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ABSTRACT This paper offers a new perspective on the vibrations of discrete bearing faults by focusing
on the micro-motion states of rolling elements in spall fault bearings and proposes an improved matching
pursuit algorithm for quantitative diagnosis with a high accuracy of atom selection and calculation efficiency.
The generation mechanism of the vibration response signal is explained by analyzing the micro-motion
status when rolling elements passing through the spall. A concatenation dictionary composed of an impact
dictionary as the higher level and step dictionary as the lower level is constructed based on the acceleration
variation analysis of the rolling elements. The information output by the higher-level dictionary is used
as the input information for the lower-level dictionary to extract the fault features. Only one iteration on
the higher-level dictionary is necessary to extract the correct impact atoms, with all subsequent iterative
steps assigned to the lower-level dictionary. The advantage is that the influence of high-energy impact
components on the extraction of step atoms can be removed. Thereafter, the optimized algorithm based on the
concatenation dictionary is applied to the analysis of simulation and experimental signals. The comparative
analysis demonstrates that the effective quantitative diagnosis is obtained, while the diagnostic precision and
calculation efficiency are improved.

INDEX TERMS Quantitative diagnosis, rolling element bearing, matching pursuit, concatenation dictionary,
fault size estimation.

I. INTRODUCTION
To date, vibration signal analysis remains the most common
method for bearing fault diagnosis, and the qualitative anal-
ysis of bearing health conditions and the pattern recogni-
tion of fault types are research hotspots [1]–[3]. However,
quantitative analysis of fault severity appears to have become
one of most active and valid means of realizing appropriate
maintenance decisions, because a bearing fault signal con-
tains information regarding not only the fault condition and
type, but also the fault severity. Therefore, researchers have
increasingly been studying the generation mechanism of the
vibration signal when rolling elements pass through the spall,
and have focused on the quantitative diagnosis of mechanical
faults.

The associate editor coordinating the review of this manuscript and
approving it for publication was Chuan Li.

The quantitative diagnosis of the fault mechanisms of
rolling bearings has attracted considerable attention, and
a series of bearing dynamic models have been developed.
Dowling indicated that an impact will be excited when the
ball enters the edge of a defect, and a second impulse will
appear when the ball exits the defective zone [4]. This second
impact creates a new wave that interferes with the first,
resulting in a phase shift. Epps [5] introduced the time to
impact, which is the period of separation between these
two events, and analyzed the mechanism of the bearing
defect vibration and ‘‘double impact’’ in detail. The first
impact is a low-frequency part, while the second is a rela-
tively high-frequency component. Sassi et al. [6] achieved
effective simulation of the dynamic behavior of rotating
ball bearings in the presence of localized surface defects.
Sopanen and Mikkola [7], [8] used a dynamic bearing model
to determine that the diametral clearance has a significant
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effect on the natural frequencies and vibration response of
the system. Sawalhi and Randall [9] found that the accel-
eration time signal responses resulting from a rolling ele-
ment entry into and exit from a typical spall on the inner
and outer bearing races in two test rigs were very differ-
ent, with the first being a low-frequency step response, and
the second a broadband impulse response. Patil et al. [10]
contributed significantly to simulating the bearing outer race
defects with a mathematical model, by means of which the
defect positions and sizes were obtained. Cui et al. [11]
proposed a novel horizontal–vertical synchronized root mean
square localization law and formula based on the analysis of
the vibration acceleration signal and dynamic contact force.
Singh et al. [12] analyzed the vibration response and con-
tact forces in a defective bearing using an explicit dynamics
finite element model. Rafsanjani et al. [13] proposed an
analytical model to study the nonlinear dynamic behavior of
surface defects on rolling element bearing systems. Ahmadi
and Petersen considered the finite size of rolling elements
to construct an improved nonlinear dynamic model. The
mechanisms causing inaccuracies in the predicted vibration
response when including the rolling elements as point masses
instead of finite-sized objects were identified. This approach
can be used for defect size estimation techniques with a
wider range of defect sizes and geometries [14]. Theoretical
guidance was provided through these bearing models and the
mechanism for quantitative bearing fault diagnosis.

However, numerous researchers have focused on fault fea-
ture extraction methods in the quantitative analysis of fault
severity [15], [16]. Baydar and Ball [17] found that acoustic
signals could be used effectively to detect the early times
of various local gearbox faults using the smoothed pseudo-
Wigner Ville distribution. Shen et al. [18] diagnosed bearing
faults quantitatively using a method based on support vector
regression.Moreover, themorphological filteringmethod and
signal complexity were used for assessing the fault severity
of rolling element bearings [19]. Hong and Liang [20] deter-
mined the relation between the fault severity and Lempel-Ziv
complexity by using a continuous wavelet transform method.
Sawalhi and Randall [21] and Randall and Sawalhi [22]
detailed a combined bearing dynamic model for a gearbox
test rig to study the interaction between the bearings and
gears in the presence of faults. The model effectiveness in
simulating faults of different sizes and locationswas validated
by the similarity between the simulated and measured signals
subjected to a range of diagnostic techniques. Thereafter,
according to the characteristic of double pulses in accelera-
tion signals, the minimum entropy deconvolutionmethodwas
used to separate the impulses from the entry into and exit
from fault signals to acquire information on the fault size.
Kong et al. [23] extracted the double impacts from bearing
fault signals using a complex Morlet wavelet and ensemble
empirical mode decomposition. Zhao et al. [24] reported the
use of empirical mode decomposition and the approximate
entropy method to acquire the double impact information,
and eventually, the veracity of the method and the existence

of the double impact phenomenon were validated by means
of simulation and experimental results. Obviously, accurate
quantitative analysis of bearing faults requires additional
knowledge regarding the direction relationship between the
feature extraction method and fault mechanism, as well as
a deeper understanding of the vibration processes involved
in the generation and transmission of defects with different
severities.

The above researches and results demonstrate that the form
of the double impact actually provides a potential concept
for fault severity quantitative analysis. And matching pursuit
is an effective method for extracting fault signal features.
An adaptive randomized orthogonal matching pursuit method
was proposed to extract bearing fault in [25]. Qin [26] pro-
posed a method based on a novel impulsive wavelet to extract
the impulse feature. Cui proposed a double impact theory to
describe the vibration signals of bearings with a certain size
of pitting faults in the race [27]. Moreover, a new compound
dictionary of matching pursuit was presented.

The discussion analysis of each matched atom indicated
substantial differences in the fault sizes measured in each
matching atom, which required a fault-difference atom-
selection method to improve the diagnosis accuracy. Further
investigations demonstrated that most fault size misjudg-
ments are caused by inaccurate extraction of the step compo-
nents. When the double impact theory is used for quantitative
fault diagnosis of fault, the initial times of the two responses
should be accurate. Therefore, inaccurate extraction of the
step components is the most likely reason for erroneous quan-
titative diagnoses. In order to avoid the erroneous selection of
atoms and improve the accuracy of quantitative fault diagno-
sis, the matching pursuit algorithm based on a concatenation
dictionary is proposed. In this paper, the concatenation dictio-
nary is composed of two independent dictionaries, namely the
step dictionary and impact dictionary. The impact dictionary
is used as the higher level, and outputs the impact occurrence
time as the input quantity entering the step dictionary, used
as the lower level. The two dictionaries are concatenated by
the information on the impact occurrence time. To enable
accurate extraction of the impact components, they undergo
only one iteration. The parameter information of the matched
impact atom is stored, while the time information is input into
the step dictionary as a known quantity. The subsequent iter-
ative steps all proceed in the step dictionary. In this manner,
the matching pursuit algorithm seeks step components.

The remainder of this paper is organized as follows:
Section 2 focuses on the micro-motion analysis of the rolling
elements from an acceleration perspective. Section 3 presents
the concept of the concatenation dictionary and its detailed
construction method. Moreover, the improved matching pur-
suit based on the concatenation dictionary of the fault severity
assessment of rolling bearings is proposed. Section 4 mainly
describes the analysis results of the simulation and exper-
imental signals. Furthermore, the improvement in the
diagnostic precision and calculation efficiency is clearly
demonstrated.
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FIGURE 1. Schematic of micro-motion processes. (a) Enter fault.
(b) Impact back edge. (c) Exit edge. (d) Response acceleration of (a).
(e) Response acceleration of (b). (f) Response acceleration of (c).
(g) Response acceleration of whole process.

II. ACCELERATION ANALYSIS OF ROLLING
ELEMENT MICRO-MOTION
When the fault severity increases to a certain degree, the
impulse generated from the fault is unlikely to be an ideal
unit impulse, but will rather be a double-like impact action.
In the case of the roller bearing outer race, the rolling element
will experience certain processes, including entering the fault,
impacting the back edge of the fault, and exiting from the
fault, when the fault has a certain size. Each process will gen-
erate a type of signal. Moreover, the first and third processes
require less energy than the second process, whichwill arouse
system resonance. These processes are not independent, but
rather coupled. Thus, the signal of a roller bearing with a
certain fault size degree will be a result of superposition.
In this paper, we discuss a fault with a length that is smaller
than the rolling element diameter, and the rolling element
does not touch the bottom of the fault. Figure 1 illustrates
the micro-motion processes of the rolling element and the
acceleration direction change.

Previous researches have improved the vibration signals
of fault bearings, from a series of impact responses to step-
like and impact responses, and the cause of ‘double-like’
responses has been addressed. In fact, the main reason for
the different responses between entering and exiting the fault
is the acceleration direction change of the rolling element,
which is investigated in this paper.

When the rolling element maintains a uniform circular
motion with the shaft prior to entering the fault, the normal
force has reached a balance situation without normal accel-
eration. When the rolling element begins to enter the fault,
which is regarded as the first process as illustrated in
Figure 1(a), the sudden pressure release from the bearing
leads to a normal outward force, and the rolling element
acceleration direction changes to normal outward at this time.
In Figure 1(a), a1 represents this acceleration, and the direc-
tion of a1 is regarded as the positive direction in artificial reg-
ulation. The sudden appearance of a1 is a step-like response,
as indicated in Figure 1(d). When the rolling element begins
to impact the back edge of the fault at t1, this is regarded as
the second process, as illustrated in Figure 1(b). The normal
force and normal acceleration return to zero and maintain a
balance again. Figure 1(c) illustrates an opposite process for
the rolling element motion to that in Figure 1(a). The normal
force changes to the inward direction when the rolling ele-
ment begins to exit from the fault, and an opposite direction
a2 is generated. The response of a2 is similar to that of a1, but
with a different direction, as illustrated in Figure 1(f).

The above analysis has explained the generation mecha-
nism of step-like responses when the rolling element enters
and exits the fault, and the acceleration direction change
is depicted in Figure 1(g). However, system resonance will
occur when the rolling element impacts the back edge of the
fault in a certain short period with a certain large energy.
If the vibration is regarded as the oscillation of a mass-
spring-damping system, the differential equation governing
the phenomenon will be:

mẍ + cẋ + kx = 0, (1)

where m is the mass of the outer raceway plus the support
structure, c is the viscous damping, k is the stiffness coeffi-
cient, and x is the displacement of the outer raceway.
Let n = c

2m , w
2
n =

k
m ; thus, (1) can be transformed into (2):

ẍ + 2nẋ + w2
nx = 0. (2)

As the damping ratio ζ = n
wn
,

ẍ + 2ζwnẋ + w2
nx = 0. (3)

The roots of (3) are as below:

s1,2 = (−ζ ±
√
ζ 2 − 1)wn. (4)

When ζ < 1, the value of the secular equation is as per (5):

s1,2 = −ζ · wn ± j
√
1− ζ

2
·wn. (5)

Letting wd =
√
1− ζ 2 · wn, the solution of (3) will be as

follows:

x = e−ζwnt (C1coswd t + C2sinwd t)

= Ae−ζwnt cos (wd t − α)

= Ae−ζwnt sin (wd t − ϕ) . (6)
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FIGURE 2. Diagrammatic sketch of step-impact response.

FIGURE 3. Simulated impact and step-like atoms.

Therefore, the system resonance response caused by the
impact of the rolling element and fault back edge is exponen-
tial attenuation vibration.

In summary, the complete vibration responses when the
rolling element passes through the defect are the superpo-
sition of the step-like and impact responses, as illustrated
in Figure 2. The signal always exhibits a step-like response
as well as an impact response, as the second step response is
drowned in the high-energy impact response.

III. MATCHING PURSUIT ALGORITHM BASED
ON CONCATENATION DICTIONARY
A. CONSTRUCTION OF CONCATENATION DICTIONARY
The concatenation dictionary consists of an impact dictionary
as the higher level, and step-like dictionary as the lower
level. The output time value of an atom extracted from the
higher-level dictionary (HLD) is input into the lower level
dictionary (LLD) as the concatenation model.

The HLD function is expressed as:

gimp(u, τ, fn) = e
−(t−u)
τ sin(2π fnt). (7)

The LLD function is expressed as:

gstep(u, τ, fn,1t) = (e
−(t−u−1t)

3×τ ×−cos
(
2π ×

(
fn
6

)
× t
)

+ e
−(t−u)
5×τ ), (8)

where u is the impact occurrence time (s); τ is the system-
atic damping coefficient (s); fn is the natural system fre-
quency (Hz); and 1t is the time interval between the two
responses.

The impact and step-like atoms are constructed by
(7) and (8), respectively. Figure 3 illustrates an impact atom
and a step-like atom with a length of 512 samples and initial
time u of 0.005, respectively.

The HLD Gimp = {g1i , i = 1, 2, 3 . . .m . . .} and LLD
Gimp = {g1i , i = 1, 2, 3 . . .m . . .} are constructed by the
above atoms, where m denotes the dictionary size. There
are three parameters, namely u, τ , and fn in the HLD, and
the value ranges of the three variables are determined by the
signals to be detected. In this case, u is determined by the time
scope of the detected signals, while τ and fn are configured
by the intrinsic system properties. Moreover, there are three

parameters, namely τ , fn, and1t , in the LLD, where τ and fn
are configured in the same manner as in the HLD. It is not
necessary to configure the range of u as it is the HLD output
value, which can be used as the input parameter of the LLD
directly. Finally, 1t is configured according to the fault size.

When the best-matching atom is selected in the HLD,
the parameters of this atom will be returned. The impact
occurrence time u is the input value for entering the LLD, as it
is the intermediate value used for concatenation. Meanwhile,
a search area [u − 1t , u] is configured, where the best-
matching step-like feature of the fault signal will be searched.
Thus, the best-matching impact atom from the HLD is only
selected once in the matching pursuit process. In contrast,
the step-like atoms are selected based on the concatenation
operation. In this manner, the extraction of step-like atoms
can be avoided from the influence of the high-energy impact
component, so the atom extraction accuracy is ensured. Fur-
thermore, the calculation complexity is reduced and the error
introduced by repeated extractions is avoided.

FIGURE 4. Flowchart of matching pursuit based on concatenation
dictionary.

B. IMPROVED MATCHING PURSUIT ALGORITHM
An original atom selectionmechanism is adopted in this novel
method, although themain concept is still based on thematch-
ing pursuit. Figure 4 presents the flowchart of the matching
pursuit algorithm based on the concatenation dictionary in
this paper.

The steps for quantitative diagnosis using the improved
matching pursuit algorithm based on the concatenation dic-
tionary are as follows:

1) Initialization. The residual signal is initialized, and the
signal to be analyzed x(t) is assigned to the residual
signal to obtain the initial residual signal R0 = x(t).
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2) Atom matching in HLD. The optimal matched atom
g1k is selected from the HLD Gimp = {g1, i =
1, 2, 3, . . . ,m, . . .}. The optimal matched impact atom
is selected according to (9), and the parameters u, τ , and
fn are stored. The new residual signal R1 is obtained.

|〈R0, g1k 〉| = sup
∣∣〈R0, g1i〉∣∣ (9)

R1 = R0 − |〈R0, g1k 〉| g1k (10)

3) Atom matching in LLD. The u in step 2) is used as
an input value to enter the LLD Gstep = {g2i , i =
1, 2, 3 . . .m . . .}. The search area 1u in the LLD is
defined by (11). Then, the optimal matched step-like
atom g2k in the k-th iteration is selected according
to (12).

1u = [u−1t, u) (11)

|〈Rk−1, g2k 〉| = sup
∣∣〈Rk−1, g2i〉∣∣ (12)

4) Updating of residual signal. Here, (13) is used to project
the residual signal onto the optimal matched atom
g2k in the each iteration. Then, the residual signal is
Rk+1 after the k-th iteration, where K is the maximum
number of iterations.

Rk+1 = Rk −
∑K

k=1
〈Rk , g2k 〉g2k (13)

5) Conditions for terminating iteration. The termination
conditions include K and the residual energy ratio.
If the conditions are satisfied, the iteration is terminated
and step 6) is entered; otherwise, steps 3) to 5) are
repeated.

6) Signal reconstruction. The reconstructed signal can be
approximately expressed by (7).

x(t) =
∑k

i=1
〈Rk , g2k 〉g2k (14)

7) Estimation of fault value. The occurrence times of
the step-like response u1 and impact response u2 are
marked on the time-domain waveform of the recon-
structed signal. The time interval 1t ‘ is calculated
by (15), and the fault value l ′ is estimated by (16),
where fr is the shaft rotation frequency, Dp is the
bearing pitch diameter, and d is the rolling element
diameter.

1t ′ = u2 − u1 (15)

8) Atom screening. The absolute deviation of the fault
value reflected by the matched step atom in each itera-
tion and estimated fault value l ′ is calculated. The atom
with the minimum absolute deviation is selected, and
the fault value reflected by this atom is taken as the
secondary estimation value l ′g.

|σ |min = min
∥∥l0 − l ′∥∥ (16)

9) Quantitative diagnosis. The final fault size value l is the
average estimated fault value and secondary estimation
value.

FIGURE 5. Simulated bearing signal with fault size of 1.2 mm.

FIGURE 6. Reconstructed signal obtained by proposed method.

FIGURE 7. Impact atoms of two segment signals.

IV. SIMULATION AND EXPERIMENTAL SIGNAL ANALYSIS
A. ANALYSIS OF SIMULATION SIGNALS
Simulation signals with a length of 2048 samples are ana-
lyzed by thematching pursuit algorithm based on the concate-
nation dictionary, with an atom length equal to 1024 samples.
The fault size is simulated as 1.2 mm. The data are truncated
into two segments for calculation, as the signal to be analyzed
should have the same length as the atom. The condition for
terminating the iteration is set as the residual ratio threshold
based on the attenuation coefficient, the value of which is
taken as 0.6. In the entire calculation process, three step-
like atoms are determined as the matched atoms for the first
data segment, with two for the second data segment. The
original time-domain waveforms of the simulation and recon-
structed signals are illustrated in Figures 5 and 6, respectively.
The time-domain waveforms of each matched impact and
step-like atom (atoms 1, 2, 3, 4, and 5) are presented in
Figures 7 and 8, respectively. The fault sizes calculated by
each matched step-like atom are listed in Table 1.

Firstly, the fault size is estimated using the matching pur-
suit algorithm based on the concatenation dictionary, accord-
ing to the time interval between the step-like and impact
responses in the time-domain waveform of the reconstructed
signal. By analyzing the time-domain waveform in Figure 6,
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FIGURE 8. Step-like atoms of two segment signals.

TABLE 1. Fault sizes calculated by matched step-like atom.

TABLE 2. Fault sizes calculated by reconstructed signal.

TABLE 3. Results of final quantitative diagnosis.

the estimated occurrence time and fault value are presented
in Table 2. The estimated fault value can be calculated
as 1.195 mm, which has a 0.42% deviation from the actual
fault. Thereafter, the atoms are screened by the devia-
tion |σ | in Table 1. Atoms 1 and 4 are eventually screened,
as each deviation is the smallest in each data segment.
Finally, the secondary estimation value and final quantitative
diagnosis result are achieved, as indicated in Table 3.

From Table 3, the final result of the fault quantitative
diagnosis with the matching pursuit algorithm based on the
concatenation dictionary has been obtained. The final average
fault at 1.2069 mm is an accurate and reliable value, so the
method in this paper is demonstrated to be effective. Although
two erroneous atoms remain, namely atoms 2 and 5, the faults
reflected by the other atoms only have deviations ranging

FIGURE 9. UNSW bladed test rig.

FIGURE 10. Measured bearing signal with fault size of 1.2 mm.

from 1.21% to 7.32%. The average deviation reflected by the
step-like atoms is 19.5%. However, the fault values reflected
by each atom fluctuate considerably, with the deviation rang-
ing from 6.67% to 66.67%, and the average actual deviation
is 32.5%, as calculated by the traditional matching pursuit
method based on the step-impact dictionary. From the com-
parative analysis, it can be concluded that the method pro-
posed in this paper can increase the atom selection accuracy,
and offers superior overall precision in quantitative diagnosis.

B. ANALYSIS OF EXPERIMENTAL SIGNALS
The experimental signals were collected from the Univer-
sity of New South Wales (UNSW), Vibration and Acous-
tics Laboratory, School of Mechanical and Manufacturing
Engineering. The UNSW bladed test rig is illustrated in
Figure 9. The shaft is supported by two self- aligning, double
row ball bearings. The bearing fault size remains 1.2 mm.
An accelerometer was placed on top of the defective bearing.
Further details regarding the test equipment and recorded
measurement data are provided in [9]. The matching pursuit
algorithm based on the concatenation dictionary is applied
to the experimental signals. The condition for terminating
the iteration is set as the residual ratio threshold based on
the attenuation coefficient with a value of 0.6. In the entire
calculation, two step-like atoms are matched for the first data
segment, and two for the second data segment. The original
waveforms and reconstructed signals of the experimental
signals are illustrated in Figures 10 and 11, respectively. The
time-domain waveforms of each matched impact atom are
presented in Figure 12. The time-domain waveforms of each
matched step-like atom (atoms 1, 2, 3, and 4) are illustrated
in Figure 13. The parameters of atoms 1 to 4 are listed in
Table 4.

VOLUME 7, 2019 22715



L. Cui et al.: Improved Fault Size Estimation Method for Rolling Element Bearings Based on Concatenation Dictionary

FIGURE 11. Reconstructed signal obtained by the proposed method.

FIGURE 12. Impact atoms of two segment signals.

FIGURE 13. Step-like atoms of two segment signals.

TABLE 4. Fault sizes calculated by matched step-like atom.

From Figure 11, the reconstructed signal analyzed by the
method in this paper exhibits a superior shape reconstruction
effect in the time domain compared to the measured signal
in Figure 10, and in particular, a small step-like response
can be identified. The occurrence times of the step-like and
impact responses in the time-domain waveform of the recon-
structed signal can be read from Figure 11, and the estimated
values are listed and calculated in Table 5. From Table 5,
the fault value estimate is determined as 1.17 mm, with a
deviation of 2.5% from the actual fault size.

TABLE 5. Fault sizes calculated by reconstructed signal.

TABLE 6. Results of final quantitative diagnosis.

TABLE 7. Calculation time of each method.

According to the deviation |σ | in Table 4, atoms 1 and 4
are eventually screened in order to reduce the diagnostic
error. The secondary estimation values and final result of
the quantitative diagnosis are presented in Table 6. It is
demonstrated that the proposed method can basically achieve
accurate quantitative diagnosis of bearing faults.

The advantage of the proposed matching pursuit algorithm
based on the concatenation dictionary is that the atom selec-
tion accuracy is improved. The matched atoms extracted by
the method proposed in this paper exhibit a smaller devi-
ation from the actual fault in most cases, with an average
overall deviation of 10.835%, as indicated in Table 4. Com-
pared to the 27.57% deviation of the traditional method,
the atom selection accuracy is improved by 16.735%. More-
over, the deviation of each atom is more accurate. In this
paper, the deviation of the atoms is approximately 10% or
below, except for the large deviation error atom, and the
smallest deviation is 1.67%. However, the lowest deviation
of the traditional method is 5.85%, and the deviation of the
atoms is below 20%, with the largest deviation at 93.85%.

The main reason for the atom selection accuracy when
using the method proposed in this paper is that the atom
matching is only performed once in the HLD. Subsequent
iterations by the matching pursuit algorithm are all performed
in the step-like dictionary. One parameter is reduced in the
concatenation dictionary, compared to the four parameters in
the step-impact dictionary. Moreover, the proposed method
not only improves the atom selection accuracy, but also
reduces the calculation time. Therefore, the calculation effi-
ciency is enhanced, as indicated in Table 7. In terms of the
average deviation and deviation of each atom, the proposed
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method exhibits higher atom selection accuracy than the
traditional method. The calculation time is reduced, so the
calculation efficiency is improved.

However, the proposed algorithm still exhibits certain lim-
itations that need to be improved. The experimental signals
used for verification have distinct features and low noise
levels, making the step component extraction easier, with
little error. However, most engineering signals contain sub-
stantial noise or exhibit coupling of various faults. In such
cases, the proposed method cannot be executed accurately.
The current study is confined to simulation and experimental
data analyses. Furthermore, the matching pursuit algorithm
must perform a large amount of inner product calculation in
the selection of most matched atoms. In order to improve
the calculation efficiency and save on computer memory,
an intelligent algorithm should be used for atom selection.
Therefore, improvement of the algorithm stability is one topic
for future research.

V. CONCLUSION
This paper expands on the current generation mechanisms of
fault vibration signals by investigating the vibration source
and micro-motion acceleration near local defects. With the
aim of obtaining atom selection accuracy and improving the
computational efficiency in the matching pursuit algorithm,
an improved algorithm based on the concatenation dictionary
has been proposed.

The novel concatenation dictionary is presented with an
impact dictionary as the HLD and step-like dictionary as
the LLD. The iterative procedure is performed only once
in the HLD. The parameters of each extracted impact atom
are stored, and the impact occurrence time is input into the
LLD as known information. Themain iterative procedures are
performed on the step dictionary to match the step-like atoms
repeatedly in the entire matching pursuit algorithm. The
advantages of the concatenation dictionary mechanism are
mainly the step-like atom selection accuracy and eliminating
the effects of the high-energy impact components. Moreover,
the fault deviation reflected by each atom decreases obviously
compared to the actual fault.

The analysis of the simulation and experimental signals of
the bearing fault based on the proposed method has demon-
strated improved atom selection accuracy and fault diagnosis
precision.
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