on
a 3.70 GHz Intel Core i7-8700K processor with 16 GB of
RAM.

In order to demonstrate the effectiveness of the proposed
method, the following state-of-the-art methods are employed
for comparison:

Kang et al. [5]: The Hough transformation method.
Zhang et al. [23]: The sliding-beam and feature based

search method.
Zai et al. [15]: The supervoxel generation and graph-cut

method.

A. QUALITATIVE EVALUATION OF THE ROAD CURB
EXTRACTION ALGORITHM
The value of parameters in our curb detection and tracking
algorithm are defined in Table 1.

In straight road scenario (Fig.16), the results of all methods
are similar because of the simplicity of the scenario except
that Kang’s has false points. Besides, we have less miss
detection because of multi-feature loose-threshold method.
In curved road scenario (Fig.17), we can see that Kang’s
could not distinguish left and right curb points accurately
just by lateral coordinates. Zhang’s has fewer points of
error classification, it also cannot work well when the road
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FIGURE 18. The results of four methods on obstacle inside road scenario (left is red, right is blue). In the red box is false points. a) Kang. b) Zhang.
c) Zai. d) Proposed.

TABLE 1. Parameters for experiment.

curvature increases further. And Kang’s and Zhang’s have
false points. Zai’s and our method can correctly classify left
and right curb points. In obstacle inside and outside road
scenario (Fig. 18 and Fig.19) we can see that Zhang’s and
Kang’s method cannot remove false points caused by obsta-
cles inside and outside road. By contrast, our method has
performed better because of curb points filtering proposed
in this paper. Zai’s method also achieves accurate detection
result.

The qualitative evaluation experiments illustrate that the
proposed method is accurate and robust for various road
scenarios. Kang’s and Zhang’s methods cannot deal with
false points because of the lack of filtering process. Besides,
Kang’s method is poor for distinguish left and right curb
points just by lateral coordinates. Compared with Zai’s
method, we have less miss detection and Zai’s method need
trajectory data which is not suitable for practical application.

B. QUANTITATIVE EVALUATION OF THE ROAD CURB
EXTRACTION ALGORITHM
Four different methods are quantificationally evaluated on
two datasets, and 500 typical frames are selected for each sce-
nario. In order to quantificationally evaluate our algorithm,
three quantitative metrics in [33] and [34] are introduced for
a comprehensive evaluation. For convenience, the distance
threshold of true detection is set to 5 cm owing to labeling
error.

1) Precision, which denotes the proportion of curbs
detected correctly in the curbs detected on one side. The
Precision of one frame is the average of the Precision values
of two sides.

Precision =
TP

TP+ FP
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FIGURE 19. The results of four methods on obstacle outside road scenario (left is red, right is blue), In the red box is false points. a) Kang. b) Zhang.
c) Zai. d) Proposed.

TABLE 2. Quantitative evaluation results in kitti.

where TP is the true positive numbers and FP is the false
positive numbers (false alarm).

2) Recall, which denotes the proportion of the curbs
detected correctly in the labeled curbs on one side. The Recall
of one frame is the average of the Recall values of two sides.

Recall =
TP

TP+ FN

where FN is false negative (missed detection).

3) F1, which denotes the harmonic average of Precision
and Recall.

F1 = 2 ·
Precision · Recall
Precision+ Recall

The quantitative evaluation and comparison are given
in Table 2 and 3 It is clear that our proposed method is robust
and achieves the best performance in the two datasets Zai’s
method also obtains good result, however it needs trajectory

VOLUME 7, 2019 24623



G. Wang et al.: Point Cloud-Based Robust Road Curb Detection and Tracking Method

TABLE 3. Quantitative evaluation results in udacity.

data as input. In our experiment, we do not have the future
trajectory of vehicle.

In addition, Zhang’s and Kang’s method achieve poorer
performance for obstacle inside and outside road scenario
than straight road scenario, because the influence of obstacles
inside and outside road is not considered, so the robustness
is poor. Besides, Kang’s achieves the worst performance,
because it cannot also correctly classify left and right curb
points in curved road scenario We can conclude that our pro-
posed method can handle curb detection problem at complex
scenarios and is more robust and achieves better performance.

IX. CONCLUSION
This paper presents a robust method for curb detection
and tracking in structured environment. A multi-feature
loose-threshold layered method is proposed for candidate
points extraction. Based on candidate points, a density-based
method is proposed for classifying left and right candidate
points. Then, a two-step candidate points filter is used to
remove false points caused by obstacles inside and outside
road. Besides, the Amplitude-Limiting Kalman filter is used
to solve the problem of false detection and miss detection.
Comprehensive experiment evaluations clearly demonstrate
that our proposed method achieves better robust and accurate.
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