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ABSTRACT Heart rate variability (HRV) and electrodermal activity (EDA) are useful tools for assess-
ing the central and peripheral dynamics of the sympathetic nervous system and detecting the effects
of numerous systemic diseases and life-challenging situations. However, the indices of HRV and EDA
are highly influenced by mental stress, environmental conditions, body position, and other physiological
conditions that introduce variability. In this paper, we assessed the five-day reproducibility of HRV and
EDA measures of sympathetic control, for N = 20 subjects undergoing 70◦ head-up tilt test (HUT) and
Stroop task tests. We made the assessment in highly controlled conditions without environmental causes
of variability, to have a good baseline understanding of the consistency of the various indices of HRV and
EDA. Therefore, we assessed intra-subject variation (using the coefficient of variation, CV) and consistency
(using the intra-class correlation coefficient, ICC) of the test-to-baseline differences produced by both tests
on the studied measures. The low-frequency component of HRV (HRVLF), and its normalized variant was
computed as HRV measures of sympathetic control. For EDA, the skin conductance level, frequency of
non-specific skin conductance responses, spectral index (EDASympn), and time-varying index (TVSymp)
were computed. TVSymp (ICC = 0.85) and HRV indices exhibited higher consistency during the HUT
(ICC ≥ 0.8), compared to other EDA measures, and HRVLF was the least variable measure (CV = 85.4%).
EDA indices exhibited higher consistency (except for the EDASympn) during the Stroop task (ICC ≥ 0.79)
when compared to HRV, and TVSympwas the least variable measure (CV = 97.2%). Remarkably, TVSymp
proved to be a reproducible measurement (low variation and high consistency) in both scenarios. These
results are the necessary groundwork for studying the use of EDA and HRV in real-world conditions,
as reproducibility of the indices has remarkable importance in clinical practice.

INDEX TERMS Autonomic nervous system, electrodermal activity, heart rate variability, reproducibility,
Stroop task, tilt table test.

I. INTRODUCTION
Wearable sensors and diagnostic systems are a promising
advancement for the assessment of systemic diseases (dia-
betes, hypertension, heart failure, and so on) and other life-
challenging conditions (stress, drowsiness, and so on). Those
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conditions can be potentially assessed using data from the
central and peripheral modulations of the sympathetic branch
of the autonomic nervous system (ANS) [1]–[7]. There are
two main tools available for noninvasive assessment of the
dynamics of the ANS: the heart rate variability (HRV) [8]
and the electrodermal activity (EDA) [9], [10]. However,
variables such as environmental conditions, body position,
and other physiological functions of the subjects may lessen
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the reliability of such techniques for the assessment of the
ANS [11], [12]. Repeatability is especially important for
wearable technologies, because their readings are provided
continuously to the subject, and the consistency of the mea-
surements will greatly affect adoption rates [13]–[15]. Hence,
assessing the reproducibility of HRV and EDA is a necessary
research task.

Traditional techniques for assessing sympathetic function
involve hemodynamic measurements [16], pharmacological
blockade [17], noradrenaline measurement [18], microneu-
rography [19], plasma noradrenaline kinetics [20], imaging
techniques [21], HRV analysis [8], [22], or measurement of
sweat production (e.g. EDA)[23]. Among those techniques,
only HRV and EDA can provide continuous, non-invasive
and affordable means for sympathetic function assessment.
Because of the simplicity of the technique, HRV analysis
is the most widely employed technique to evaluate sympa-
thetic function. HRV is a non-invasive indicator that reflects
the homeostatic interplay between perturbations in central
(cardiovascular) functions and the dynamic responses of the
cardiovascular regulatory systems [8]. The low-frequency
components of HRV (0.04-0.15 Hz) are commonly used as
a marker of sympathetic control, even though this frequency
band is also known to be influenced by the parasympathetic
nervous system. Hence, the LF band is not an accurate mea-
sure of the sympathetic dynamics.

In clinical practice, reliable techniques for the assess-
ment of sympathetic tone of the ANS are needed because
of the prevalence of autonomic balance impairment in cer-
tain cardiovascular diseases and pathophysiological condi-
tions [24], [25]. A widely used noninvasive means to assess
the dynamics of the ANS is to compute the power spec-
tral density of HRV [8]. The high-frequency components of
HRV are known to be solely influenced by the parasympa-
thetic system. In contrast, the low-frequency (0.045-0.15 Hz)
components of HRV (HRVLF or HRVLFn when normal-
ized to total power of HRV) are influenced by both the
sympathetic and parasympathetic nervous systems. Results
concerning the reproducibility of HRV both in the time
and frequency domain are controversial. Some found poor
reproducibility [26], [27], but others found the opposite
result [28]–[30]. Overall, higher reproducibility has been
found for spectral parameters, when compared to temporal
parameters [26], [31]. General reproducibility can be
achieved using controlled breathing [1]. Nevertheless, the
reproducibility of the spectral indices of HRV is still a matter
of debate [32], [33].

EDA is being increasingly used as a measure of the sym-
pathetic function [10]. One of the advantages of EDA is
that sudomotor activity is known to be solely controlled
by the sympathetic nervous system [34]–[36]. Traditionally,
analysis of EDA has been in the time-domain [9], using skin
conductance level (SCL) and nonspecific skin conductance
responses (NS.SCRs). However, several studies have reported
low reproducibility of these time-domain indices [11], [37].
Time-invariant and time-variant spectral analysis of

electrodermal activity have recently been reported as tools for
sympathetic tone assessment [37], [38]. The resulting indices,
EDASymp and TVSymp, demonstrated lower intra-subject
variability compared to time-domain measures of EDA, and
higher consistency and sensitivity to orthostatic and cognitive
stress compared to SCL and NS.SCRs.

There have been many reports questioning the consistency
of EDA data even during short duration recordings with
minimal motion artifacts [9], [11], [37], [39], [40]. Despite
this prevailing skepticism, no study has ever analyzed the
consistency and reliability of short-term EDA signals in an
extremely controlled environment, which is the logical first
step. Hence, our study specifically deals with this problem,
as we rely on highly-controlled signals to compute the indices
on which we evaluate the consistency and repeatability of
EDA data. For this study, we explored the intra-subject
repeatability of HRV and EDAmeasures, for healthy subjects
performing the 70◦ head-up tilt (HUT) test and the Stroop
task. Data were collected from the same group of subjects
over five different days, without breathing control.

II. MATERIALS AND METHODS
A. PROTOCOL
Twenty healthy volunteers (11 males, 9 females) of ages
22 ± 5.6 years old (mean ± standard deviation), weight
70 ± 9.7 kg, and height 173.5 ± 7 cm, were enrolled in
this study. Participants were asked to avoid caffeine and
alcohol during the 24 hours preceding the first test and at least
five hours before each subsequent test. The study was con-
ducted in a quiet, dimly lighted room (ambient temperature,
26-27 ◦C). Before each sub-test, the subjects were asked to
stay still in the supine position for 5 minutes to procure hemo-
dynamic stabilization. ECG and EDA data were recorded
simultaneously for each subject. An HP ECG monitor
(HP 78354A) and an EDAADInstruments module were used,
respectively. Hydrogel Ag-AgCl electrodes were employed
for ECG signal collection. For the EDA, a pair of stainless-
steel electrodes were placed on index and middle fingers.
Subjects’ skin was prepared with alcohol before placing the
ECG and EDA electrodes. All signals were recorded at a
sampling frequency of 400 Hz.

Participants were asked to put the three ECG electrodes on
themselves. The first electrode was placed on the inside of
the right wrist, the second electrode was placed on the inside
of the left wrist, and the third electrode was placed on the
left lower rib. The EDA electrodes were placed on the index
and middle fingers of each subject’s right hand. Every day,
subjects underwent two sub-tests: 70◦ head-up tilt (HUT) and
the Stroop task. For all subjects, the order of tests was always
HUT first, then the Stroop task. These tests are described
below.

1) 70◦ HEAD-UP TILT (HUT) TEST
The HUT is a simple standardized test. A procedure simi-
lar to the one described in [41, p.] was used. For baseline
measurements, the subjects were asked to lie down on the
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table and were then strapped to it (horizontal is defined
as 0◦). We allowed 5 minutes for hemodynamic stabilization,
prior to starting the ECG and EDA signal recording that
was continuous throughout the test. The subjects stayed in
the supine position for 5 minutes, to collect baseline data.
Afterwards, the table was tilted to an angle of 70◦, with
the subject’s head up. The subject remained in that position
for 5 minutes.

2) STROOP TASK
The Stroop task is a simple test widely used for measuring
cognitive stress. A procedure similar to the one documented
in [42] was used. After baseline readings, a five-minute
Stroop test was conducted. For baseline measurements, sub-
jects were asked to lie down on the tilt table described above.
Subjects were in the supine position (0◦) throughout the entire
experiment. The subjects were asked to remain in the supine
position, with their eyes closed for five minutes, while we
collected baseline data. After that, subjects were asked to
speak the color of the ink of a word presented to them which
named a color. They were shown congruent (the word was
written in the color it expressed) and incongruent (the word
and the color it was printed in were different) combinations
to induce cognitive stress (Stroop effect) [42]. The words and
colors were ‘‘blue,’’ ‘‘yellow,’’ ‘‘green,’’ ‘‘red,’’ ‘‘purple’’ and
‘‘black’’. The background also changed to be randomly con-
gruently or incongruently colored with the word. A comput-
erized version of the original Stroop task was designed. The
Stroop task was 5 minutes total. ECG and EDA signals were
recorded throughout the test. On day one, subjects underwent
a one-minute training version of the Stroop task.

B. PHYSIOLOGICAL INDICES OF THE AUTONOMIC
NERVOUS SYSTEM
Measures to assess the sympathetic function of the ANS
based on HRV and EDA were computed using data collected
during the five days of testing for each subject undergoing
the HUT and Stroop task. We chose the indices of HRV
and EDA based on the recommendations of the standards
of measurement, physiological interpretation, and clinical
use of HRV [8] and the published recommendations for
EDA measurements [9]. Furthermore, we included indices of
EDA recently developed in our lab [37], [38]. To ensure the
quality of physiological data, subjects were asked to stay still
while performing the tests, with no movement other than the
tilting of the table.

The duration of the data segments was chosen based on the
minimum duration of the data considered to be usable [8], [9].
In other words, if data are collected continuously using a
wearable device, a data segment of at least 4 minutes for ECG
or 2 minutes for EDA needs to be collected (for example,
based on an implemented signal-quality index), so the index
of sympathetic control can be computed. The assumption
is that although data collection on wearable devices can be
corrupted (e.g. by motion) most of the time, there will be
segments of at least such duration available for computing

the indices. Tools for the assessment of the quality of ambu-
latory EDA data have recently been published [43].

1) INDICES OF ELECTRODERMAL ACTIVITY
The EDA data were inspected for spikes introduced by
motion artifacts. All identified events were removed by con-
necting the end points of the motion artifact spike using cubic
spline. A median filter (1-second width) was also applied to
remove noise. For each trial, two minutes of clean EDA sig-
nal were extracted during baseline rest and for each of the
two tests (HUT and Stroop task), to compute the measures
of EDA. From baseline recordings, two complete minutes of
data ending 30 seconds before the tests started were used
to assure the most stabilized signal. From the HUT and
Stroop task, the two-minute EDA data segment was extracted
starting 30 seconds after the subject started the test, to avoid
any distortion caused by the transition from baseline to test.
Measures of EDA were computed by analyzing the data in
the time and frequency domains.

In the time domain, the EDA signal was decomposed into
tonic and phasic components, using the convex optimization
approach [44]. The skin conductance level (SCL, expressed
in microsiemens, µS), an index related to the slow shifts
of EDA, was computed as the mean value of the tonic compo-
nent of EDA taken during a two-minute period [9]. The fre-
quency of non-specific skin conductance responses (SCRs),
termed NS.SCRs, an index related to fast changes of EDA,
was measured as the number of SCRs whose amplitudes were
higher than a given threshold (0.05 µS, in this study), per
minute [9].

The time-invariant spectra of EDA were calculated
using Welch’s periodogram method with 50% data overlap.
A Blackman window (length of 128 points) was applied
to each segment, the fast Fourier transform was calculated
for each windowed segment, and the power spectra of the
segments were averaged. The power spectral index of EDA,
EDASymp [µS2], was computed by integrating the power in
the range from 0.045 to 0.25 Hz, as such range was previously
found to be sensitive to cognitive stress [37].

To compute the time-varying index of EDA, TVSymp, the
time-frequency spectra of EDA data were computed using
variable frequency complex demodulation (VFCDM), a time-
frequency spectral analysis technique that provides accurate
amplitude estimates and one of the highest time-frequency
resolutions [45]. The components comprising the frequency
power in the range from 0.08 to 0.24Hzwere used to compute
TVSymp, as defined in a previous study [38]. Amplitudes
of the time-varying components in this band are summed
together to obtain an estimated reconstructed EDA signal
(X ′(t)), which is then normalized to unit variance, and its
instantaneous amplitude is computed using the Hilbert trans-
form [46], as follows

Y ′(t) =
1
π
P
∫
∞

−∞

X ′(τ )
/
(t − τ )dτ (1)
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where P indicates the Cauchy principal value. X ′(t) and
Y ′(t) form the complex conjugate pair, so we can define an
analytic signal, Z (t), as

Z (t) = X ′(t)+ iY ′(t) = a(t)ejθ (t) (2)

in which

a(t) =
[
X ′2(t)+ Y ′2(t)

]1/2
(3)

θ (t) = arctan
(
Y ′(t)/X ′(t)

)
. (4)

The resulting a(t) is considered the instantaneous ampli-
tude of Z (t). TVSymp is computed as the mean amplitude
of a(t). Notice that TVSymp is a dimensionless quantity as it
was normalized to the standard deviation.

2) INDICES OF HEART RATE VARIABILITY
For each trial of the two tests (HUT and Stroop task),
four minutes of clean ECG signals during baseline and
test were used to compute HRV indices. ECG signals were
band-pass filtered (0.05-40 Hz) to reduce noise and motion
artifacts. The R-waveform peaks were detected using the
detection algorithm that defines a delineation function based
on the envelope of the ECG signal [47], [48]. In addi-
tion, all segments were visually inspected to ensure that no
R peak (beat) was missed. The R-R interval series were
converted to an evenly time-sampled signal (4 Hz) by cubic
spline interpolation. Using the heart rate (HR) time series
for each trial, the power spectra of HRV were then calcu-
lated using Welch’s periodogram with 50% data overlap.
A Blackman window (length of 256 points) was applied
to each segment and the fast Fourier transform was calcu-
lated for each windowed segment. Finally, the power spectra
of the segments were averaged. The low-frequency index
(HRVLF [ms2], 0.045 to 0.15 Hz), and normalized version
of it (HRVLFn = HRVLF/Total power of HRV) were com-
puted [8]. Indices from the low frequency range of HRV
(HRVLF and HRVLFn) are widely used as indices of sym-
pathetic tone [8]. Indices from the high frequency power
(0.15 to 0.4 Hz), termed HRVHF an d HRVHFn, are used as
indices of parasympathetic function, and were not considered
in this study, as we focused on measurements of the sympa-
thetic control in the ANS.

C. STATISTICS
The set of measures of sympathetic control based on HRV
and EDA computed in this study is: HRVLF, HRVLFn,
SCL, NS.SCRs, EDASymp and TVSymp. For the HUT and
Stroop task, ten measurements of each index were collected
(i.e. baseline and test measurement for each of the five days).
Two-way repeated measures analysis was performed to test
the consistency of the test-to-baseline differences during the
five days (defined as the first factor), and the individual con-
sistency of the measures (defined as the second factor). Nor-
mality of the measurements through the five days was tested
using the Kolmogorov-Smirnov test [49]–[51]. For repeated
measures analysis in normally-distributed data, the two-way

FIGURE 1. Baseline and HUT measures of HRV and EDA for the five days,
for all subjects. The letter ‘‘a’’ represents baseline measurements, and
‘‘b’’ represents test measurements.

analysis of variance (ANOVA) was performed to test for sig-
nificant differences between measures. If non-normality was
found in a specific index, the Friedman test was used [52].
The Bonferroni method was used for correction of multiple
comparisons.

The difference between test and baseline measures was
computed every day for the HUT and Stroop task. The
analysis of reproducibility of such differences was carried
out using the computed test-baseline differences. The intra-
subject five-day coefficient of variation (CV) (i.e. the stan-
dard deviation divided by themean) of eachmeasure for every
subject was computed. The mean and standard deviation of
the intra-subject CV values (for the N = 20 subjects) was
calculated to assess the overall level of variation of each of
the eight measures. The intra-class correlation (ICC) was
computed for each measure to estimate its degree of con-
sistency [53], for the N = 20 independent subjects, using
the five day measures. For the interpretation of ICC, an ICC
lower than 0.4 was considered poor consistency, 0.4 to 0.75
represented good consistency, and >0.75 represented excel-
lent consistency beyond chance [54].

III. RESULTS
Figs. 1 and 2 are the box plots for baseline and test measure-
ments for all the HRV and EDA measures computed, for the
H UT and Stroop task, respectively, during the five days of
testing, for all subjects. Table 1 includes the significant dif-
ferences found between HUT and baseline measures. For the
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FIGURE 2. Baseline and Stroop task measures of HRV and EDA for the
five days. The letter ‘‘a’’ represents baseline measurements, and ‘‘b’’
represents test measurements.

HUT test, the repeated measures analysis found that test-to-
baseline differences in SCL, NS.SCRs, and EDASympn were
not significantly different. TVSymp, HRVLFn and HRVLF
were significantly different in most HUT measures, com-
pared to baseline measures. Day-2 HUTmeasures of HRVLF
were only different to the baseline of days 2 and 4. As for
the second factor (individual consistency), all indices were
significantly affected by the inter-subject variability of the
HUT (p < 0.05).

For the Stroop task, only TVSymp exhibited significant
differences between all test measures and all baseline mea-
sures (Table 1). SCL and NS.SCRs showed many differ-
ences between test and baseline measures, although some test
measures were too low (e.g. SCL on day 3, NS.SCRs on
days 4 and 5). EDASympn and HRVLF were not found to
be significantly different between test and baseline measures
in the repeated measures analysis. Significant differences
were found between test and baseline measures in HRVLFn,
for most of the days. The second factor (individual consis-
tency) was statistically significant for all indices, excluding
TVSymp (p = 0.64). No baseline-to-baseline or test-to-test
differences were found in any index.

Results from the analysis of reproducibility of test-to-
baseline difference indices of HRV and EDA, for both the
HUT and Stroop task, are shown in Tables 2 and 3, respec-
tively. For the HUT, the highest variation (assessed by CV)
was exhibited by NS.SCRs (634%), followed by EDASympn
(498%), SCL (413%), and HRVLFn (182%). TVSymp exhib-
ited a variation of less than 200%, and HRVLF was the only

TABLE 1. Significance of test-to-baseline differences in EDA and HRV
indices for the HUT and stroop task during the five day experiment,
for all subjects.

measure with a CV lower than 100%. As for the consis-
tency (assessed by ICC), HRVLF exhibited the highest con-
sistency (0.83), followed by TVSymp (0.75), and HRVLFn
(0.73); only these measures exhibited excellent consistency
beyond chance. SCL and NS.SCRs exhibited good consis-
tency (0.46 and 0.63, respectively), and EDASympn exhib-
ited poor consistency (<0.4).
For the Stroop task, the highest variation was observed

in HRVLF (424%), HRVLFn (371%), SCL (280%), and
EDASympn (264%). Only TVSymp and NS.SCRs exhibited
a CV lower than 200%, and TVSymp was the least variable
index overall. Based on the ICC, HRVLFn exhibited the high-
est consistency (0.7), followed by TVSymp (0.66), NS.SCRs
(0.64), and SCL (0.42). Those values are all considered good
consistency. HRVLF (0.38) and EDASympn (0.39) exhibited
poor consistency.
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TABLE 2. Results for test-to-baseline differences of EDA and HRV indices for the HUT, for all subjects.

TABLE 3. Results for test-to-baseline differences of EDA and HRV indices for the Stroop task test, for all subjects.

IV. DISCUSSION
In this study, we evaluated the five-day reproducibility of
HRV and EDA measures of sympathetic control, for sub-
jects undergoing HUT and Stroop task tests. We aimed
to elucidate the question of which measure of sympa-
thetic control available from HRV and EDA analyses is
more reproducible in the presence of postural and cogni-
tive stress. For that, we assessed intra-subject variation and
consistency of the test-to-baseline differences produced by
both tests on the studied measures. The HRV indices of
sympathetic control computed in this study (HRVLF and
HRVLFn) exhibited higher consistency in the HUT, com-
pared to the Stroop task. This suggests that postural stim-
ulation produces more reproducible changes in the central
level (HRV is caused by the sympathetic modulation on the
heart). Three of the computed EDA indices (SCL, NS.SCRs,
and EDASympn) exhibited overall low consistency for the
HUT and the Stroop task. Nevertheless, TVSymp, a measure
resulting from the time-varying spectral analysis of EDA,
exhibited low variability compared to all other indices, and
good-to-high consistency for both tests, which makes it the
most reproducible measure overall. Interestingly, the effect
of the Stroop task on TVSymp is consistent among sub-
jects, as no individual effect was found in the two-way
analysis.

Results of the repeated measures analysis were consis-
tent with these findings. Test-to-baseline differences were
more consistent in HRV measures for the HUT test, and in
EDA measures for the Stroop task. Beyond the consistency
analysis, there is another observation possible in Figs. 1 and 2.
The TVSymp captures a ‘‘learning effect’’ for both the HUT
and Stroop task tests. Apparently, test measures on day 1were
particularly high compared to other days (although not sta-
tistically significant). Day 2 through day 5 measures seem
more stable, like a plateau. It suggests an extra stress on day 1
caused by the expectation and/or ignorance of the subjects
about the effects and difficulty of the tasks. This variation is
also captured by the SCL for the Stroop task.

Sympathetic tone normally increases with postural stim-
ulation [55]. The HUT has been previously used to elicit
sympathetic activation, and HRVLF components have been
shown to be sensitive to such a test [56], [57]. In this study,
we found measures computed using such components to be
highly reproducible in response to the HUT. This suggests
that the central autonomic mechanisms elicited by HUT pro-
duce highly consistent effects on the low-frequency innerva-
tions of the heart. Likewise, some previous studies have found
a significant increase in HRVLF components in response to
the Stroop task [58], [59]. The opposite results have also
been reported [38]. In this study, we found those indices were
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highly variable intra- and inter-subject, and their consistency
was only fair.

The EDA dynamics exhibit both tonic and phasic changes,
regulated by sympathetic innervation of the sweat glands.
Variations in EDA are a product of the innervation of sweat
glands that result in changing levels of sweat in the ducts [60].
Functionally, EDA is associated with central mechanisms
that play different roles, including gross movements, ther-
moregulatory sweating, affective processes, orientation and
attention, and fine control [61], [62]. Although sweat glands
make up part of the sympathetic-cholinergic system and
were thought to exclusively respond to peripheral stimulus
(i.e. thermoregulatory sweating), the electrodermal response
is inhibited in response to pharmacological central depres-
sants in a manner analogous to its action on other sympathetic
systems [63], [64]. This has led some researchers to conclude
that a central adrenergic inhibitory mechanism is involved in
the regulation of the electrodermal activity [64], [65]. In gen-
eral, the time-domain measures (SCL and NS.SCRs) are
known to be consistent with sympathetic arousal, as they are
elevated by administration of dextroamphetamine, caffeine,
and threatening situations [66], [67]. They also exhibited
relatively low within-subject variability in a study looking at
the test-retest (one repetition) correlation, but high vari ability
between subjects [11]. This long-running concern about the
variability of EDA has impeded the widespread use of these
indices for assessing the state of activation of the sympathetic
system. Our results show that a robust index of EDA based on
the time-frequency spectrum (TVSymp) is more consistent
and less variable than traditional measures of EDA.

Very few studies have looked at the response of EDA to
the HUT task. A study reported an increase in the SCL in
the tilt-negative group [68]; another study found significant
differences in time-domain and spectral indices of EDAwhen
subjects were tilted, compared to the supine position [38].
In this study, we found poor consistency of SCL in response
to HUT. NS.SCRs exhibited good consistency, but were
highly variable. As for the spectral indices, TVSymp was the
most consistent measure in response to HUT, with moderate
variations intra- and inter-subject. The sensitivity of measures
of EDA to the Stroop task have been shown before [37], [38].
In this study, we found that the changes in SCL, NS.SCRs
and TVSymp are highly consistent in response to such a test.
EDASympn exhibited high variability and poor consistency
for both the HUT and Stroop task.

V. CONCLUSION
This study evaluated the reliability of non-invasive sym-
pathetic indices derived from EDA data. In this work,
we examined the reliability and consistency of short-duration
EDA during controlled conditions with minimal artifacts.
This was motivated by the lack of studies even addressing the
consistency and reliability of short-term EDA signals during
controlled conditions. We believe that lack of faith in the
consistency of EDA data is one of the primary reasons why
the use of EDA has not yet gained wide acceptance by the

research community. Analysis on long-duration EDA data
with motion artifacts is the logical next step which requires
advanced algorithms for detecting and removing motion
artifacts.

We found that the autonomic sympathetic response to pos-
tural stimulation is more reproducible in the HRV, compared
to the EDA. Despite their sensitivity, most EDA indices
exhibited low reproducibility in response to postural and
cognitive stress. However, the measure resulting from the
time-varying analysis of EDA, TVSymp, was found to be a
reproducible measure in both scenarios. For practical appli-
cations using wearable technologies, where reproducibility of
the indices has remarkable importance, TVSymp along with
measures of HRV can be obtained to produce more reliable
tests for the evaluation of sympathetic function, and possibly
enable the assessment of the progression of systemic diseases
that affect the sympathetic autonomic response in humans.
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