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ABSTRACT Accurate localization of lung tumor in real time based on a single X-ray projection is of great
interest to the tumor-tracking radiotherapy but is very challenging. In this paper, a convolutional neural
network (CNN)-based tumor localization method was proposed to address this problem with the aid of
principal component analysis-basedmotionmodeling. ACNN regressionmodel was trained before treatment
to recover the ill-conditioned nonlinear mapping from the single X-ray projection to the tumor motion. Novel
intensity correction and data augmentation techniques were adopted to improve the model’s robustness to the
scatter and noise in the X-ray projection image. During treatment, the volumetric image and tumor position
could be obtained by applying the CNN model on the acquired X-ray projection. This method was validated
and comparedwith the other state-of-the-art methods on three real patient data. It was found that the proposed
method could achieve real-time tumor localization with much higher accuracy (<1 mm) and robustness.

INDEX TERMS Convolutional neural network (CNN), PCA breathing motion modeling, single x-ray
projection, tumor localization, volumetric imaging.

I. INTRODUCTION
Lung cancer has been the worldwide leading cause of can-
cer death [1]. In radiation therapy for lung cancer, tumor
motion caused by respiration has a large impact on the
efficacy of treatment [2], [3]. To improve the accuracy of
beam delivery, various motion-management techniques have
been proposed [4], [5]. Especially, repositioning of radiation
beam to follow the tumormovement, or tumor-tracking radio-
therapy, has been increasingly utilized in clinical treatment.
In these techniques, the accurate tumor localization plays a
vital role.

To accurately localize lung tumors, numerous approaches
have been proposed over the past years [6]–[8]. These
methods can be categorized basically into marker-based,
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surrogate-based, andmethods of direct tumor localization [9].
The marker-based localization is currently most commonly
used and proven techniques. However, the requirement of
implanting fiducial markers into the body remains the major
concern of this method, as the marker implanting may
increase the risk of pneumothorax [10]. In addition, the accu-
racy may decline with time due to the marker migration [10].
Surrogate-based technique is an indirect way for tumor
localization based on external signals whose variations are
correlated with the tumor motion, such as skin marker or
lung volume [10], [11]. However, the relationship between
the surrogates and tumor may vary with time, leading to
inaccurate tumor localization. In recent years, the direct
tumor localization methods based on x-ray projection have
gained momentum and drawn more interest. It utilizes image
processing techniques to directly localize the tumor position
from the image. As it is noninvasive and could be more
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reliable than surrogate-based methods, direct tumor localiza-
tion methods have great potential for clinical use.

However, because only one x-ray projection can be
acquired at each gantry angle at one time on common
linear accelerator (LINAC) treatment machines [11], it is
not straight forward to directly localize the tumor position
without implanting markers, especially in rotational radio-
therapy. Prior knowledge is usually needed for this type
of methods [9], [10]. Principal component analysis (PCA)
based motion modeling is one typical method based on prior
knowledge [12]–[14], which could reduce the degree of free-
dom of the problem tremendously. Based on this model,
several methods have been proposed [9]–[11], which could
perform volumetric imaging from one x-ray projection and
obtain the tumor position. The resulting volumetric image can
be used in tumor localization, dose assessment and other clin-
ical tasks [9]. Two types of methods have been proposed to
obtain the volumetric image from single x-ray projection: reg-
istration based methods and regression based methods. The
first registration based method, namely the Motion-Model
(MM)method, was proposed by Li et al. [10], inwhich the 3D
trajectory of tumormotionwas estimated by a forwardmatch-
ing process between a reference 3D image and the acquired
2D x-ray projection. Then theMotionModel – Free Deforma-
tion (MM-FD) method was put forward by Zhang et al. [11],
which utilized a free-deformation registration process to
improve the accuracy of tumor localization. These methods
usually tried to minimize the intensity differences between
the computed digitally reconstructed radiographs (DRR) and
the acquired x-ray projections in the matching process. The
robustness is poor due to the intensity mismatch caused by the
scatter and noise in the projection. While the linear intensity
correction could be applied to alleviate this problem, it is
still a major concern for most of the time and can degenerate
the registration accuracy. Moreover, these methods involve
the complex process of iterative optimization, which could
not achieve the tumor tracking in real-time [9]. To address
these issues, Xu et al. [9] put forward a regression based
method. A linear model was built to approximate the complex
nonlinear mapping from several selected informative image
patches to the organ motion. Although real-time tumor track-
ing has been achieved in digital and physical phantom exper-
iments, the linear model may not be adequate to describe
the complex relationship between the intensity variation and
breathing motion in realistic cases. Besides, the method
applied piecewise linear correction for the scatter and noise
that exist in acquired x-ray projection but not in computed
DRR. This may not be adequate to describe real patient
data.

Recently, convolutional neural network (CNN) has been
applied to many areas of medical image processing. CNN
could automatically extract hierarchy features from image
data and has strong non-linear modeling capability, which
may be potentially suitable for modeling the complex rela-
tionship between the breathing motion and single x-ray
projection

In view of this, we proposed a CNN based volumetric
imaging method to achieve the tumor localization in real
time. In our method, a CNN regression model was utilized
to approximate the complex nonlinear mapping from single
x-ray projection to the tumor motion. Unlike previous meth-
ods, we utilized a novel intensity correction process for the
3D-CT images to narrow down the differences between DRR
and cone-beam CT (CBCT) projections. And a data augmen-
tation technique was applied to enhance the robustness of the
CNN model to noise. As a result, the scatter and quantum
noise were taken into account in the learning process instead
of being handled by the intensity correction in the application
process [9]–[11]. For the computation time, since the forward
calculation of CNN could be highly parallelized, our method
could achieve real-time tumor tracking. To evaluate the effi-
cacy of our method, we compared it with the registration
based methods using the 4D digital extended cardiac-torso
(XCAT) phantom [15] and three real patient cases.

II. METHOD
As shown in Fig.1, our method consists of two stages: pre-
treatment training stage and online application stage. In the
training stage, a PCA based lung motion model was estab-
lished from the planning 4D-CT, according to which we
generated 1000 3D-CT images DRRs by randomly sampling
the PCA coefficients. Next, to handle the problem of the

FIGURE 1. Workfow of the proposed method.
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intensity discrepancy caused by scatter and noise, an inten-
sity correction process and a data augmentation step were
performed. In the intensity correction process, the 3D-CBCT
acquired during pre-treatment simulation procedure is used as
a reference image, the intensity differences between 3D-CT
images and 3D-CBCT image is examined and 3D-CT image
intensity is modified accordingly to increase the similarity
between DRRs from the corrected 3D-CT and the CBCT pro-
jections. These DRRs are further augmented by adding noise
whose distributions were calculated from the actual CBCT
projections to enhance the robustness of the regressionmodel.
Finally, a CNN regression model with a patient-specific loss
function was trained to estimate the complex nonlinear map-
ping from single x-ray projection to the organ motion.

In the application stage, the trained CNN regression model
was applied on the online acquired single x-ray projection to
determine the corresponding PCA coefficients and the defor-
mation vector field (DVF). With the generated DVF, the vol-
umetric image and tumor location were finally obtained.

A. GENERATION OF TRAINING DATA
The PCA-based motion model is the basis of generating
training data. We describe the model in the following.

Consider there are N phases of 3D-CT images within one
breathing cycle. Without loss of generality, the volumetric
image at the end-expiration phase was selected as the ref-
erence CT image. By utilizing deformable image registra-
tion [16]-[20], a set of DVFs between this reference CT
image and 3D-CT images at other phases can be obtained.
Each calculated DVF corresponding to one phase was rep-
resented by a column vector of the size [3 × NvoxelCT , 1],
where 3 represents the 3-dimensional motion; NvoxelCT
denotes the number of voxels in CT image. And a matrix M
was formed by these N column vectors. Principal component
analysis (PCA) was performed on the matrix M and the
principal components (eigenvectors) of the lung motion were
acquired. Then any DVF relative to the reference CT image
could be represented by a linear combination of a group of
eigenvectors as:

F ≈ F̃ +
∑k

i=1
piqi. (1)

Here,F is a DVF, and F̃ is the averagedmotion vector field.
p and q refer to the PCA eigenvectors and their corresponding
PCA coefficients, respectively. The subscript i is the index
of the eigenvectors. k is the number of principal components
that we utilized to describe the tumor motion. Based on previ-
ous studies [16], we chose three principal components which
were able to reliably represent the original DVF. Using more
PCA coefficients could increase the computational complex-
ity and may cause overfitting problem [9].

To generate the training data, we first calculated 1000
DVFs by randomly sampling the PCA coefficients. Because
the range of tumor motion during treatment could be larger
than that in the 4D-CT from CT simulation, the sampling
range was set to be larger than the amplitudes of the PCA

coefficients in the planning 4D-CT. In this study, the range
of possible tumor motion was set to 5 cm, which was
much larger than the averaged range of tumor motion in
patients [9], [10]. Then, the corresponding volumetric images
were obtained by deforming the reference CT with the gen-
erated DVFs.

The DRRs computed from the generated 3D-CT Image
can be in principle used to train the CNN model directly.
However, these DRRs were free of scatter or quantum noise
that exists in the actual x-ray projection images. As demon-
strated in the following experiments, the CNN model trained
using these ideal DRRs performed poorly on realistic x-ray
projections. Therefore we performed the following additional
intensity correction and data augmentation.

B. INTENSITY CORRECTION FOR 3D-CT IMAGE
To realize the accurate tumor localization for clinical treat-
ment, the intensity discrepancy between the training DRRs
and the CBCT projections need to be minimized. In this
work, we proposed an intensity correction method for 3D-CT
images so that the computed DRRs have a high similarity
with the CBCT projections. The idea was based on the fact
that 3D-CBCTwas reconstructed using the actual projections
and the DRR of the 3D-CBCT image has great similarity with
the CBCT projection. Therefore, it is possible to improve the
similarity between the DRRs and the CBCT projections by
correcting or replacing the intensity of the 3D-CT according
to the 3D-CBCT.

Applying deformable registration between the 3D-CBCT
image and the 3D-CT image is one way to perform intensity
correction. However, themoving part of the patient’s anatomy
in the 3D-CBCT image, such as tumor and diaphragm, was
blurred due to the respiratory motion. The blurry may be
propagated to the corrected 3D-CT and the generated DRR.
Because of this, we proposed to separate the ribcage part
(with less motion) and moving tissue part from both the 3D-
CT image and 3D-CBCT image, and establish the mapping
for the ribcage part and moving tissue part separately. The
work flow of the intensity correction is shown in Fig.2.

For the ribcage part, including the rib, spine and other parts
of patient anatomy that have little movement, we applied a
deformable registration between the 3D-CBCT image and
3D-CT image. Then we deformed the 3D-CBCT ribcage
image with the calculated DVF, and the ribcage part of
the 3D-CT image was replaced by the deformed 3D-CBCT
image.

The moving tissue part extracted consisted of lung, heart,
tumor, diaphragm and other tissues which had large move-
ment caused by breathing motion. For this part, we utilized a
linear intensity correction strategy:

IcorrectedCT = (ICT−MeanCT ) ·
StdCBCT
StdCT

+MeanCBCT . (2)

Here, ICT and IcorrectedCT represented the intensity of the
original moving tissue in 3D-CT image and the corrected
moving tissue 3D-CT image, respectively.MeanCT and StdCT
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FIGURE 2. Workflow of intensity correction.

denoted the mean value and the standard deviation of inten-
sity of the original moving tissue in 3D-CT image,MeanCBCT
and StdCBCT for the corresponding 3D-CBCT image. This
way, the corrected 3D-CT moving tissue image should have
the same mean value and standard deviation of intensity with
the 3D-CBCT.

Finally, the whole corrected 3D-CT image is obtained
by combining the ribcage part and corrected moving tissue.
As Shown in Fig. 3, compared to the DRR from uncorrected
CT, the DRR from corrected CT has much greater similarity
with the CBCT projection.

FIGURE 3. Comparison among (a): DRR of uncorrected CT. (b): CBCT
projection. (c): DRR of corrected CT.

C. DATA AUGMENTATION
According to Fig. 3, although the differences between the
DRR of corrected CT and CBCT projection had been sig-
nificantly reduced, there still exists intensity inconsistency
between the DRR and CBCT projection, which would ham-
per the accuracy in tumor localization. To circumvent this,
we performed some experiments in the following manner.
We calculated the residual images between the CBCT pro-
jections with different breathing phases and the correspond-
ing DRRs of the corrected CT. It was found that the joint
two-dimensional histograms between the DRR and residual
images had basically the same probability distribution for the
intensity, which meant the differences between the DRR and
CBCT projections could be treated as a sort of noise with
certain distribution. Based on these findings, we proposed a
data augmentation process by adding random noise to DRRs

with the distribution calculated from the two dimensional
histogram to enhance the robustness of the CNN regression
model.

The noise was chosen to follow a conditional probability
distribution and determined as follows. Firstly, we calculated
the residual images between the CBCT projection and its
corresponding DRR generated from corrected 3D-CT. The
intensity of residual image and DRR from corrected CT
image was rescaled into integer range [0, 1000].

Then, the joint histogram between the DRR image and
residual image was calculated as follows:

Hist(i, j) =

W∑
x=1

H∑
y=1

δ[IDRR(x, y)−i] · δ[IRes(x, y)−j]

W · H
. (3)

Here, Hist(i, j) denotes the probability of the intensify
of DRR being i and the intensity of residual image being j
simultaneously. W is the width of the image in pixels, and H
is the height of the image. IDRR(x, y) and IRes(x, y) denote the
intensity of DRR and residual image at the coordinate (x, y),
respectively. δ is the discrete impulse function.

According to the above histogram, we generated random
noise image whose intensity followed a conditional probabil-
ity distribution as below:

P(INoise(x, y)=n|IDRR(x, y)=m)=
Hist(IDRR(x, y), n)

1000∑
k=1

Hist(IDRR(x, y), k)

.

(4)

Here, IDRR(x, y) denotes the intensity of the pixel in
rescaled DRR at the coordinate (x, y). INoise(x, y) indicates
the value of the random noise image at the same coordinate.
Hist() was the two dimensional histogram we just obtained.
P(Noise(x, y) = n|IDRR(x, y)) means the probability of
INoise(x, y) being the value of n on the condition that IDRR(x,
y) equals to m. Then, m was rescaled to the original range in
residual image.

Finally, we could obtain the final training projection by
integrating the calculated DRR with the above random noise
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FIGURE 4. Architecture of CNN regression model.

image, as follows:

IFinalProj = IDRR +Wrandom · INoise. (5)

Here, IFinalProj is the final training projections. IDRR stands
for the intensity of the converted DRR. Wrandom is a random
coefficients matrix, whose each element is a random number
with the continuous uniform distribution in the interval of
[0, 1). INoise was the random noise we generated following
Eq. (4). For each DRR, we generated 100 training projections
to enhance the robustness of the trained CNN model.

D. CNN REGRESSION MODEL
The nonlinear mapping from single x-ray projection to the
tumor motion is complex and strong non-linear modeling
capability is required for the network. Meanwhile, the struc-
ture of the network should not be too complicated, since it
needs to be forward calculated in real-time. Based on these
considerations, the structure of the CNN and training process
were designed as in Fig. 4.

1) NETWORK ARCHITECTURE
The proposed CNN consists of four layers, as shown in Fig. 4.
The first three layers are aimed at extracting hierarchical
features from the input image and each one contains two sub-
layers:
(1) Conv + BN + ReLU: for this type of sub-layer in

Layer li (i = 1, 2, 3), a 3 × 3 convolution calculation
was firstly conducted to generate 2(i+2) feature maps.
Then the rectified linear units (ReLU) were applied for
nonlinearity. Batch normalization was added between
the convolution and the ReLU to speed-up the training.

(2) Max-pooling: A 2 × 2 max-pooling with stride 2 was
utilized to down-sample the feature map generated
from the previous sub-layer.

Layer l4 was a fully connected multi-layer network
and composed of three layers: a fully connected layer
of 1024 units, a drop-out layer with ratio of 0.5 and an output
layer with 3 neurons, corresponding to the estimated PCA
coefficients.

In this CNN regression model, three convolutional layers
were selected based on experimental results. When only two
convolutional layers were included in the network, it seemed
that the network was insufficient to model the complex

nonlinear mapping from single x-ray projection to tumor
motion. The training loss could not converge to the stopping
threshold, even if we increased the number of the feature
maps extracted by the convolutional layers. On the other
hand, we found more than three convolution layers in the
network would lead to over-fitting problem. The experiment
showed that four convolutional layers led to a faster conver-
gence of the training loss but a lower accuracy in estimating
tumor location on the testing dataset. Therefore, we utilized
three convolution layers in this network, so that themodel was
able to recover the complex nonlinear mapping accurately.

2) LOSS FUNCTION
To have a fixed criterion of stopping training for different
patients, we utilized a normalized mean square error as the
loss function. Moreover, to improve the accuracy of tumor
localization, weights of PCA coefficients were introduced to
the loss function, which ensured the first coefficient had the
highest estimation accuracy. The expression of the function
given as follows:

H =
1
N

N∑
i=1

1
3
·
∥∥u ◦ wcoeff ◦ (yi − G(xi,W ))

∥∥
2. (6)

Here N stands for the number of training samples in one
iteration, which was 200 in our experiment. ||. ||2 denotes
the L2 norm, and ◦ means the element-wise multiplication
of matrices. xi is the i-th training image, and yi refers to
the PCA coefficients, namely the label of the i-th training
image. W is the parameters of the network which need to
be learned. G(xi, W ) is the output of the regression model.
u = [1/u1, 1/u2, 1/u3] is the normalization factor, where ui is
the standard deviation of the i-th PCA coefficients in training
labels. By normalizing the PCA coefficients, we can have the
same criterion of stopping the training for different patients.
In our experiment, the training was stopped when the value of
the loss function was less than 0.05, which meant the average
error of estimated PCA coefficients was less than 5%. wcoeff
represents the weights of the PCA coefficients, which is a unit
vector. In our method,wcoeff was empirically set to be [2/

√
6,

1/
√
6, 1/
√
6] based on experiments. The loss function was

optimized using Adam method with exponentially decaying
learning rate.
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3) TRAINING
During the training, the PCA coefficients were used as the
labels, and all the 100000 training images were divided into
1000 groups. The images in one group shared the same PCA
coefficient, but consisted of different noise information. The
model was trained with the mini-batch stochastic gradient
decent method. The size of the training batch was set to
be 200. At each training iteration, 200 groups were first
randomly selected from the 1000 groups. Then, one training
image was randomly picked from each chosen group to form
the final training batch, which was fed into the model along
with their corresponding labels.

E. ONLINE TUMOR LOCALIZATION
To localize the tumor position, we need to find out the tumor
localization in reference CT image first. Once an x-ray pro-
jection is acquired during the treatment, it will be fed into
the CNN regression model to obtain the PCA coefficients
corresponding to the x-ray projection. Then the DVF of the
patient anatomy could be obtained with the generated PCA
coefficients, as the following:

Fpatient = F̃ +
3∑
i=1

piQi. (7)

Here, Fpatient is the desired DVF of the patient’s anatomy.
F̃ and pi refer to the averaged motion vector field and the i-th
principal components in the PCAmotion model, respectively.
Qi is the i-th PCA coefficient we obtained from the CNN
model. Since the tumor position is known in reference CT
[21], [22], we could find out the tumor movement in 3D
space according to the three dimensional vector of the same
position in the generated DVF. The volumetric image cor-
responding to that x-ray projection image can be generated
by deforming the reference CT with the generated DVF. This
volumetric image may be used for dose assessment and other
clinical tasks.

F. EXPERIMENT DESIGN
To demonstrate the efficacy of the proposed method,
we tested the performance of the CNN based method on both
the simulated data and actual patient images.

1) EXPERIMENTS ON SIMULATION IMAGES
a: EXPERIMENTAL DATA
To evaluate the algorithm, we generated a ten phase 4D-CT
with a 10 mm-diameter tumor in the middle of left lung using
the 4DXCAT phantom [15]. The CT image of each phase had
a resolution of 256×256×151 voxels with a physical size of
51.2×51.2×30.2 cm3. Respiratory signal from actual patient
was utilized, and the respiration-induced tumor motion had
peak-to-peak amplitudes of 0.2 cm, 1 cm and 1.5 cm in the
left-right (LR), anterior-posterior (AP) and superior-inferior
(SI) directions, respectively. The 4D-CT data was used to
train the network as presented previously.

To simulate the 3D-CBCT for intensity correction, the pro-
jection images including breathing motion are needed.
To achieve this, four new sets of DVFs were inserted between
two neighboring phases of 4DCT with cubic spline interpola-
tion, resulting in a total of 50 sets of DVFs. They are used
to generate 50 CTs representing patient anatomy during a
breathing cycle of 5 seconds. A typical LINAC gantry rotates
at the speed of 1 round/per minute, therefore 600 projection
images would be produced during one CBCT acquisition
which contains 12 breathing cycles. Each projection image
is generated from one of the 50 CTs according to the phase
by the EGS_CBCT program [23], which considers the scatter,
quantum noise and other features that exist in realistic x-ray
projections. Then the 3D-CBCT image was reconstructed
using these simulated scatter-included projection images.

For the test dataset, we first obtained volumetric images by
deforming the reference CT using DVFs generated through
randomly sampling the PCA coefficients. By using a wide
sampling range, the generated images contain tumor motion
range of 0.5 cm (LR), 1.5 cm (AP) and 2 cm (SI), larger than
that in 4D-CT. Then, the test x-ray projections were computed
under the same geometry with the training ones using the
EGS_CBCT programwhose resolution were 256×256 pixels
with a spacing of 2 mm. The test volumetric images and PCA
coefficients were utilized as ground truth in the evaluation of
the algorithm.

b: EVALUATION METRICS
We evaluate the proposed method from three aspects: the
accuracy of the generated PCA coefficients, the reconstructed
volumetric images and the estimated tumor location. The
computation time of our algorithm will also be discussed.

To quantitatively analyze the accuracy of the estimation
of PCA coefficients, a normalized error was computed as
follows:

ei =
‖wi −Wi‖2

si
. (8)

Here, the subscript i (i = 1, 2, 3) is the index of PCA
coefficients. wi, Wi, and si represent the i-th estimated PCA
coefficient, the i-th ground truth PCA coefficient and the
standard deviation of the i-th ground truth PCA coefficient,
respectively.

We also compared the ground truth volumetric images and
the predicted volumetric images using the normalized RMSE,
as given below:

RMSEnorm =
1
u

√∑n
i=1 (x(i)− X (i))

2

n
. (9)

Here, x refers to the intensity of the calculated images. X
means the intensity of the ground truth images. n represents
the number of voxels in the image. u is the standard deviation
of the intensity of ground truth images.

To evaluate the accuracy of tumor localization of our
method, we computed the average relative errors between the
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TABLE 1. Tumor parameters of real patients.

estimated tumor position and ground truth in three directions,
as given below:

−→
P error =

∑∣∣∣−→P estimated −
−→
P ground

∣∣∣
N

. (10)

Here,
−→
P error is a three dimensional vector that represent

the average relative errors.
−→
P estimated infers to the vector

of estimated tumor position in LR, AP and SI directions.
−→
P ground is the ground truth of the tumor location. N refers
to the number of the test subjects, which was 100 in our
experiment.

To show the advantage of the proposed method, we also
compared it with two conventional registration-based meth-
ods: the MMmethod of Li et al. [10] and MM-FD method of
Zhang et al. [11]. Linear intensity correction step was utilized
to handle the inconsistency between the DRR and acquired
x-ray projections for the MM method and MM-FD method.

2) EXPERIMENTS ON REAL PATIENT STUDY
a: PATIENT DATA
The algorithm was also evaluated on three patient datasets.
For the first patient, the 4D-CT was acquired on four-slice
GE LightSpeed CT scanner and synchronized with the Var-
ian RPM system. The CT dimensions was 512 × 512 ×
106 voxels with a resolution of 1.26 × 1.26 × 3 mm3.
The cone beam projections were acquired for treatment
positioning on an Elekta VersaHD LINAC using half-fan
mode (120 kV, 20 mA, and 20 ms). The projection had a
dimension of 512 × 512 pixels and a resolution of 0.8 ×
0.8 mm2. Both the second and third patient data were
from RTK website (http://wiki.openrtk.org/index.php/RTK/
4DROOSTERReconstruction). The 4D-CT datasets were
512× 512× 170 voxels with a resolution of 0.88× 0.88× 2
mm3 and 512×512×218 voxels with a resolution of 1.37×
1.37 × 2 mm3, respectively. The CBCT projections of these
two patients were both 512× 512 pixels with a resolution of
0.8 × 0.8 mm2. For the three patients, the size and motion
range of the tumors were shown in Table 1.

For each patient, the CBCT projections at angle of 0◦, 30◦,
45◦, 60◦ and 90◦ were utilized to test the performance of the
proposed method. And the CBCT projections at other angles
were utilized to reconstruct the 3D-CBCT image. With the
4D-CT data and reconstructed 3D-CBCT, the CNN regres-
sion models were trained as described previously.

b: EVALUATION METRICS
For our experiment, we examined retrospectively some
patient data. No patient was implanted with fiducial markers,

therefore real-time location of tumor could not be automati-
cally obtained to evaluate our algorithm. However, the tumors
are visible on some of the cone beam projections. Therefore,
for each projection where tumor was visible, the contour of
the tumor was defined by one clinician and confirmed by
another. For the first two patients, the size of the tumor were
small and isocenter of the cone beam scan was not placed at
the center of tumor, therefore the tumors were only visible
at angles ranging from 30◦ to 95◦. For the third patient,
the tumor was fairly large and it was basically visible at
angle from 10◦ to 120◦. Based on the angle ranges where
the tumors were visible for all three patients, we chose pro-
jections at 30◦, 45◦, 60◦, and 90◦ to test the efficacy of our
method. To reduce the uncertainty of the true position of
tumor, its contours on the chosen projections were further
refined based on the tumor contours defined in adjacent
projections, this ensured the continuity of the tumor motion.
The tumor centroid positions were calculated from the refined
clinician-defined tumor contours on the chosen projections
and considered as the ground truth. Then, we projected the
estimated tumors’ 3D location onto the 2D imager, and the
errors between estimated tumor position in 2D image and
the ground truth were computed in horizontal and vertical
directions to quantitatively evaluate the performance of the
proposed method. Moreover, the result of MM and MM-FD
methods were also included in the comparison.

We also tested our method on the projections where tumors
were barely visible. For the CBCT projections at 0◦ where
tumor cannot be observed, the diaphragm position was uti-
lized for the evaluation of the proposed method. Similarly,
the diaphragm position was marked by one clinician and
confirmed by another. Then, we calculated the DRR of the
reconstructed volumetric image, and performed similar eval-
uation and comparisons with the MM and MM-FD methods.

It is worth to point out that the uncertainty in the ground
truth of tumor position cannot be avoided, even though
some measures had been taken to minimize it. Therefore,
we divided four clinician into two groups and estimated
the uncertainty in the ground truth definition based on the
difference between these two groups. It was shown that the
errors in centroid position calculated from clinician-defined
tumor contours were about 0.5 – 1.0 mm on average. And the
error in the diaphragm height was around 0.6 - 0.8 mm

III. RESULTS
A. RESULTS FOR SYNTHETIC STUDY
1) PCA COEFFICIENTS
In this section, we compared the calculated PCA coefficients
and the ground truth PCA coefficients. The normalized rel-
ative errors of the first, second and third estimated PCA
coefficients at angle of 90◦ are shown in Fig. 5, and their mean
values are presented in Table 2.

Based on these results, we have the following observations:
Firstly, the absence of data augmentation and intensity cor-
rection leads to larger errors in estimated PCA coefficients.
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FIGURE 5. The results of PCA coefficients estimation.

TABLE 2. Mean relative error in estimated PCA coefficients.

The errors in results without intensity correction and data
augmentation were at least two times larger than the ones
with intensity correction and data augmentation. This demon-
strated the importance of the data augmentation and intensity
correction; Secondly, the error in the first PCA coefficient
was significantly less than the errors in other PCA coeffi-
cients. This was in line with our expectation, since the first
component dominated the lung motion and had the largest
effect on the accuracy of volumetric imaging and tumor
localization.

2) VOLUMETRIC IMAGES
With the generated PCA coefficients, the deformation vec-
tor fields were calculated and the corresponding volumetric
images were obtained accordingly. The quantitative compar-
ison between the ground truth volumetric images and the
estimated volumetric images were shown in Fig. 6 using
the normalized RMSE metric. It is evident that the proposed
method has much better performance than the MM or MM-
FD method on all test subjects.

Table 3 lists the mean value and standard deviation of
the normalized RMSE for different cases. Both the MM
method and MM-FD method performed relatively well for
the scatter-free x-ray projections, with the normalized RMSE
below 3%. And MM-FD method had a slightly better accu-
racy due to the free deformation process.When the projection
angle was changed from 0◦ (acquired from AP direction) to
90◦ (acquired from LR direction), RMSE increased slightly.
However, if the scatter was included in the simulated x-ray

FIGURE 6. The results of normalized RMSE at different angles.

TABLE 3. The statistics of normalized RMSE of different cases.

projections, the accuracy of MM method and MM-FD
method not only suffered dramatically but also declined obvi-
ously from 0◦ to 90◦ due to the increased level of scatter
and noise in the x-ray projections. Applying linear intensity
correction could alleviate the effect of scatter to some extent,
but the normalized RMSE of these two methods were still
more than 3%.

On the contrary, the proposed CNN basedmethod achieved
good results even for the projections including scatter. The
mean normalized RMSE of the reconstructed volume was
below 0.4% in all the cases, much better than the two con-
ventional methods. In addition, there was no obvious differ-
ence in accuracy at different angles. These demonstrate the
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robustness of the proposed method to the projection angle,
scatter and noise of the projections.

3) TUMOR LOCALIZATION
The tumor location was calculated using the resulting DVF
from the above experiments. As shown in Fig.7, the result
of proposed method was better than the conventional ones.
Moreover, we quantitatively analyzed the accuracy of all the
methods. Table 4 summarizes the mean value and standard
deviation of the errors in tumor localization for different
cases. The result is consistent with the result of normalized
RMSE for volumetric image comparisons. For MM method,
comparedwith scatter-free projections, the tumor localization
accuracy for scatter-included projections declined obviously.
Although applying intensity correction could improve the
accuracy, there still existed large error in the AP and SI
directions. These led to the errors more than 1.4 mm in 3D
space. As forMM-FDmethod, it had an improved accuracy in
tumor localization due to the additional registration process.
Compared to the results of MM method, the 3D errors at
different angles for the scatter-included x-ray projections
were reduced by more than 0.1 mm, which meant MM-FD
method had better performance in tumor localization than
MM method. For the proposed CNN method, the tumor
localization errors in three directions were <0.1 mm in all
the cases and the errors in 3D were <0.2 mm at different
angles. This was clearly much better than the results of the
conventional methods. Besides, our method was very robust
and showed no performance variation for different angles.

FIGURE 7. The 3D errors in tumor localization for different methods.

Number of training projections and weights of loss func-
tion are important parameters involved in the proposed
method. In the following experiments, we analyzed their
effects on the performance by comparing the results of dif-
ferent settings. As the three evaluation metrics are consistent,
we mainly evaluated the mean error of tumor localization
in 3D.

TABLE 4. Statistics of errors in tumor localization of different cases.

B. PARAMETER ANALYSIS
1) NUMBER OF TRAINING PROJECTIONS
The effect of number of training projections is firstly investi-
gated in this section. In ourmethod, the number of the training
projections was decided by two processes: the generation of
the 3D-CT images from the PCA motion model and the data
augmentation for the DRRs. Table 5 shows the results with
different parameters in these two processes.

TABLE 5. Results for different number of training projections.

According to the results from the case 1 to case 3 in
Table 5, it can be seen that we improved the accuracy of tumor
localization by utilizing more 3D-CT images generated by
sampling the PCA coefficients. However, further increased
number of the generated 3D-CT imageswould lead to training
time rising sharply. Actually, when too many 3D-CT images
were generated for the training, such as 1200, there would be
a significant increase in the number of epochs but a minor
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promotion in the final accuracy. Therefore, we obtained 1000
3D-CT images from the PCA motion model to generate the
training projections.

Moreover, by comparing the results of case 2 with that
of the case 4 and case 5, we can see similar effect on the
final accuracy caused by adjusting the number of training
projections produced in data augmentation step. Along with
the increase of the number of training projections, the final
accuracy would be improved, but the training process would
also be prolonged. As we can see from the result of case 5,
compared to case 2, there was tiny improvement in the accu-
racy of tumor localization but sharp increase in the training
time, which resulted from too many training projections.
Hence, to balance the performance and efficiency, we utilized
the parameters of case 2.

2) WEIGHTS OF LOSS FUNCTION
Another issue is the weights in the loss function. It is impor-
tant to set proper weights of PCA coefficients in the loss
function to achieve the best performance. Since the first coef-
ficient plays a dominating role in the lung motion, we mainly
discuss the effect of the first coefficient weight on our algo-
rithm. To optimize the weight of the first coefficient, we cal-
culated the results from three different cases with synthetic
data at 90◦ and evaluate them with the relative error in PCA
coefficients as well as the mean error of tumor localization in
3D. The result is demonstrated in Table 6.

TABLE 6. Results of different weights in loss function.

Table 6 shows the second case has the best performance
in tumor localization. For case 1, equal weights of the three
PCA coefficients would lead to larger error in the first PCA
coefficients. Since the first PCA coefficient dominates the
respiratory motion, the tumor localization was estimated with
low accuracy. The case 3 had the largest weight for the
first PCA coefficient, but it also resulted in a decline in the
accuracy of localizing tumor position due to the large errors
in the estimation of the second and third PCA coefficients.
Based on the results above, we use case 2 as the optimal
weights.

C. RESULTS FOR REAL PATIENT STUDY
1) TUMOR LOCALIZATION
For each patient, we extracted the tumor contour from the
estimated volumetric image and computed the location of

FIGURE 8. The ground truth and result of tumor localization of three
methods.

the tumor centroid in 3D space. Both the tumor contour and
location of tumor centroid in 3D space were projected to the
DRR of the reconstructed volumetric image. Fig. 8 shows the
clinician-defined tumor contour and the ground truth of tumor
centroid position on the CBCT projections at various angles.
Moreover, the projection of the estimated tumor contour and
calculated tumor centroid location from three methods were
also drawn. As it is seen, the estimated tumor location was
quite accurate for all three patients at different angles.

Table 7 lists the tumor localization error for different meth-
ods. For the MM method, it had the largest errors in tumor
localization, which were more than 1.1 mm in X direction and
1.4 mm in Y direction for all patients at different angles. And
the statistics of errors for 3 patients were around 1.5 mm and
1.93 mm in X direction and Y direction, respectively. It also
can be seen that when the projection angle varies from 90◦

to 30◦, there was a trend of increasing errors in Y direction,
which may be the result from the decreasing visibility of the
tumor. Moreover, for MM method, there was an increase in
the average errors for single patient when the range of tumor
motion becoming large.

As forMM-FDmethod, it achieved better results compared
to MM method. To be more specific, MM-FD method had
less mean tumor localization errors in both directions than
MM method. However, the minimum errors in X and Y
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TABLE 7. Errors of tumor localization for real patients.

directions for all cases were still more than 1.0 mm and
1.2 mm, respectively. Besides, similar to MM method, when
the projection angle changed from 90◦ to 30◦ or the range of
tumor motion increased, there was an increase in the errors
of tumor localization for MM-FD method.

For the CNN based method, the maximum value of tumor
localization errors in two directions were both <0.9 mm;
the average errors for single patient were <0.8 mm in two
directions; and the mean values of the errors for all the
three patients were only 0.71 mm and 0.76 mm in X and Y
direction. Moreover, there was no obvious difference in the
performance of the CNN based method for all the three
patients with different ranges of tumor motion and projection
angles. These results demonstrate that the proposed method
was more accurate and robust.

2) HEIGHTS OF DIAPHRAGMS
For the CBCT projections where the tumor was basically not
visible, we can still estimate the position and shape of the
tumor contour in 3D space. As shown in Fig.9, the estimated
tumor contours were drawn on DRRs and CBCT projections,
and the heights of the diaphragm in DRRs were highly con-
sistent with that in CBCT projections.

To evaluate the efficacy of the CNN based method quanti-
tatively, we compared the diaphragm height estimation results
of the proposed CNN based method with that from the two
conventional methods. Similar with the result of the tumor
localization, MM method had the largest error in estimat-
ing the position of the diaphragm, whose mean value was
1.6 mm for all the cases. MM-FD method performed better
than MM method due to the free-deformation registration
process. However, it still had an average error of 1.2 mm
because of the large inconsistency betweenCBCT projections
at 0◦ and the corresponding DRRs. As for the CNN based
method, the results of the first two patients were consistent
with the ground truth, and error of third patient was only
0.8 mm, which meant, compared to the conventional method,
the proposed method had higher accuracy in estimating the
position of the diaphragm for the projections at 0◦.

D. COMPUTATION TIME
In this work, we ran the experiments on a PC with Intel Core
i7-5960X (3.0 GHz), 32GB memory and a NVIDIA GTX

1080 Ti graphic card. For the proposed method, it would cost
about 30-40 minutes for the network training. And during
the application stage, it took 36 milliseconds to apply the
CNN model and calculate the tumor position from single
x-ray projection, which allows for real-time tumor tracking
during treatment. If the corresponding information of patient
anatomy is needed, our method is able to reconstruct the
volumetric image within 1 second, which can be further
accelerated by GPU.

IV. DISCUSSION AND CONCLUSION
In this study, we developed a CNN-based regression method
for tumor localization from single x-ray projection. A motion
model was build using PCA with prior knowledge for the
estimation of deformation vector fields. Unlike the pre-
vious methods, we utilized a CNN model to recover the
ill-conditioned nonlinear mapping from single x-ray projec-
tion to tumor motion. Moreover, novel intensity correction
process and data augmentation step were proposed to handle
intensity discrepancy between DRR and CBCT projection
caused by the scatter and quantum noise. The proposed
method was validated using simulation and actual patient
images, and experimental results showed that our algorithm
could localize the tumor position and reconstruct the vol-
umetric images with significantly higher accuracy than the
conventional registration-based methods. Furthermore, our
algorithm was capable of real-time tumor tracking.

In addition, we found that, for both MM and MM-FD
methods, inappropriate initial values of the PCA coefficients
for registration could lead to decreased accuracy in tumor
localization. Since the first PCA coefficient usually has a
large range, it is difficult to set an appropriate initial value
to achieve the best performance of the algorithms for all
the x-ray projections. On the contrary, our approach had no
parameter that need to be tuned for different x-ray projec-
tions. Once the CNN regression model was trained, the per-
formance of our approach had no preference for different
x-ray projections. Therefore, compared with the MMmethod
and MM-FD method, the performance of our method was
more consistent in regard to projection angles.

In our current method, a CBCT scan and its associated raw
projection images of the patient are needed for the intensity
correction. This may seem to be an obstacle in the practical
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implementation, as the data processing and CNN training
take some time and may not be completed while the patient
is on the treatment table. In actual practice, the CBCT and
projection images are often acquired during the pre-treatment
simulation procedure which occurs typically one day before
the first fraction treatment, so patient positioning and images
can be verified and approved and marks can be placed on
patient. This should provide ample time for the CNN training.
During the actual treatment, the application of the CNN
model is instantaneous. In addition, several improvements
can be made in the procedure to speed up the processing to
make it nearly real-time for situations that the pre-treatment
simulation is not available. Firstly, current implementation
utilized hard disk for training data sharing (about 60 GB)
between different procedures. Saving all the training data
in memory could greatly reduce the time spent. Secondly,
using more powerful GPUs to train the CNN model could
also speed-up the training process. In addition, the proposed
intensity correction procedure does not need the accurate
information of the CBCT scan from the same patient, but
the discrepancies between the 4D-CT and 3D-CBCT, there-
fore, the correction can be based on the information from a
patient-population based average. However, further investi-
gation is needed to validate this.

For the future work, since the proposed method could
only be used for IMRT, we will develop a method that
could localize the real time tumor position from CBCT
projections at varied angle, which will be preferable
for VMAT.
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