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ABSTRACT Large-scale integration of renewable energy, such aswind and solar power generations, imposes
an unprecedented challenge on power system operation, because wind/solar power output is volatile, while in
the power system, the generation must balance load in real time. Failure of maintaining power balance may
trigger contingency or even blackout, especially when renewable generation quickly increases or decreases
during a certain period, which is called a ramp event. Since wind power cannot be predicted accurately, it is
difficult to determine the incremental change in two consecutive time periods, not to mention the probability
of a ramp event. This paper addresses this problem from the perspective of uncertainty quantification. The
likelihood of a ramp event is cast as a data-driven robust probability inequality, which provides the probability
of a random variable with unknown distribution belonging to a given polyhedron. To tackle the distributional
uncertainty of wind output, we consider a collection of candidate distributions in an ambiguity set constructed
from available data. The minimal requirements include the forecast value and the mean-absolute deviation,
and the moment-based ambiguity set is comprised of all probability distributions that share the same values
of mean and mean-absolute deviation. With more available historical data, a meaningful divergence-based
ambiguity set can be set up which encapsulates all probability distributions that are close to an empirical
distribution in the sense of Wasserstein metric. The proposed approach offers the probability upper bound
of a ramp event in the worst-case wind power distribution, and the conservatism can be remarkably reduced
whenmore historical data are at hand. The proposedmethods are comparedwith theGaussianmixturemodel,
validating their effectiveness and advantage.

INDEX TERMS Data-driven optimization, forecast, ramp event, uncertainty, wind power.

I. INTRODUCTION
Under the transition to a green and sustainable society,
wind power has witnessed fast growth worldwide in the
past decades. However, wind power is inherently stochastic
because of the weather condition. Since generation must
balance load instantly, a large change of power output in a
short period, which is called wind power ramp event [1], [2],
would bring great challenge to power system operation.Wind
power ramp events could be divided into two categories
based on the direction: upward ramp and downward ramp.

The associate editor coordinating the review of this manuscript and
approving it for publication was Canbing Li.

Upward ramp events are usually caused by strong low pres-
sure air systems, wind gusts, low-level jets and thunder-
storms. On the contrary, downward ramp events occur due to
the reversal of the aforementioned phenomenons [3]. In an
upward ramp event, the system operator has to reduce the
power output from conventional generators or curtail some
wind generation; In a downward ramp event, the operator
needs the support from the reserve capacity, or shed some
load if the reserve is not adequate [4], [5]. All of these ramp
events will increase operation costs and risks. As a result,
better detection and forecasting of wind power ramp events
could warn the operators and help them deploy proactive
strategies to prevent risky failures.
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As an important technique, detecting wind power ramp
event has been studied by many researchers. Reference [6]
proposes a two-stage method to detect and categorize large
wind ramps based on thewind farm data from theWind Power
Prediction Tool (WPPT) in Australia. A classifier model is
developed in [7] based on support vector machine (SVM)
to address the one-step and multi-step ahead classification
of wind power ramp events. In [8], an optimal detection
technique is proposed to identify wind ramps for large time
series. A family of scoring functions with ramp definitions
is given and a dynamic programming recursion is applied to
detect ramp events. In [9], a swinging door algorithm (SDA)
is applied to identify ramp events from historical data. This
method requires only one parameter in its definition, and
has significant advantages in computational efficiency and
robustness against noisy data. Reference [10] adopts the SDA
to extract ramp events from actual and forecasted wind power
time series considering ramp magnitude, direction and dura-
tion. The relevant research is extended in [11], in which an
optimized swinging door algorithm (OpSDA) is proposed for
ramp detection. Compared to the SDA, the OpSDA could
optimally determine the tunable SDA parameter and segre-
gate the wind power output, so significantly improves the
performance in detecting wind power ramp events.

Based on the ramp detection technique, the ramp fore-
casting technique could provide the warning information
ahead of several minutes or hours and help the operators
to schedule the system operation in advance. In general,
the forecasting of wind power ramp events could be divided
into two categories: deterministic forecasting and probabilis-
tic forecasting. For the former one, [12] develops a multi-
variate time series model to forecast the wind power ramp
rates based on data-mining algorithm. In [13], a temporal
ramp forecasting model is presented using multiple numer-
ical weather prediction (NWP) inputs, statistical processing
and adaptive algorithms. A hybrid forecasting model called
Orthogonal Test-Support Vector Machine (OT-SVM) is pro-
posed in [14] to improve the accuracy in ramp forecasting.
Based on the joint advantages of the orthogonal test and
support vector machine (SVM), this technique considers the
irregular characteristics of ramp events, and has high accu-
racy covering different input numbers and time resolutions.
In [15], the physical meaning of wind power ramp events
is clarified and a combined forecasting models based on
the atomic sparse decomposition (ASD) and back propaga-
tion (BP) neural networks is proposed. Three forecasting
models including atomic components self-prediction model,
error component prediction model and combination predic-
tion model are developed and compared through the real
wind data in China. Based on the Wind Forecast Improve-
ment Project (WFIP), [16] investigates the ramp forecasting
accuracy from the aspects of ramp magnitude, direction and
duration. The improved forecasting performance benefits the
system operation in terms of economy and reliability.

The aforementioned studies rely on a deterministic
paradigm while the uncertainties of wind ramp events

are neglected. Probabilistic approach provides statistical
information of wind ramps and could help system oper-
ators make better dispatch decisions to cope with these
risky events. In [17], a probabilistic wind ramp forecasting
model is developed using large temporal scales information.
An autoregressive logit model is proposed in [18] to simul-
taneously estimate the ramp event probabilities for differ-
ent thresholds based on a multinomial logit structure and
categorical distribution. Taking the ramp slope and phase
forecasting errors into account, a short-term ramp forecasting
model is proposed in [19], where a probability density func-
tion is estimated for the wind power and then is applied to
provide probabilistic information of encountering wind ramp
events. In [20], a neural network (NN) is proposed to model
the stochastic process for wind power scenarios generation,
and the distribution properties of ramp events are analyzed
based on these possible scenarios. An analytical generalized
Gaussian mixture model (GGMM) is developed in [21] to
characterize the probability distributions of different ramp
features, and then the cumulative distribution function of
GGMM is applied to design a random number generator
for ramp features. In [22], a logistic regression technique is
applied to conduct a temporal ramp forecasting model. The
temporal uncertainty of wind ramp events is addressed based
on wind power scenarios generated from quantile forecasts of
wind power, so as to provide additional probabilistic informa-
tion for decision makers. In [23], a generalized Gaussian mix-
ture model is developed to describe the wind power forecast-
ing errors generated from a machine learning technique, and
generate quantity of forecasting errors scenarios. TheOpSDA
is applied to conduct the probabilistic wind power ramp
forecasting based on the generated scenarios under different
weather and time conditions. By considering the stochastic
correlation of different wind ramp features (magnitude, rate,
start-time and duration), [24] investigates a conditional prob-
abilistic wind power ramp forecastingmodel based on Copula
theory. The Gaussian mixture model (GMM) and Bayesian
information criterion are applied to fit and choose the optimal
copula model for improved accuracy in prediction.

Above probabilistic approaches conduct statistical analysis
based on an empirical distribution of wind power. How-
ever, on the one hand, calibrating an exact probability dis-
tribution requires enough historical data, which may not be
available at hand; on the other hand, any parametric distri-
bution may not completely fit real data, and the statistical
analysis may be sensitive to the change in the distribution
of uncertain data [25]. A possible way to overcome the
above difficulties is to adopt distributionally robust opti-
mization method [26], [27]. This method considers a fam-
ily of distributions around the empirical distribution; the
result provides a conservative estimation on the probability of
target event, and is robust against perturbations in probability
distribution.

In a distributionally robust optimizationmodel, uncertainty
is described by a probability density function (PDF); how-
ever, the PDF is inexact, and a family of candidate PDFs
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are taken into account, constituting a so-called ambiguity set.
According to available information, the ambiguity set can be
constructed by two methods. One uses moment information,
such as those in [26] and [28], and the other incorporates an
empirical distribution and divergence measure, such as those
in [29] and [30]. This paper studies probabilistic forecasting
of wind power ramp events from the uncertainty quantifi-
cation perspective [31], [32]. Robust probability inequali-
ties with two ambiguity sets are proposed to estimate the
probability of ramp events which makes no reference to an
exact wind power distribution. The first one only requires
a point forecast and the mean-absolute deviation of forecast
error and takes the unimodality of forecast error distribution
into account; the second one needs an arbitrary number of
historical realizations of wind power data. Both models are
data-driven and give rise to computationally tractable convex
optimization problems, which could be solved via off-the-
shelf solvers.

The rest of this paper is organized as follows. The uncer-
tainty quantification model for forecasting of wind power
ramp events is explained in Section II, following which
the two data-driven approaches are presented, including the
moment-based one and its equivalent second-order cone pro-
gram, as well as the divergence-based one and its equivalent
linear or second-order cone program, leveraging the compu-
tational superiority of convex optimization. Case studies are
conducted in Section III, in which the proposed methods are
compared with Gaussian mixture model, demonstrating their
effectiveness and advantages. Finally, conclusion is drawn in
Section IV.

II. PROPOSED MODELS
A. UNCERTAINTY QUANTIFICATION MODEL
Wind power ramp takes place in a large-scale wind farm con-
nected to a power transmission network. In the existing liter-
ature, a ramp event is defined in several ways. In [1] and [12],
it refers to the large change of wind farm output over several
periods (say, 20% capacity in 30 minutes or 1 hour) or the
rapid change ratio of wind farm output in a short period.
The difference between maximum and minimumwind power
during a number of periods is also considered as a ramp event
in [1].

In this paper, we study the ultra-short term forecast of
single-period ramp defined in [1]: the change of wind power
in two successive dispatch periods (usually one hour) exceeds
a threshold. Assuming that the point wind power forecasts
in future two successive periods are available, e.g., using the
method in [33], it is easy to identify the incremental change of
wind power output and thus detect a ramp event in a determin-
istic way. However, point forecast suffers from inaccuracy
and could provide either conservative or optimistic results
to the system operator. As a result, probabilistic ramp fore-
casting with confidence level information is highly desired,
such as the conditional interval prediction method in [34].
Nevertheless, because a ramp event involves the output in two
different periods, both of which are uncertain, it is difficult

to extract the wind power movement from the conditional
interval prediction method.

FIGURE 1. Illustration of wind power ramp event.

Fig. 1 illustrates a potential ramp event. The point forecasts
in periods 1 and 2 are we1 and we2, respectively. Determin-
istic method compares the difference we1 − we2 with a pre-
specified threshold to judge a ramp event. However, as both
values are uncertain and belong two certain intervals, the real
incremental change could be either larger or smaller than
we1 − we2, jeopardizing the credibility of result. In the worst
case, the movement wu1 − w

l
2 constitutes a more severe ramp

event; in the optimistic case, the movement wl1−w
u
2 may not

be classified as a ramp event. In this regard, the uncertainty of
w1 and w2 will be considered in this paper. We do not make
assumptions on the exact probability distribution of forecast
error; instead, we will make full use of distributional informa-
tion recovered from limited data, and render a conservative
estimation on the probability of a ramp event.

Let w = [w1,w2]T be a vector of random variable, and
f (w) its probability density function (PDF). The probability
of an upward ramp event can be expressed by

Pr {w ∈ W } (1)

where Pr[·] stands for the probability of an event, and

W =

w
∣∣∣∣∣∣

0 ≤ w1 ≤ C
0 ≤ w2 ≤ C
w2 − w1 ≥ RU

 (2)

whereC represents the capacity of the wind farm; RU denotes
the upward ramp threshold. The probability of a downward
ramp event can be set up in a similar way by replacing the
last constraint with w1 − w2 ≥ RD, where RD denotes the
downward ramp threshold.

Evaluating the probability in (1) requires a PDF of w. For
example, we may assume w obeys Gaussian distribution, and
estimate themean and variance via curve fittingmethods [35].
However, such a parametric distribution may not be able to
reflect the true distribution of wind power.

To circumvent the difficulty in PDF acquisition, we pro-
pose to consider a family of uncertain PDFs restricted in an
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ambiguity set S, and aim to identify the most pessimistic out-
come, giving rise to the following distributionally robust
uncertainty quantification problem

sup
f (w)∈S

Pr {w ∈ W } (3)

In probability theory, such a problem is also known as a
probability inequality [36]. Some famous examples in which
first- and second-order moments are known include the uni-
variate Chebyshev’s inequality, Gaussian ineqaulity and their
generalizations for multivariate cases [37], [38]. Problem (3)
is actually a functional optimization problem. Pr[·] defines a
mapping from PDF f (w) to a real number, and the decision
variable is f (w), which is a real-valued function. In other
words, for every w ∈ W , the value f (w) is a decision variable.
In this regard, the number of decision variables is infinite,
and the feasible region is S. If w follows any distribution
contained in S, the actual probability of ramp event should
be no greater than the optimal value of (3). This prudent
estimation could preserve sufficient security margin in the
presence of PDF perturbations, and thus is acceptable in
power system operation.

B. MOMENT-BASED METHOD
UNIMODALITY
A probability distribution f (w) ∈ S for w ∈ Rk is unimodal
with center m if tk f (B−m/t) is non-decreasing in t > 0 for
all Borel set B ∈ B(Rk ) [39].
The unimodality means that the PDF has a single maxi-

mum. Under above assumption, themoment-based ambiguity
set is constructed as

S1 =
{
f (w)

∣∣∣∣Ef (w) = m,Ef (|w−m|) = σ
f is unimodal with center m

}
(4)

The moment-based ambiguity set S1 considers all PDFs that
share the same mean valuem and mean-absolute deviation σ .
In addition, we require the PDF f (w) is unimodal.
Substituting S1 into problem (3), the resulting uncertainty

quantification problem can be reformulated as the following
form [32].

inf 1− λ+ σ T η (5a)

s.t. λ ∈ R, θ ∈ R2, η ∈ R2
+, π ∈ R+ (5b)

− η ≤ θ ≤ η, λ ≤ 1 (5c)

−
2
3
θ ≤

2
3
θ + πs ≤

2
3
θ (5d)

λ ≤
27
4
[π (RU − sTm)]

2
3 (5e)

where s = [−1, 1]T ; λ, θ , η and π are all auxiliary variables.
In problem (5), the objective function (5a) and constraints

(5b)-(5d) are all linear, while constraint (5e) brings computa-
tion difficulty due to the power item.

However, we find out that constraint (5e) is actu-
ally convex. Following some mathematical tricks in [40]
(Section 2.3.1), (5e) can be reformulated as linear inequali-
ties and second-order cones by introducing several auxiliary

variables y, t1, t2.

y = 4λ/27

t1 ≤ π (RU − sTm)∥∥∥∥t2 y− 1
2

∥∥∥∥
2
≤

y+ 1
2∥∥∥∥y t1 − t22

∥∥∥∥
2
≤

t1 + t2
2

(6)

To see their equivalence, expand two second-order cones,
we get t22 ≤ y, y2 ≤ t1 t2; eliminating t2 gives y3 ≤ t21 and
thus

λ ≤
27
4

[
π (RU − sTm)

] 2
3

which is (5e).
Finally, probability inequality (3) with the moment-based

ambiguity set S1 could be transformed to a second-order
cone program with objective function (5a) and constraints
(5b)-(5d) and (6), which could be solved efficiently.

C. DIVERGENCE-BASED METHOD
The moment-based method has two input parameters: mean
value and mean-absolute deviation, which can be recovered
from very limited data or a rough guess. With the increas-
ing of data availability, although the moment-based mode
remains applicable, it may no longer be a good choice,
because the distributional information disclosed by historical
data is not fully utilized. To take full advantage of data,
we consider an empirical distribution

f0 =
1
N

N∑
i=1

δŵ0
i

consisting of N independent samples ŵ0
i , and each of them

has a probability of 1/N . δŵ0
i
denotes Dirac distribution con-

centrating unit mass at ŵ0
i .

However, f0 is generally inaccurate, so we resort to an
ambiguity set containing all PDFs that are close enough to
the empirical distribution f0. To quantify the distance between
two PDFs, the Wasserstein metric is adopted in this paper,
which is defined as

DW (f , f0) = inf
∫
42

∥∥∥w− w0
∥∥∥
p
5(dw, dw0)

s.t. 5 is a joint distribution of w

and w0 with marginals Q and Q0

where ‖ · ‖p represents the p norm on R2.
For two discrete distributions, the Wasserstein metric is

given by

DW (f , f0) = inf
π≥0

∑
i

∑
j

πij

∥∥∥wj − w0
i

∥∥∥
p

s.t.
∑

j
πij = p0i , ∀i∑
i
πij = pj, ∀j
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FIGURE 2. Ramp probabilities calculated by different models.

where p0i and pj denote the probability of representative
scenario w0

i and wj.
Equipped with this Wasserstein distance measure, the

ambiguity set can be constructed as

S2 = {f (w)|DW (f , f0) ≤ dw} (7)

where dw is a constant determining the size of the ambiguity
set. When dw > 0, there are infinitely many PDFs in ambi-
guity set (7); when dw approaches to 0, the ambiguity set (7)
converges to the empirical distribution f0. According to [41],
if we choose

dw = −log(α∗)/N (8)

the confidence level of f ∈ S2 is at least 1 − α∗. Clearly,
dw decreases when N grows larger, which means that the
more data we have, the more confident we are in the accuracy
of empirical distribution f0.

Kullback-Leibler (KL) divergence is another renowned
distance metric for two probability distributions. For either
metric, the distance threshold in the ambiguity set is a critical
parameter in practical usage. ForWasserteinmetric, dw can be
selected via equation (8), while for KL-divergence, the selec-
tion of such a parameter is a little bit tricky. Furthermore,
the Wassertein metric based ambiguity set provides satis-
factory out-of-sample performance guarantee [30]. So we
choose Wasserstein metric in this paper.

Substituting S2 into problem (3), the resulting probability
inequality can be reformulated as the following form [30].

inf 1−
1
N

N∑
n=1

βn + γ dw (9a)

s.t. β ∈ RN , γ ∈ R+, τ ∈ RN
+ (9b)

βn ≤ 1, ∀n = 1, . . . ,N (9c)

βn + τnswn ≤ τnRU ,∀n = 1, . . . ,N (9d)

‖τns‖q ≤ γ,∀n = 1, . . . ,N (9e)

where s = [−1, 1]T ; β, γ and τ are all auxiliary variables;
‖ · ‖q is the dual norm of ‖ · ‖p, where p and q satisfy p−1 +
q−1 = 1.

TABLE 1. Ramp probabilities estimated by different models.

FIGURE 3. Ramp probabilities with respect to different number of
samples (RU = 300 MW). (a) GMM-based model. (b) Moment-based
model. (c) Divergence-based model.

In problem (9), the objective function (9a) and constraints
(9b)-(9d) are all linear, except for the norm constraint (9e).

However, we find out that constraint (9e) gives rise to a
linear one when p = 1 or p = ∞, and a second-order cone
one when p = 2. In this paper, we choose p = ∞, q = 1 and
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TABLE 2. Statistical information of ramp probabilities with respect to different values of NS and RU .

the constraint (9e) becomes the following linear form.

2τn ≤ γ, ∀n = 1, . . . ,N (10)

Finally, probability inequality (3) with the divergence-
based ambiguity set S2 could be transformed to a linear pro-
gram with objective function (9a) and constraints (9b)-(9d)
and (10), which could be solved efficiently.

III. CASE STUDY
The proposed models are compared with a Gaussian mix-
ture model (GMM) and tested using real data from wind

farms in north China. The dataset includes hourly point
forecasts and observed outputs from January 1st, 2006 to
December 31st, 2015. To examine the probability of a
200 MW ramp event, we choose two consecutive hours in
which wind power forecasts rest in the interval [495 MW,
505 MW] and [695 MW, 705 MW], respectively. We recover
1083 data pairs from the dataset. In case studies, only the
probability of upward ramp events is estimated, and down-
ward ramp can be treated in the same way. All experiments
are conducted on a laptop with Intel i5-7300HQ CPU and 8G
memory. Linear programs and second-order cone programs
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TABLE 3. Performances of different models.

are established by YALMIP inMATLABR2018a, and solved
by CPLEX 12.8.

For the sake of comparison, the GMM is designed to
estimate ramp probability. GMM is a mixture of several
Gaussian distributions and could characterize the uncertain-
ties obeying arbitrary distributions. The detailed GMM appli-
cation in ramp forecasting is described in Appendix. In this
paper, three Gaussian distributions are included in the GMM
distribution. The wind ramp probability calculated from the
GMM-based model, moment-based model and divergence-
based model are termed as GMM-WRP, Moment-WRP and
Div-WRP, respectively. The observed wind power ramp prob-
ability (O-WRP) from historical data is termed as O-WRP.
The results with different ramp thresholds RU are compared
in Fig. 2 and Table 1. It is observed that GMM-WRP and Div-
WRP are very close to the O-WRP while Moment-WRP is
always larger than them. This is because that GMM-based
model and divergence-based model fully utilize the disper-
sion of historical data, while the moment-based one only con-
siders two distribution parameters and neglect more useful
information. Nevertheless, due to the consideration for the
unimodality of forecast errors, the Moment-WRP decreases
quickly with the increasing of ramp threshold RU , and
becomes comparable to GMM-WRP and Div-WRP when
RU > 280 MW. In Table 1, GMM-WRP is smaller than
O-WRP when RU = 300 MW and 400 MW, while Div-WRP
is always larger than O-WRP. This indicates that compared
to GMM-based model, the proposed divergence-based model
could provide a more conservative but reliable estimation
to ensure the safe operation of power system. In addition,
the average computation time for estimating ramp probability
with one given threshold is listed in Table 1. GMM-based
model consumes much longer time than the proposed data-
driven models, because its calculation consists of two steps:
parameter estimation and Monte Carlo based probability
calculation.

In the data-driven approaches, the number of historical
samples is a critical factor that significantly influences the
estimation results. To investigate the impact, we firstly gener-
ate 10000 wind power scenarios based on the aforementioned
1083 data pairs using the scenario generation method in [42].
Next, we randomly select a set of samples with a given
number of elements from the 10000 scenarios, and test the
performances of three models. This procedure is repeated
100 times. Results are shown in Fig. 3 for RU = 300 MW.
With the increasing of sampled data, the volatilities of three
models all decrease, indicating that the number of samples
has a notable effect on the stability of probability estimation.

In addition, the volatility of moment-based model is
apparently smaller than those of GMM-based model and
divergence-based model, because it uses the least historical
data information and thus is barely affected by the variation
of sample number.

Table 2 shows the statistical information for estimated
ramp probabilities with respect to different values of RU and
numbers of sampled data NS . When more sampled data are
used, the standard deviation and difference between maxi-
mum and minimum for ramp probabilities decrease signifi-
cantly.WhenNS ≤ 200, GMM-WRP and Div-WRP are more
sensitive compared with Moment-WRP, because the disper-
sion information used in these two models must be based on
a certain number of samples, while the moments are less sen-
sitive with moderate data. When NS ≥ 400, GMM-WRP and
Div-WRP perform much better than Moment-WRP in terms
of estimation accuracy. Nevertheless, GMM-WRP could be
either optimistic or pessimistic, while Div-WRP is always
conservative, which could be observed from the mean value
when RU = 300 MW and 400 MW.

In summary, for the system operator, moment-based model
is recommended when we only have limited historical data.
Even in the case that there is no data at all, the model
could also be applied if we provide proper guess of mean
value and mean-absolute deviation. On the contrary, in the
case that there are plenty of data, divergence-based model
is recommended because it provides a more accurate result
but still with distributional robustness guarantee to limit the
probability upper bound of a ramp event.

IV. CONCLUSION
This paper proposes data-driven probability inequality mod-
els to estimate the probability upper bound of wind power
ramp events with a given ramp threshold. Moment infor-
mation and unimodality of wind power are utilized to con-
struct the moment-based ambiguity set; Wasserstein metric
is applied to describe the distance between two probability
distributions for constructing the divergence-based ambigu-
ity set. The uncertainty quantification models are developed
based on the above sets, and show some appealing fea-
tures: first, they make no reference to the exact distributions
of uncertain factors; second, they rely on computationally
tractable convex optimization. Finally, performances of the
discussed models in this paper are summarized in Table 3.

APPENDIX
Suppose the probability distribution function (PDF) f0(w)
represents the reference multivariate distribution of actual
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wind power outputs w = [w1,w2], and Gaussian mixture
model (GMM) is used to estimate f0(w). It is characterized
by the weights, mean vectors and covariance matrixes, and
formulated as follows:

f0(w) =
K∑
k=1

πkN (w|µk ,6k ) (11)

where K denotes the number of Gaussian distributions;
πk denotes the nonnegative weight of k th Gaussian distri-
bution, requiring

∑K
k=1 πk = 1; N (w|µk ,6k ) denotes the

kth Gaussian distribution, defined as follows:

N (w|µk ,6k ) =
1

(2π )
n
2 |6k |

1
2

e−
1
2 (w−µk )

T6−1k (w−µk ) (12)

whereµk denotes themean vector;6k denotes the covariance
matrix; n denotes the dimension of variable w.

Based on model (11), assuming that we have a series of
wind power outputs samples w1,w2, . . . ,wM , the parameters
πk ,µk and 6k of f0(w) could be estimated by expectation
maximization (EM) algorithm [43]. After the reference dis-
tribution f0(w) is acquired, the Monte Carlo simulation is
applied to calculate the probability Pr0 {w ∈ W } with respect
to f0(w) [44].
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