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ABSTRACT Disclosing the complex relationships effectively between paired brain regions played a signif-
icant role in measuring the brain functional connectivity and exploring brain topological structures. Even
though Pearson correlation coefficient (PCC) has been widely used to construct functional brain networks in
the previous studies, it was mainly sensitive to linear associations. Therefore, maximal information coeffi-
cient (MIC) was first utilized to make up this weakness of PCC to construct electroencephalography (EEG)
connectivity in the current study. The simulation results showed that MIC could capture certain relationships
which PCC failed to detect. Furthermore, brain network properties changed with various thresholds under the
resting-state EEG, and the comparison analysis of network properties illustrated that MIC and PCC could
capture different aspects of connections between paired brain regions. These findings indicated that MIC
could be a complementary method of PCC for the construction of scalp resting-state EEG connectome and
provided a novel tool to reveal the potential mechanisms of brain networks.

INDEX TERMS EEG network, MIC, PCC, nonlinear, network properties.

I. INTRODUCTION
According to the principles of functional segregation and
integration, human brain was one of the most complex sys-
tems in nature [1]. Diverse functional areas coordinated with
each other to accomplish all kinds of cognitive processing,
and associated with each other to form networks for carry-
ing out specific functions. Recently, numerous studies have
shown that the combination of the complex networks and the
graph theory, i.e. connectome [2], could help to understand
brain mechanisms [3], [4]. Therefore, it is utmost important
to unlock the secrets of human brains in the network level.

Finding a proper method to define the edges of network
played a key role. PCC was a well-established dependence
measure and ranged from −1 (perfect but negative correla-
tion) to +1 (total positive correlation) with 0 showing no
correlation. It has been extensively applied to many fields
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such as quantifying colocalization [5], pattern recognition [6]
and brain functional networks [7]. However, PCC was only
sensitive to linear relationships, and its effectiveness greatly
decreased when the dependence between paired nodes was
nonlinear [8]. Moreover, PCC was not robust and seriously
susceptible to outliers [9], [10]. In fact, any statistical met-
ric based on sample averages like PCC could be affected
by outliers inevitably [11]. In order to compensate for the
shortcomings of this method, a mushrooming number of
researchers turned their attention to find a novel way that
was less vulnerable to the effects of outliers and more
sensitive to capture both linear and/or nonlinear associa-
tions between two variables. Therefore, a variety of meth-
ods were put forward to quantify functional connections or
networks, such as coherence based on magnetoencephalog-
raphy (MEG) [12], [13] and EEG [14], [15], mutual informa-
tion (MuI) using EEG data [16], distance correlation (Dcor)
with functional magnetic resonance imaging (fMRI) [17] and
MIC based on fMRI [18]. Using coherence in the distinct
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groups, previous studies found that the sparse connectivity
presented in the healthy groups, while the abundant con-
nectivity and the obvious modular characteristics occurred
in the epileptic patients [12]. However, owing to the com-
plicated correlations between the active brain areas and the
sensor recordings, it was difficult to obtain unambiguous
information on the relevant brain areas, which hindered the
derivation of any complex nonlinear associations by using
coherence method [13]. Based on EEG, MuI, a method based
on probability theory and/or information theory, quantified
the amount of information obtained from one brain region to
another, which could be applied to measuring both linear and
nonlinear mutual associations [19], [20]. The limitation was
that the calculation of probability distributions might be an
obstacle for MuI [21]. Moreover, Dcor was proposed to iden-
tify functional network connectivity for exploring nonlinear
dependence in rest-fMRI, which allowed both single-subject
and group-level analyses [22]. In contrast to natural alter-
natives such as MuI and Dcor, MIC possessed two heuris-
tic properties, namely generality and equitability [23]–[26],
which could more equitably capture nonlinear correlations in
high-dimensional data sets [23]. Additionally, the robust esti-
mation of Shannon entropy and conditional entropy rendered
MIC less susceptible to outliers [27], [28]. A recent study
found that MIC outperformed other five common methods
(i.e. CF, PCF, MuI, WCF and CH) in terms of consistency
and robustness to capture brain functional connectivity from
75 healthy subjects in fMRI [20]. Moreover, based on MIC,
Su et al. [29] successfully constructed non-linear functional
connectivity and captured the non-linear properties of blood
oxygenation level dependent (BOLD) signal. As mentioned
above, MIC stood out from the crowd with high robustness
and could also be used to define both linear and nonlinear
dependence between paired variables [8]. However, MIC in
previous studies was utilized to measure certain correlations
based on fMRI which was mainly used for the detection
of changes of local blood supply in the brain activated by
specific stimuli [30], [31], but not based on EEG which
recorded electrical activity of neural cells in the brain [32].
Moreover, MIC with its equitability properties gave similar
scores to various types of relationships with the same noise
level and provided a score for functional relationships with
similar coefficient of determination when the sample size was
large enough [23]. Thus, MIC could be used to reveal the
variety of relationships in electrophysiological signals, such
as EEG.

As a non-invasive technique, EEG could recorded signals
from the surface of the skull [33], [34]. Moreover, due to
its convenience, security and cheapness, EEG was widely
utilized in various fields, such as feature extraction [35],
classification [36], detection diagnosis of patients [37], [38].
Therefore, in the present study, EEG was applied in the
establishment of functional brain networks.

Previous study evidenced that alpha activity could be found
with eye opened and was maximal in the states of quiet rest-
fulness [39].Moreover, alpha frequency interactions reflected

long-range integration during top-down processing [39] and
could be used to detect changes of some mental diseases.
For instance, progressive atrophy of hippocampus was cor-
related with the reduced cortical alpha power in mild cogni-
tive impairment (MCI) and Alzheimer’s disease (AD) [40].
Moreover, the decrease of alpha power was also correlated
with visuospatial functions in obsessive-compulsive disor-
der (OCD) [41]. Therefore, alpha rhythm in resting state was
utilized to construct brain functional networks in the current
study.

In the current study, to reveal the complex relationships
between two brain areas, MIC was utilized to construct
the scalp resting-state EEG connectome. In addition, when
estimating the effects of the connectivity measured by PCC
and MIC, a suitable threshold should be selected to define
the network edges. The network connections with weights
equal or more than the given threshold could be retained,
and otherwise the network edges are neglected [42], [43].
We attempted to find the differences on network properties
(i.e. averaged path length, global efficiency, clustering coeffi-
cient, local efficiency, averaged node degree and small-world
properties) based on two dependence measures (i.e. MIC
and PCC) and tried to rationalize these discrepancies in the
context of brain potential mechanisms. We hoped that these
findings in the current study could be applied to validating the
possible new brain connection measures and provided a ref-
erence for the exploration of functional EEG brain networks
and topological structures.

II. MATERIALS AND METHODS
A. ETHICS STATEMENT
The experiment protocols were approved by the ethical
committee of Chong Qing University of Posts and Telecom-
munications. Written informed consent was signed prior to
participating in the experiment and subjects will receive mon-
etary compensation after the experiment.

B. EEG RECORDINGS AND PRE-PROCESSING
Eighteen healthy and right-handed subjects (male: 9;
Female: 9; mean age: 21 years old) participated in the exper-
iment from the EEG Laboratory of Chongqing University
of Posts and Telecommunications. None of them had mental
or neurological problems. Each subjects’ vision or corrected
vision was normal. Subjects were required to sit in a comfort-
able chair and to focus on cross mark on the screen for 3 min-
utes. Subjects were expected to keep relaxed and stay awake
as much as possible during the experiment. A 64-channel
NeuroScan system was used for EEG data acquisition with
a vertex reference. The EEG recordings were sampled at
1000 Hz and all EEG cap electrode impedances were kept
below 5k� during the experiment.

In order to reduce the vertex reference electrode of influ-
ence on its surrounding electrodes, the data was offline
re-referenced by the infinity reference (IR) [44], [45]. Elec-
trooculogram (EOG) and Electromyography (EMG) were
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excluded by Blind Source Separation (BSS) [46] and other
noise was removed by automatic artifact rejection (±100µv).
EEG data was resampled at 250 Hz and EEG segments
with 5s were chosen for the next network construction. And
then the EEG recordings were filtered with a band-pass of
0.5-45Hz. To avoid the effect of volume conductor, 21 elec-
trodes chosen by 10-20 system mapped the brain topology
were selected as functional network nodes, i.e. Fp1, Fpz, Fp2,
F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz. P4,
P8, O1, Oz and O2. Then, MIC and PCC were utilized to
capture the linear or nonlinear relationships among the power
spectral density (PSD) of 21 electrodes under alpha rhythm.
After that, according to the rules of threshold selection (see
Threshold Selection section for details), suitable thresholds
were selected to turn correlation matrices into binary matri-
ces. In the binary matrices, there were only two values, that
is, 0 and 1. 1 denoted the existing connection between two
nodes and 0 indicated no connection between two nodes.
Thus, whether there existed edge or connection between
two nodes was measured by this way. Eventually, the rest-
state functional networks were constructed successfully by
two dependence measures (i.e. MIC and PCC). Moreover,
the comparison of network properties for these two types of
brain networks was analyzed to figure out whether MIC was
a more suitable method to measure brain connectivity than
PCC. Figure 1 displayed the overall workflow of brain net-
work construction and analysis measured by MIC and PCC.

FIGURE 1. The construction processing of functional brain network.

C. PEARSON CORRELATION COEFFICIENT
PCC [47], [48] was widely used in measuring the linear
correlation between two nodes xi and yi, and PCC was

defined as

r =

n∑
i=1
(xi − x̄) (yi − ȳ)√

n∑
i=1
(xi − x̄)2

√
n∑
i=1
(yi − ȳ)2

(1)

in which was n denoted the length of variables; x̄ and ȳ
represented the average of x and y, respectively. PCC ranged
from −1 to 1, where 1 implied perfect positive correlation
which could be described an absolutely linear relationship,
0 meant the absence of a relationship, and−1 denoted a total
negative linear relationship. The closer the absolute value of
PCC was to 1, the stronger the linear dependence between
paired variables was.

D. MAXIMUM INFORMATION COEFFICIENT
MIC, proposed by Reshef et al. [24], was applied to measur-
ing various (linear and nonlinear) dependence between two
random variables a and b. The MIC could capture a wide
range of relationships which were not only functional but also
non-functional. The MIC (a, b) was defined as follows:

MIC(a, b) = max{
I (a, b)

log2min {na, nb}
}

= max{
H (a)+ H (b)− H (a, b)

log2min{na, nb}
} (2)

where na · nb < B(n),B(n) = n0.6. H (a) and H (b) were the
marginal entropies,H (a, b) was the joint entropy of variables
a and b, and na and nb were the sample size of variables a
and b respectively. In theory, MIC ranged from 0 (weak cor-
relation) to 1 (strong correlation), which gave scores similar
with 1 for almost all kinds of noiseless functional relation-
ships, and assigned scores approximate to 0 if the relationship
between variables aand b were independent. In addition,
owing to the symmetry of the mutual information I(a, b),
MIC(a, b) was likewise symmetric, namely MIC(a, b) =
MIC(b, a) [26]. In the current study, two types of scalp EEG
correlation matrices were generated by MIC and PCC among
electrodes pairs.

E. CORRELATION MATRIX AND FUNCTIONAL
NETWORK CONSTRUCTION
Any networks were made up of nodes and edges between
the paired nodes. In the current study, network nodes were
specified as 21 EEG electrodes and edges were defined as
the correlations (measured by MIC and PCC) between paired
electrodes’ PSD under alpha rhythm. That is, the computed
PCC or MIC values were considered to be a symbol of the
functional connectivity between two nodes of brain networks.
For each subject, the correlations between all paired nodes
were computed to obtain two types of 21 × 21 symmetric
correlation matrices using MIC and PCC. Then, thresholds
were used to transform the resulting correlation matrices into
undirected binary graphs (networks), which also known as
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adjacency matrices with 1 denoting strong correlation and
0 representing weak or no correlation.

In the present study, the binary graph (network) was con-
structed by applying a threshold T to PCC or MIC. And the
specific steps were as follows:

eij =

{
1, if

∣∣rij∣∣ ≥ T
0, otherwise

(3)

where eij denoted the edge in the binary network. If the
elements of adjacency matrix rij (i.e. network connection
value) larger than (or equal to) the given threshold T would
be set to 1, the edges were assumed to exist; otherwise the
edges did not exist [49].

F. THRESHOLD VALUE SELECTION
Selecting a threshold was a flexible and crucial step when
establishing functional networks, because network character-
istics were closely related to the choice of thresholds. Since
there was no explicit standard for threshold selection in the
state of the art, here we selected a range of thresholds to study
the topological properties of brain networks [50]. Thresholds
were chosen to exclude the weak correlation (regarded as
noise), and meanwhile to guarantee network connectivity
(i.e., no isolated nodes). In the present study, the threshold
range was selected to meet two rules. One was that the
constructed networks were required to satisfy small-world
properties, namely σ > 1, γ > 1 and λ ≈1(p < 0.05,
FDR corrected) [1]; the other was that the averaged node
degree of networks (Deg) was required to be not less than
2ln N (N denoted the number of network nodes), i.e., Deg ≥
2ln(21), to ensure the networks to meet the connectivity of
the nodes [10], [42].

G. NETWORK CHARACTERISTIC METRICS
With regard to the brain networks, the averaged path length
of the network (Lp), the global efficient (Eg), the cluster-
ing coefficient (CC), the local efficient (Eloc), the aver-
aged node degree (Deg) and small-world network properties
were usually calculated to analyze brain functional network
characteristics [10].

1) AVERAGE PATH LENGTH
The shortest path length specified the optimal path of infor-
mation transfer from one node (i.e. electrode or brain region)
to another in the functional networks [51]. Information could
be delivered more quickly and efficiently through the shortest
path length. The shortest path length Lab between two nodes
a and b was the access with the least number edges. The
averaged path length of network (Lp) of networks denoted the
mean of the shortest path length for all nodes, which could be
defined as:

Lp =
1

N (N − 1)

∑
a,b∈V ,a 6=b

Lab (4)

where V was the collection of all nodes in the networks (i.e.,
functional brain networks), and n was the number of nodes.

the smaller Lp indicated the higher information transfer effi-
ciency.

2) GLOBAL EFFICIENCY
Global efficiency (Eg) was the extension of averaged path
length of networks and couldmeasure the global transmission
ability of networks [43]. For a network V with N nodes,
the Eg of V could be calculated as:

Eg =
1

N (N − 1)

∑
a,b∈V ,a 6=b

1
Lab

(5)

The shorter the value of Lp was, the bigger Eg was and the
stronger the capability of global information propagation of
the network was.

3) CLUSTERING COEFFICIENT
Clustering coefficient of a node, Ca, described the level of
connectedness of the direct neighbors of the node [50] and
was a measure of the extent of network collectivization.
Ca was calculated as the ratio of the number of actually exist-
ing connections divided by the maximum possible number of
connections in the subgraph Va:

Ca =
2ea

ka(ka − 1)
(6)

where ea was the number of actually existing edges in the
subgraph Va.

The clustering coefficient of networks, Cnet , was the mean
of the clustering coefficient of all nodes:

Cnet =
1
N

∑
a∈V

Ca (7)

4) LOCAL EFFICIENCY
The local efficiency of subgraph Va was computed as
the average of the shortest path of all nodes in the
subgraph Va [43].

Eloca =
1

NVa (NVa − 1)

∑
b,c∈Va,c 6=b

1
Lbc

(8)

where Lbc was the shortest path between node b and c in
the subgraph Va. Eloca indicated the ability of information
exchange after removing node a in the subgraph Va. The local
efficiency of a network could be specified as:

Elocnet =
1
N

∑
a∈V

Eloca (9)

Elocnet could depict the local information transmission ability
of the network [43].

5) AVERAGED NODE DEGREE
Within undirected graph, Dega, i.e. the degree of node a,
was regarded as the number of nodes directly connected
with node a. One node with higher degree had more connec-
tions [1] and played a more indispensable role in the network.
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The average node degree of networks was measured as the
mean of the degrees of all the nodes:

Deg =
1
N

∑
a∈V

Dega (10)

Deg represented the sparsity of networks.

6) SMALL WORLD PROPERTIES
Relative to random networks, small world networks held
higher clustering coefficient and similar averaged path
length [52], namely:

γ = Cpreal/Cprandom > 1

λ = Lpreal/Lprandom ≈ 1 (11)

where Cpreal and Cprandom denoted the clustering coefficient
of the real networks and random networks respectively, while
Lpreal and Lprandom represented the averaged path length of
the real and random networks, respectively.

Combining two small world indices γ and λ, a scalar
quantitative measurement, σ , could be utilized to examine
‘small-world-ness’ of networks easily [53]. That is:

σ = γ /λ (12)

when σ was significantly greater than 1, we considered that
the networks satisfied small world properties. In the current
study,Malslovs wring algorithmwas used to generate random
networks with the same number of nodes, number of edges
and degree distributions as real binary networks [49], [54].

H. SIMULATION
In order to validate the possible new connection measures for
EEG brain network, three simulated models were did in the
current study. For the current simulated network with three
nodes, the relationships between nodes were mutually influ-
ential. If we determined the functional relationships (linear
or nonlinear) of two edges in a 3-node network, then the
third edge could be derived from the previously determined
functional relationships of the other two edges.

1) SIMULATED MODEL 1
Model 1 was a 3-node network with full linear correlations.
For Model 1, we firstly made sure that the functional rela-
tionships fA,B and fC,B were linear relationships. That is,
fA,B and fC,B satisfied superposition principle (i.e. f (x+ y) =
f (x) + f (y)) and homogeneity (i.e. f (ax) = af(x), a was the
constant coefficient). fA,B denoted the functional relationship
between node A and B. Similarly, fC,B denoted the functional
relationship between node C and B. Then, the functional
relationship between nodeA andC (i.e. fA,C ) could be derived
by fA,B and fC,B.
Within the Model 1, functional relationships among the

three nodes were as follows:

xA = 4xB + ε (13)

xC = 4xB + ε (14)

xC = xA + ε (15)

where xA, xB and xC were the values of three nodes in the
simulated network and all subjected to the normal distribu-
tion, namely xA, xB, xC ∼ N(0,1). ε was noise and subjected
to the uniform distribution, namely ε ∼ U(0,1).

2) SIMULATED MODEL 2
Model 2 was a 3-node network with two nonlinear corre-
lations and one linear correlation. Similar with Model 1,
we firstly ensured that fA,B was linear and fC,B was nonlin-
ear. Then, the functional relationship between node A and
C (i.e. fA,C ) could be derived by fA,B and fC,B. Within the
Model 2, functional relationships among the three nodes were
as follows:

xA = 4xB + ε (16)

xC = 4sinxB + 3x2B + ε (17)

xC = 4sin(
1
4
xA)+

3
16
x2A + ε (18)

where xA, xB and xC were the values of three nodes in the
simulated network and all subjected to the normal distribu-
tion, namely xA, xB, xC ∼ N(0,1). ε was noise and subjected
to the uniform distribution, namely ε ∼ U(0,1).

3) SIMULATED MODEL 3
Model 3 was a 3-node network with full nonlinear correla-
tions. Firstly, we made sure that the functional relationships
fA,B and fC,B were nonlinear. Then, the functional relation-
ship fA,C could be derived by fA,B and fC,B. Within the
Model 3, functional relationships among the three nodes were
as follows:

xA = x2B + ε (19)

xC = 4sin(x2B)+3x
2
B + ε (20)

xC = 4sin(xA)+3xA + ε (21)

where xA, xB and xC were the values of three nodes in the
simulated network and all subjected to the normal distribu-
tion, namely xA, xB, xC ∼ N(0,1). ε was noise and subjected
to the uniform distribution, namely ε ∼ U(0,1).

III. RESULTS
A. SIMULATION STUDY
For three simulated networks, the correlations among three
nodes weremeasured by PCC andMIC. The simulated results
were showed in TABLE 1 ∼ TABLE 3. Within Model 1,
the PCC and MIC between node A and B were 0.643 and
0.775 (p < 0.05) respectively. The PCC and MIC between

TABLE 1. Simulated model 1.
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TABLE 2. Simulated model 2.

TABLE 3. Simulated model 3.

FIGURE 2. Model 1: simulated network with linear edges. A, B and C
denoted the three network nodes.

node C and B were 0.760 and 0.748 (p < 0.05), respectively.
The PCC and MIC between node A and C were 0.564 and
0.786 (p < 0.001), respectively. Within Model 2, the PCC
and MIC between node A and B were 0.594 and 0.673
(p < 0.05), respectively. The PCC and MIC between node C
and B were 0.769 and 0.894 (p < 0.05), respectively. The
PCC and MIC between node A and C were 0.392 (p > 0.05)
and 0.729 (p< 0.05), respectively. Within Model 3, the PCC
and MIC between node A and B were 0.439 (p > 0.05) and
0.629 (p < 0.05), respectively. The PCC and MIC between
node C and B were 0.312 (p > 0.05) and 0.633 (p < 0.05),
respectively. The PCC and MIC between node A and C were
0.942 and 0.967 (p < 0.001), respectively.

B. NETWORK PROPERTY ANALYSIS
As the Figure 5 illustrated that the minimumwas set to 0.5 for
removing weak or false connections and at the same time
ensuring the small-worldness of alpha networks, namely σ
and γ significantly greater than 1 (p < 0.05, FDR cor-
rected), and λ was approximately equal to 1 (p > 0.05).
The maximum threshold was 0.73 to ensure that the Deg
of alpha networks exceeds 6.08 (i.e. 2ln21) for meeting the
connectivity between nodes. Hence here the threshold range
was in 0.5∼0.73 (with steps of 0.01).
In the current study, we did the statistical analysis for

the structure of EEG networks (i.e. network properties).
At each threshold point, the paired t-test was performed to
examine whether there was a significant difference between
network properties established by MIC and PCC. The blue
star (?) denoted that there was a significant difference on
network properties between MIC- and PCC-based networks
(p < 0.05, FDR corrected).

FIGURE 3. Model 2: simulated network with linear and nonlinear edges.
A, B and C denoted the three network nodes.

FIGURE 4. Model 3: simulated network with nonlinear edges. A, B and C
denoted the three network nodes.

As Figure 5 (A) illustrated, alpha networks measured
by MIC and PCC both satisfied small-word properties.
As showed in Figure 5 (B), Cp, Lp, Eloc, Eg and Deg of
the constructed network by MIC overmatched the Cp of the
constructed network by PCC when the thresholds respec-
tively was in 0.5∼0.52, 0.5∼0.6 (or 0.68∼0.73), 0.5∼0.54,
0.5∼0.6 (or 0.65∼0.72) and 0.5∼0.59, while the Cp and
Eloc of the network obtained from MIC was inferior to that
obtained from PCCmarkedly when the threshold ranges were
in 0.55∼0.61 (or 0.64∼0.73) and 0.64∼0.73.

IV. DISCUSSION
In the current study, we investigated the topological differ-
ences between two types of networks measured by MIC and
PCC and tested the effects of connectivity characteristics
within a given threshold range. From the simulation and
the resting-state brain network results, we found that: (1)
Compared to MIC, PCC was more widely used and easier to
implement. However, from the simulation study, PCC could
not accurately capture nonlinear relationships between two
nodes of simulated networks, which indicated that MIC could
be a complementary method of PCC to measure the rela-
tionship between two nodes. (2) As showed by the network
properties analysis from the real EEG data, for the edge num-
ber of the constructed network measured by both MIC and
PCC, the network connectivity was sparser with the increased
thresholds and conversely, network density grew with the
decreased thresholds. (3) On the whole, the brain network
properties measured by MIC was superior to those measured
by PCC, which indicated that MIC could capture a variety
of potentially interesting relationships between paired brain
regions which PCC failed to capture. However, the Cp and
Eloc of EEG networksmeasured byMICwas inferior to those
measure by PCC in higher threshold ranges, which implied
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FIGURE 5. Properties of alpha networks constructed by MIC and PCC.
(A) Small world properties of networks varied with different thresholds.
(B) Cp, Lp, Eloc, Eg and Deg changed with different thresholds. The red
color showed the properties of brain networks estimated by MIC, and the
blue color represented the properties of brain networks computed by
PCC. The vertical axes denoted the network properties, and the horizontal
axes indicated step-by-step thresholds (step: 0.01). The blue star (?)
suggested that there was a significant difference between network
properties established by MIC and PCC (p < 0.05, FDR corrected).

that MIC and PCC could capture different parts of relation-
ships between two brain areas. That is, the combination of
PCC and MIC might reveal deeper topology of functional
brain networks. Here, MIC was firstly applied to measuring
the functional connections for EEG networks, which might
provide a novel method for EEG brain connectome.

As showed by simulation study, both PCC and MIC could
capture linear relationships in simulated model 1. However,
PCC could not exactly measure the nonlinear relationships
between nodeA and nodeC in simulatedmodel 2. In addition,
not only the nonlinearity between node A and node B, but
also the nonlinearity between node C and node B could

not properly be represented by PCC in simulated model 3.
Moreover, the nonlinearity between node A and node C in
simulated model 3 could be mistakenly measured by PCC
in a highly linearity-related pattern. The results implied that
MIC could capture some nonlinear relationships between
two variables and some complex disease associations, such
as single-nucleotide polymorphism (SNP) disease [55] and
germ cell tumors (GCT) [56], which PCC might have diffi-
culty to measure.

Based on the EEG networks showed by Figure 5, as the
thresholds increased, theCp, Eloc, Eg,Deg of alpha networks
decreased and the Lp of alpha networks increased constructed
by MIC and PCC which indicated that information transmis-
sion ability of networks declined and the network connectiv-
ity declined (sparser). Similarly, as the thresholds decreased,
the Cp, Eloc, Eg, Deg of alpha networks increased and the
Lp of alpha networks decreased, indicating that information
transmission ability of the networks increased and the net-
work connectivity increased (denser). Moreover, as Figure 5
showed, Eloc, Eg and Deg based on MIC, were mostly supe-
rior to those based on PCC in the lower threshold ranges,
indicating that network density and capability for parallel
information propagation of the construed networks by MIC
was higher than that by PCC within lower thresholds. These
findings suggested that MIC could be used to define more
relationships (functional and non-functional relationships)
between paired brain regions but lower degree of correlations
(or weights of connectivity matrix) than PCC, which further
embodied the generality properties of MIC, consistent with
the previous studies [20], [24]. Enlightened by these findings
above, we could come to a conclusion that with the changes of
different cognitive processes such as working memory, emo-
tion and attention, inter-regional interactions or integration
were performed by varying linear or nonlinear relationships
among neurons and neuronal assemblies which also played a
critical role in the construction of network topology.

Our results indicated that alpha networks were organized in
an efficient small-world manner that confirmed at high effi-
ciency of information processing at relatively low connection
cost. In other words, the features of alpha networks in the
current study were high clustering coefficients and low path
lengths [57].

In addition, the denser connection (i.e. node degree) and
more global connectivity (i.e. long-distance interrelationship)
in the lower threshold ranges occurred in alpha networks
based on MIC to guarantee the efficient information pro-
cessing and transfer of the inhibitory and excitation. This
might indicate that nonlinear characteristics took the dom-
inant position during area-to-area network interactions of
alpha processing, consistence with the previous study [58].
In the higher threshold ranges, the alpha network showed rela-
tively stable connections between distant brain areas based on
MIC, while we found the local information transfer efficiency
in the network constructed by PCC was significantly higher
than that by MIC. Previous findings revealed that local alpha
oscillation might negatively associated with the excitability
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of cortical processing [59]. That is, the brain networks in the
higher threshold ranges might showed more linear parts of
the local and inter-areal alpha dynamic cortical interactions
but not non-linear parts.

Taken together, the distinct brain network topology might
reveal different varieties of dynamic processes of perception
arousal level, excitation, inhibition, and motor-related activ-
ity, which might be reflected by the linear or nonlinear mode
measured by PCC and MIC respectively.

MIC might be a proper dependence measure that could
capture certain associations which PCC could not find. How-
ever, computational complexity of MIC was much greater
than that of PCC. Although MIC was considered a great
progress in dependence measures between two variables [8],
there were still a lot of steps to take in the implementation
for the dependence measure. Moreover, MIC as a nonlinear
method cannot completely be regarded as a substitution for
the linear method like PCC and nonlinear methods were
not always more effective than linear methods [60]. Instead,
nonlinear methods should be referred to as a complementary
to linear methods. Different parts of dependence relation-
ships between paired variables could be measured by the
linear and nonlinear methods together. Therefore, seeking a
proper method to capture associations between two variables
deserved to be taken seriously based on the cognitive charac-
teristics of the acquired data and the experimental motivation.

V. CONCLUSION
In the current study, firstly the correlations between two
nodes of three simulated models were measured by MIC and
PCC to validate the possible new connection measures for
EEG brain networks. Secondly, MIC and PCC were respec-
tively utilized to construct resting-state brain functional net-
works underlying high temporal resolution EEG recordings.
Then, a threshold range was given to check the connec-
tivity characteristics of constructed networks by both MIC
and PCC.

More importantly, the results showed that MIC could cap-
ture certain associations which PCC failed to do. However,
it might be a misconception that MIC could absolutely be
a substitution for PCC. The comparison analysis of network
properties underlying the resting-state EEG recordings indi-
cated that MIC could not absolutely be a substitution for
PCC, that is, MIC and PCC could capture different aspects
of connections between two brain areas. In other words, the
nonlinear method was not always more effective than the
linear method. In effect, nonlinear methods were considered
as a complementary approach to linear methods and different
parts of associations between two variables could be found
by the two kinds of methods collectively.
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