
Received January 6, 2019, accepted February 3, 2019, date of publication February 13, 2019, date of current version March 1, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2898707

One-Pass Inconsistency Detection
Algorithms for Big Data
MEIFAN ZHANG, HONGZHI WANG , JIANZHONG LI , AND HONG GAO
Department of Computer Science and Technology, Harbin Institute of Technology, Harbin 150006, China

Corresponding author: Hongzhi Wang (wangzh@hit.edu.cn)

This work was supported by the NSFC under Grant U1509216, Grant U1866602, and Grant 61602129.

ABSTRACT Data in the real world is often dirty. Inconsistency is an important kind of dirty data; before
repairing inconsistency, we need to detect them first. The time complexities of the current inconsistency
detection algorithms are super-linear to the size of data and not suitable for the big data. For the inconsistency
detection of big data, we develop an algorithm that detects inconsistency within the one-pass scan of the
data according to both the functional dependency (FD) and the conditional functional dependency (CFD) in
our previous work. In this paper, we propose inconsistency detection algorithms in terms of FD, CFD, and
Denial Constraint (DC). DCs are more expressive than FDs and CFDs. Developing the algorithm to detect
the violation of DCs increases the applicability of our inconsistency detection algorithms. We compare the
performance of our algorithm with the performance of implementing SQL queries in MySQL and BigQuery.
The experimental results indicate the high efficiency of our algorithms.

INDEX TERMS Inconsistency detection, big data, one-pass algorithm, data quality, denial constraint.

I. INTRODUCTION
Data quality problems in real world may cost not only billions
of dollars in businesses, but also precious lives when they
exist in medical data [1].With the consideration of the serious
consequences caused by data quality problems, techniques
for detecting and fixing errors are in great demand. For big
data, due to the volume feature, it has data quality problems
in higher possibility.

Inconsistency is an important aspect of data quality prob-
lems. Inconsistency means that some tuples violate given
rules. For effective inconsistency detection, some forms of
rules are proposed such as functional dependency (FD) and
conditional functional dependency (CFD) [2]. Denial con-
straints (DCs) are also regarded as inconsistency detection
rules, they are more expressive than the traditional FDs and
CFDs [3]–[6].

In [7] and [8], researchers proposed a SQL-based automat-
ical detection method to identify the tuples violating CFDs.
In [7], they get a tableaux merged by multiple CFDs, and
translate that into a single pair of SQL queries. With this pair
of SQL queries, they only need to scan the database twice.
In the queries, they get a Macro by joining the tableaux with
the whole dataset. However, join operation for big data still

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhao Zhang.

costs much. In [9], a method is proposed to detect and repair
data structure inconsistencies automatically. However, they
are not suitable for inconsistency detection on big data due to
efficiency issues. As a result, they are difficult to scale to big
data. We use an example to illustrate this point.

TABLE 1. An salary relation R.

Example 1: The schema in Table 1 is a relation of salary
in a company. There are six attributes in this relation: Depart-
ment (Dept), Total Pay (TP), Title Level (Title), Base Pay
(BP), Attendance (AT), Ill and Leave (IL). We use the fol-
lowing two rules to detect the inconsistencies in this relation:
one FD φ1(R : Dept,Title→ BP, (_, _‖_)), one CFD φ2(R :
Dept,Title→ BP, (1, 2 ‖ 2000)).

According to the SQL-based method, we need the follow-
ing two queries to detect the inconsistencies. QV is a query
for the FD φ1, and QC is for the CFD φ2.

QC : select t from R
where t[Dept] = tp[Dept] AND t[Title] = tp[Title]
AND t[BP] 6= tp[BP]

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

22377

https://orcid.org/0000-0002-7521-2871
https://orcid.org/0000-0002-4119-0571
https://orcid.org/0000-0002-2000-6683

M. Zhang et al.: One-Pass Inconsistency Detection Algorithms for Big Data

QV : select distinct t[Dept], t[Title] from R
where t[Dept] � tp[Dept] AND t[Title] � tp[Title]
AND t[BP] 6= tp[BP]
group by t[Dept], t[Title]
having count (distinct t[Dept], t[Title]) > 1

In the queries above, t is a tuple in Table 1 and tp is a single
pattern tuple of a rule. The rule t[A] � tp[A] means that if
tp[A] is not ‘‘_’’, then t[A] = tp[A]; otherwise, t[A] should be
a constant in the domain dom(A) of attribute A. The operators
and the way of converting a DC into queries are introduced
in reference [7], [10].

The first query returns the tuples violating φ2, which is
shown in Table 2. And the second query returns the values of
Dept and Title of inconsistent tuples. The tuples matching the
records in Table 3 are those involved in the inconsistencies.

TABLE 2. The result of QC .

TABLE 3. The result of QV .

It is obviously that these two queries need two passes scan-
ning of the data. And the results of FD detection only return
the distinct values of the left hand side (LHS) of inconsistent
tuples. We still need a list of queries for the inconsistent
tuples. In this example, with the result of QV in Table 3,
we still need one more query QR.

QR : select t from R
where t[Dept] = 1 AND t[title] = 2

This query returns the violations of φ1, and the result is
{t3, t5, t6}.
One query requires at least one pass of database scan, and

the efficiency of a query is affected by the database size. This
method may cost too much time for detecting inconsistencies
in big data.

In order to make inconsistency detection more general,
we also take DCs into consideration. Six operators {=, 6=, <,
>,≤,≥} are allowed in the DCs. These operators make DCs
more expressive than FDs and CFDs. We use an example to
indicate the violation of DCs.
Example 2: In the relation shown in Table 1, we have a

rule like this: if t1.AT > t2.AT , then the value t1.IL must
be lower than or equal to t2.IL. This rule can be expressed as
a DC:

∀t1, t2 ∈ R, ¬(t1[AT] > t2[AT] ∧ t1[IL] > t2[IL])

We can know from Table 1 that t5 conflicts with t6 since
t6[AT] > t5[AT] and t6[IL] > t5[IL].

The DC in last example can be converted into one SQL
query easily:

QDC : select t1, t2 from R t1, R t2
where t1[AT] > t2[AT] AND t1[IL] > t2[IL]

However, this query is processed as a Cartesian product,
meaning that the time complexity isO(n2). Though the denial
constraints can be easily expressed in SQL queries, the low
efficiency makes it not suitable for detecting the inconsis-
tency of big data.

The inconsistency detection for big data motives us to
design new algorithms that could accomplish the detection
within one-pass of data scan. Considering reducing the times
of accessing database, we group each attribute by its values.
For the tuples with the same value on same attribute, we group
their IDs together in a tuple set. Then, we attempt to get the
violation with the grouped result. In the detection process
with FDs and CFDs, we first get the tuples matching the
LHS of a rule by calculating a list of intersections of the
grouped tuple sets. At last, we determine the inconsistencies
by checking that whether the tuple set matching the LHS
is the subset of a tuple set matching the right hand side
(RHS). In the process of detecting inconsistencies with DCs,
we also make use of the grouped result. The violation of
constant DCs can be captured easily similar to detecting the
inconsistency of constant CFDs. Detecting with variable DCs
is more complex. We proposed an efficient algorithm whose
time complexity is O(n · logn). In any case, the detection
process scans the data set only once.

We make following contributions in this paper.
Our first contribution is enriching our one-pass algorithm

for detecting inconsistencies with FDs and CFDs with more
details. We add more examples and prove the correctness of
the detection algorithm.

Our second contribution is that we extend our algorithm
and take a more general rule denial constraint into considera-
tion. We proposed two algorithms for detecting inconsistency
with constant DCs and variable DCs, respectively.

Our third contribution is the extensive experiment on both
real and synthetic datasets. We compare our method with
SQL-based methods. The experimental results demonstrate
that the proposed methods are efficient and effective1.
The remaining parts of this paper are organized as fol-

lows. In Section II, we survey related work for this paper.
In Section III, we introduce the background of this paper
including the definitions of inconsistencies and the rules used
to detect inconsistencies. In Section IV, we propose the one-
pass inconsistency detection method to detect the violation of
FDs and CFDs. In Section V, we develop two algorithms to
detect inconsistencies with DCs. In Section VI, we compare
our detectionmethods with previousmethods experimentally,
and the experimental results on real datasets demonstrate

1In the experiments, we use our detection methods and the SQL-based
method to detect the inconsistencies with same rules respectively. The detec-
tion results of our inconsistency detection method are same with the results
of the SQL queries, and the results also accord with the reality.

22378 VOLUME 7, 2019

M. Zhang et al.: One-Pass Inconsistency Detection Algorithms for Big Data

the performance of our detection methods. In Section VII,
we draw the conclusion and give a brief overview of our work
in future.

II. RELATED WORK
As an important problem in data quality management,
the inconsistency problem including both the detecting and
repairing problem has been well studied [2], [7], [8], [11],
[5], [12]–[16]. Some researchers use statistical model and
propose some thresholds to identify the inconsistencies
[17], [18]. Other researchers use constraints such as FDs and
CFDs [2], [7], [8], [10]–[13], [19] to detect inconsistencies.
In order to make the rules more general and more expressive,
denial constraints (DCs) are also regarded as rules. DCs can
express rules involving numerical values, with predicates
such as ‘‘greater than’’ and ‘‘less than’’. DCs have been
used for data cleaning as well as consistent query answering
[3]–[6]. As the DCs are defined on predicates, they can be
expressed in SQL queries easily. However the SQL queries
usually have low efficiency. There is no efforts on detecting
inconsistencies with high efficiency when regarding DCs as
the data quality rules.

It is necessary to obtain rules before detecting inconsisten-
cies with the rule-based detection methods. Some methods
have been proposed to discover rules automatically [19], [20],
which aremainly extensions to traditional FD. Reference [20]
proposed a search algorithm with pruning strategy which can
discover rules effectively. In [21], a method is proposed to
automatically discover CFD. A DC discovering algorithm is
proposed by Chu et al. [22] to automatically get the DCs from
database. The rules used for detection may have conflicts.
In order to solve this problem, a data cleaning framework is
proposed to resolve conflicts in rules [23]. Bleifu [24] pro-
posed a new algorithm called Hydra to automatically discover
DCs. The work in [25] presents BFASTDC, a bitwise version
of FASTDC that uses logical operations to form the auxiliary
data structures from which DCs are mined.

Wang and Tang [26] proposed algorithms to check whether
the fixing rules are consistent and devised algorithms for
repairing data errors. CINA proposed in [27] analyses the
constraints instability conditions to address the unstable con-
text inconsistencies. In [28], they defined hazard patterns to
identify and suppress the hazard from real inconsistencies.
The hazard in that paper is similar to the STINs in CINA.
Alpar and Winkelsträter [29] point out that both data quality
breaches and correcting the violations by humans are expen-
sive. Therefore, they use a metric to measure the consistency
based on the rules and manually repair the least inconsistent
transactions. A system for the discovery of approximate tem-
poral functional dependencies is raised in [30]. It performs
better than the traditional FDs when cleaning a temporal
data set.

Recently researchers have been looking into automatic
inconsistency detecting methods [9], which regards FDs as
the main rules. Detecting methods based on CFDs are also
proposed after the definition of CFD [7], [15]. Many previous

methods only based on one kind of rules [2], [5], [9], [11],
[31], few works combine different kind of rules together to
detect inconsistencies. Li et al. [32] introduce a source selec-
tion method called SSID for inconsistency detection, how-
ever, multi-sources of data are required. Shaikh et al. [33]
propose a novel method for detecting inconsistencies and
incompleteness in access control policies with the help of data
classification tools. Anand et al. [34] make efforts to detect
the inconsistencies in business rules. However, the rules in
these works [33], [34] are much different from the rules in
our work.

The previous works on inconsistency detection mostly
need redundant data inquiries. Many works aim at mining
constraints and repairing violations [24]–[26], [35], however,
few works make efforts in improving the efficiency of incon-
sistency detection. Queries are still used for inconsistency
detection in some recent works [25], [35], [36]. There have
been little efforts on detecting tuples involved in the inconsis-
tencies with only one pass database scan. In the preliminary
work [37], we proposed a one-pass algorithm to detect the
violation of CFDs. In this paper, we extend the work and
propose algorithms to detect the violation of DCs. We proved
that the inconsistency detection with variable DCs can be
converted into the problem of getting the ascending ordered
pairs in an array. The time complexity can be reduced to
O(n · logn).

III. PRELIMINARIES
In this section, we introduce some background of this paper
including the definitions of inconsistencies and the rules
used to detect inconsistencies. The rules in this section are
defined in the syntax similar to those of FDs and CFDs in
references [7], [10] and DCs in references [3], [22].

A. RULES
For a relational schema R, we use the rules containing normal
form FDs (CFDs) and DCs in this paper.
Definition 1: Normal form: A FD or a CFD φ(R : X →

Y ,Tφ) is in normal form if (1)Tφ consists of a single pattern
tuple tp. If R : X → Y is an FD, tp = (_, _, . . . , _‖_),
which means tp consists of ‘‘_" only. (2)Y consists of a single
attribute A.

After the definition of normal form, we write φ simply as
φ(R : X → A, tp). Each CFD (FD) not in normal form can be
written as a set of CFDs (FDs) in normal form. For example,
a CFD φ(R : Dept,Title,AT → BP,TP, (1, 2, _‖2000, _))
not in normal form can be written into two rules in normal
form: (1) φ1(R : Dept,Title → BP, (1, 2‖2000)), (2) φ2(R :
Dept,Title,AT → TP, (1, 2, _‖_)). With the help of rules in
normal form, we can easily know the cells involved in the
inconsistencies, since the RHS of the rules only contain one
attribute. If a tuple t violates φ1, it is clear that t[Dept] = 1,
t[Title] = 2, t[BP] 6= 2000.
The normal form rules can be classified according to

whether their RHS is a constant or not.

VOLUME 7, 2019 22379

M. Zhang et al.: One-Pass Inconsistency Detection Algorithms for Big Data

Definition 2: Constant RHS rules: The constant RHS rules
contain the constant CFDs only. A CFD φ(R : X → A, tp)
is called a constant CFD if its pattern tuple tp consists of
constants only. That is, tp[A] is a constant and for each
attribute B ∈ X , tp[B] is a constant.
Definition 3: Variable RHS rules: The variable RHS rules

contain both FDs and variable CFDs. A CFD φ(R : X →
A, tp) is called a variable CFD if tp[A] = ‘‘_’’. That is,
the right hand side (RHS) of its pattern tuple is the unnamed
variable ‘‘_’’. The RHS of FDs is also obviously the unnamed
variable ‘‘_’’.
Definition 4: A denial constraint (DC) is in the form:
∀tα, tβ , tγ , ...,¬(A1 ∧ ... ∧ Am). Ai are built-in atoms of the
form v1θv2 or v1θc, where v1, v2 is in the form of tx .A, x ∈
{α, β, γ, ...}, A is an attribute in R, c is a constant and θ ∈ {=,
6=, <,>,≤,≥}.

We also classify denial constraints into two kinds: (1)con-
stant DC, (2)variable DC.
Definition 5: Constant DC: A denial constraint where

each Ai is built-in atoms of the form v1θc. v1 is in the form of
tx .A, x ∈ {α, β, γ, ...}, A is an attribute in R, c is a constant
and θ ∈ {=, 6=, <,>,≤,≥}.
Definition 6: Variable DC: A denial constraint where exist

at least two Ai built-in the form v1θv2. v1, v2 is in the form of
tx .A, x ∈ {α, β, γ, ...}, A is an attribute in R, and θ ∈ {=,
6=, <,>,≤,≥}.

FD is a special case of variable DC, where each Ai is built
in the form tx .A = ty.A, x, y ∈ {α, β, γ, ...}. DC is a more
general integrity constraint in database practice.

B. INCONSISTENCY DETECTION
Inconsistency detection problem is to find the data violating
given rules. An instance I of a schema R satisfies a rule φ,
denoted by I |H φ, (1) if φ(R : X → A, tp) is a constant
RHS rule, then for each tuple t in I , t[X] = tp[X] implies
t[A] = tp[A], (2) if φ(R : X → A, tp) is a variable RHS rule,
then for each pair of tuples t1 and t2 in I , t1[X] = t2[X]
implies t1[A] = t2[A], (3) if φ is a DC, the violation of a DC
means that each predicates Ai in ∀tα, tβ , tγ ...,¬(A1∧...∧Am)
cannot be true at the same time.

The violations can be separated into two kinds according
to the kind of rules.
Definition 7: Inconsistent tuples set: The inconsistent

tuple set TS is the set of tuples violating the constant RHS
rules and the constant DCs.
Definition 8: Inconsistent tuples sets group: A group of

inconsistent tuples sets G is a group of tuple sets violating
the variable RHS rules and variable DCs. Considering the
violations of variable RHS rules, the tuples in the same group
have the same LHS, tuples in different sets of the same group
have different RHS values.

The inconsistent tuples detected by a constant RHS rule
φ(R : X → A, tp) can be grouped into one inconsistent tuple
set TS. ∀t ∈ TS, t[X] = tp[X] and t[A] 6= tp[A].

Example 3: In Table 1, we detect inconsistent tuples with
a constant RHS rule φ(R : Dept,Title → BP, (1, 2‖2000)),
the inconsistent tuple set is TS = {t3}.
The inconsistent tuples detected by a variable RHS rule φ(R :
X → A, tp) must be grouped into groups of inconsistent
tuple sets Gs. For each group G, we put the tuples with the
same LHS and different RHS into different sets of the same
group G.
Example 4: In Table 1, we detect inconsistent tuples with

a variable RHS rule φ1(R : Dept,Title → BP, (_, _‖_)),
the inconsistent tuple sets groups G contains one group,
G[1] = {{t3}, {t5, t6}}.
Example 5: We detect the inconsistency with these two

Denial Constraints:
(1)one constant DC: ∀t,¬(t[AT] > 20 ∧ t[IL] ≥ 10).
(2)one variable DC: ∀t1, t2,¬(t1[AT] > t2[AT]∧t1[IL] >

t2[IL]).
The violation of the first rule: t6, since t6[AT] > 20 and

t6[IL] ≥ 10.
The violation of the second rule: t6 conflicts with t5 since

t6[AT] > t5[AT] and t6[IL] > t5[IL].

IV. DETECTING THE INCONSISTENCIES OF CFD
In this section, we describe our inconsistency detection algo-
rithm. In Section IV-A, we introduce the framework of
the algorithm, and then explain the four modules RANGE,
GROUP,MATCH, andMERGE in the following subsections,
respectively.

A. FRAMEWORK
In order to reduce the times of accessing database, we group
each attribute by its values. And for the tuples with same
value on same attribute, we group their IDs together in a
tuple set and build a hash index for retrieving the tuple sets
efficiently. Then we get the tuples matching the LHS by
calculating a list of intersections of the grouped tuple sets.
At last, we obtain the inconsistencies by checking whether
the tuple set matching the LHS is the subset of a tuple set
matching the RHS. In our detection method, we only require
scanning the database once.

The pseudo code of our algorithm is shown in Algorithm 1.
The algorithm has following four steps.

In the first step (line 3), we collect the set of the attributes
and its values from the rules to reduce the data requiring
accessing during detection. This step is introduced in detail
in Section IV-B.

In the second step (line 4), we group the tuples for each
attribute collected in the first step by its values. This step is
introduced in Section IV-C.

In the third step (line 5-11), we detect the violation of
the constant RHS rules. For one constant RHS rule φ(R :
X → A, tp), we get the tuple sets from the result of the sec-
ond step with the attributes in attr(φ) and the values in
tp. The tuples matching the LHS of φ are in left_set , and
for each Xi in X , left_set∩ = tuplesetXi=tp[Xi]. Likewise,

22380 VOLUME 7, 2019

M. Zhang et al.: One-Pass Inconsistency Detection Algorithms for Big Data

Algorithm 1 Detection
1: Input: a database D, a set of rules

∑
.

2: Output: the inconsistencies setsφ for each rule φ in
∑

3: Aset = RANGE(6)
4: S = GROUP(D,Aset)
5: for each constant CFD do
6: for attribute Xi ∈ LHS(φ) and its value xi = tp[Xi]

do
7: left_set∩ = tuple_setXi=xi
8: right_set ← tuple_setRHS(φ)=tp[A]
9: setsφ0← left_set − right_set
10: for each variable RHS rule do
11: LSφ ← {Xi ∈ LHS(φ)|S[Xi]}

12: for each FD φ do
13: i← 0
14: left_sets← MATCH (φ)
15: for each lset in left_sets and each rset in the tuple

sets of S[RHS(φ)] do
16: if |lset ∩ rset| < |lset| and lset ∩ rset 6= 0 then
17: setsφi+ = lset ∩ rset

18: i← i+ 1
19: for each variable CFD φ do
20: temp← MERGE(LSφ[0],LSφ[1])
21: for each LS[i] and i > 1 do
22: temp← MERGE(temp,LSφ[i])
23: i← i+ 1
24: LS ← temp
25: return V

right_set = tupleset_A = tp[A]. The inconsistencies can be
calculated easily by left_set − right_set .

In the fourth step (line 12-32), we detect inconsistencies
violating the variable RHS rules. In this step, we first con-
sider the FDs. The MATCH procedure returns tuple sets
in which the tuples agree on the LHS of φ. After get-
ting left_sets from MATCH module and right_sets from
S[RHS(φ)], we detect the violations with both left_sets and
right_sets. The tuples violating the variable RHS rules are not
independent. We know that the tuples in the same left_setsi
and right_setsj have the same attribute values in the LHS
and RHS of φ, respectively. For each left_setsi, if it is the
subset of right_setsj, there is no violation in left_setsi. Oth-
erwise, there exist violations in left_setsi. In order to check
whether left_setsi is the subset of right_setsj or not, we com-
pare the size of |left_setsi| and |left_setsi ∩ right_setsj|.
If |left_setsi| > |left_setsi ∩ right_setsj| 6= 0, then the tuples
in left_setsi ∩ right_setsj must be inconsistencies. After all
the FDs are detected, we start checking the variable CFDs.
For each variable CFD, if the embedded FD of the CFD is
detected before, we only need to check the detected result
with the constant in the CFD. Otherwise, we detect the incon-
sistencies just in the way that we detect violations of FDs.
Example 6: Consider the data in Table 1 and the rules in

Example 1 again.

TABLE 4. Grouped records.

First, we obtain the following Aset with the algorithm
RANGE which will be explained in detail in Section IV-B.
Aset = {(Dept, _), (Title, _), (BP, _)}.

Second, we get the tuple set calculated with the algorithm
GROUP which will be explained in detail in Section IV-C.
The grouped tuple sets are in Table 4.

The tuple set contains numerical tuple IDs, and the attribute
value is an index of the grouped records, so the list of records
is much smaller than the origin database. With the help of
the list, we can easily detect inconsistencies with some inter-
section and difference operations. Then, we detect inconsis-
tencies with the records in Table 4. The detection with CFD:
φ2(R : Dept,Title → BP, (1, 2‖2000)) is transformed into
the following calculation.

{tuplesetDept=1 ∩ tuplesetTitle=2}\tuplesetBP=2000 = {t3}.

The detection with FD:φ1(R : Dept,Title→ BP, (_, _‖_))
is a little more complicated than CFD, since the RHS BP is
not a constant value. We have to find the tuples matching the
FD on the LHS, and nomatching on the RHS. First, the tuples
matching the LHS can be calculated with the following two
intersections:

(1)intersection tupleset1 : (tuplesetDept=1 ∩

tuplesetTitle=1) = {t1, t2}
(2)intersection tupleset2 : (tuplesetDept=1 ∩

tuplesetTitle=2) = {t3, t5, t6}
Wedo not need to calculate the intersection(tuplesetDept=1∩

tuplesetTitle=3), since tuplesetTitle=3 only contains one tuple.
As we know, one tuple is impossible to cause violation when
detecting with variable CFDs.

If the intersection tuple sets contain more than one tuple,
we use the results to check that whether the intersection is a
subset of a RHS tuple set or not.

(1)(tupleset1 ∩ tuplesetBP=1000) = {t1, t2} = tupleset1.
That is, tupleset1 is the subset of tuplesetD=d1. Thus, there is
no violation in tupleset1.
(2)(tupleset2 ∩ tuplesetBP=1000) = {t3} 6= tupleset2, and
{t3} 6= ∅. tupleset2 is not the subset of any tuple set of
attribute BP. Hence, {t3} must cause violation.

(3)(tupleset2 ∩ tuplesetBP=2000) = {t5, t6} 6= tupleset2,
and {t5, t6} 6= ∅.
As the result, we obtain the inconsistencies of the rules:
The violation of φ2 : {t3}.
The violation of φ1 : {t3} conflicts with {t5, t6}.

B. RANGE
This module aims to get the attributes and values involved in
the rules. We get the set of the attributes and its values from
the rules to reduce the data to be checked.

VOLUME 7, 2019 22381

M. Zhang et al.: One-Pass Inconsistency Detection Algorithms for Big Data

Algorithm 2 Range
1: Input: a set of rules

∑
.

2: Output: attribute values involved in the rules.
3: for each rule φ do
4: for each attribute A ∈ attr(φ) do
5: if A does not exist in Aset then
6: Aset+ = A
7: valuesetA+ = tp[A]
8: else if valuesetA 6= ‘‘_’’ then
9: if tp[A] is ‘‘_’’ then
10: valuesetA← {‘‘_"}
11: else if tp[A] /∈ valuesetA then
12: valuesetA+ = tp[A]

In the attribute set S =
∑

(attributeA, valuesetV), each
attribute A is involved in the set attr(

∑
φ). We check all the

attributes and their values in the rules. If an attributeA is not in
the attribute set Aset , we then store A and its value in Aset and
valuesetA respectively (Line 5-7). Else if valuesetA contains
constant values, we need to check that whether the new value
is a variable ‘‘_’’ or not (Line 8). If the answer is yes, we use
a variable ‘‘_’’ to replace the values in valuesetA, otherwise,
we store the distinct value in the valuesetA (Line 9-12).
In order to capture the distinct values, we use a hash table to
store the values for each attribute. That is, the complexity of
inserting a value isO(1). The space complexity of this module
is O(|attr(

∑
φ)|) and the time complexity of this module is

O(S), where S is the number of the rules.
Example 7: In Table 1, we detect inconsistencies with fol-

lowing three rules:

φ1(R : Dept,Title→ BP, (_, _‖_)),

φ2(R : Dept,Title→ BP, (1, 2‖2000)),

φ3(R : IL → AT , (10‖20))

The attributes setAset of the above three rules contains five
pairs of attribute and value set.

Aset = {(Dept, _), (Title, _), (BP, _), (AT , {20}), (IL, {10})}.

C. GROUP
In the range module, we get the attribute set (Aset). For each
attribute A, there is a value set (Vset) which consists of both
the value of A and the tuple set (Tset), and all the tuples in
the Tset agree on the same value in attribute A. It is easy to
get the tuples with certain value of certain attribute from the
result.

The pseudo code of this step is shown in Algorithm 3.
We store the attributes with constant values in Aset and insert
its value in the Vsets. If an attribute has no constant value,
we only store the attribute in Aset (line 3-10). We create a
hash for each attribute involved in the rules. Then we scan
each tuple in database. If the value does not exist in the hash
indices, we store the value in Vset and insert the tuple ID into

Algorithm 3 Group
1: Input: a database D and the attribute set (Aset)
2: Output: the data set S grouped by values and attributes
3: for all attribute A and its value set V in Aset do
4: store A in S
5: if the value set of A is not ‘‘_’’ then
6: for all value a in the value set of A do
7: VsetA+ = a
8: for all tuple t ∈ D do
9: for all A ∈ Aset do
10: if the value set V of A is ‘‘_’’ or t[A] ∈ V then
11: if t[A] is not in VsetA then
12: VsetA+ = t[A]
13: TsetA=t[A]+ = t
14: else if t is not in TsetA=t[A] then
15: TsetA=t[A]+ = t

its Tset (line 11-22). Meanwhile, we insert the value into the
bucket in the hash table of the attribute.

The time complexity of this module is O(|T | · |A|), where
|T | is the number of tuples in the database, and |A| is the
number of attributes involved in rules. O(1) is the cost of
accessing one value in an attribute. We only scan the values
of the attributes involved in the Aset for just once. That is,
we only require scanning a subset of the database. So the time
complexity of this module is bounded by O(|T |), where |T |
is the number of tuples in database.

This module requires the only one pass of the database
scan in our detection algorithm. After this module, we get
the intermediate result S. S consists of a list of Asets, each
Aset consists of an attribute and aVset , and eachVset consists
of a list of pairs (value,Tset). S =

∑
Aset(attribute,Vset),

and Vset =
∑

(value,Tset). For retrieving values from S
efficiently, we build a hash index for attributes and values
in S, respectively. The result of this module can return the
tuple set containing the tuples with a certain attribute value
without accessing the original database.

D. MATCH
As discussed in Section IV-A, the MATCH module returns
tuple sets in which the tuples agree on the LHS of φ. In the
MATCH module, we consider a strategy of processing the
FDs. We store the intermediate results which will be used
for the detection with other rules in order to avoid redundant
calculation.

As shown in Algorithm 4, if LHS(φ) and LHS(φ′) share
the same subset, where φ and φ′ are different rules, we store
the merged results in a list named processed, since that will
be used to detect violations of other rules (Line 5-12). Oth-
erwise, we just merge the LHS of the rule (Line 13-20). The
functionMERGE used in this module will be explain in detail
in Section IV-E.
LSφ is a set of the attributes or conditions in the LHS of

φ prepared to merge. We take an FD φ(R : A,B,C →
D, (_, _, _‖_)) as an example. LSφ = {{A}, {B}, {C}} at the

22382 VOLUME 7, 2019

M. Zhang et al.: One-Pass Inconsistency Detection Algorithms for Big Data

Algorithm 4 Match
1: Input: an FD φ
2: Output: the tuple set in which tuples agree on the LHS

of φ
3: i← the size of processed attributes
4: while |LSφ | ≥ 2 do
5: if a subset A,B in LSφ exists in LSφ′ and φ′ is

unprocessed then
6: processed[i]← MERGE(A,B)
7: for all φ′ unprocessed do
8: if {A,B} is the subset of LSφ′ then
9: LSφ′ ← LSφ′ − {A,B} + {processed[i]}

10: i← i+ 1
11: else
12: temp← MERGE(LSφ[0],LSφ[1])
13: for 1 < i < |LSφ | do
14: temp← MERGE(temp,LSφ[i])
15: i← i+ 1
16: LSφ ← temp

17: return LSφ

beginning, and |LSφ | = 3. After merging attributes A and B,
LSφ = {{A,B}, {C}} and |LSφ | = 2
Example 8: Consider the data in Table 1, and the FD φ1

in example 1. We add another FD φ4:

φ1(R : Dept,Title→ BP, (_, _‖_)).

φ4(R : Dept,Title,AT → TP, (_, _, _‖_)).

First, we got the grouped tuple sets in the GROUPmodule.
The data set is as follows.

S = {(Dept,VsetDept), (TP,VsetTP),

(Title,VsetTitle), (BP,VsetBP), (AT ,VsetAT)}

VsetDept = {(Dept = 1, {t1, t2, t3, t4, t5, t6})}

VsetTP = {(TP = 1500, {t1, t3, t4, t6}),

(TP = 2500, {t2, t5})}

VsetTitle = {(Title = 1, {t1, t2}),

(Title = 2, {t3, t5, t6}), (Title = 3, {t4})}

VsetBP = {(BP = 1000, {t1, t2, t3}),

(BP = 2000, {t4, t5, t6})}

VsetAT = {(AT = 10, {t1, t2}), (AT = 20, {t3, t4, t5}),

(AT = 30, {t6})}

Then we detect tuple sets which contain tuples matching
the FD on the LHS. We denote the tuple set (Tset) in which
tuples agree on the same condition set (Cset) as TsetCset . The
tuple sets matching φ1 on the left side are as follows.

TsetDept=1,Title=1 :

(TsetDept=1 ∩ TsetTitle=1) = {t1, t2}

TsetDept=1,Title=2 :

(TsetDept=1 ∩ TsetTitle=2) = {t3, t5, t6}

As we know, the attributesDept and Title in the LHS of φ1
also exist in LHS of φ4, so we store the tuple sets matching
the LHS of φ1 in the processed set in order to avoid redundant
calculation. The results can be used in detecting the tuple sets
matching φ4 in LHS. We get the intersections which contain
more than one tuple as follows.

TsetDept=1,Title=1,AT=10 :

(TsetDept=1,Title=1 ∩ TsetAT=10) = {t1, t2}

TsetDept=1,Title=2,AT=20 :

(TsetDept=1,Title=2 ∩ TsetAT=20) = {t3, t5}

In this example, we do not calculate tuple set containing
only one tuple likes TsetDept=1,Title=2 ∩ TsetAT=30, since one
tuple cannot violate a constant RHS rule alone. This strategy
will be explained in detail in Section IV-E.

E. MERGE
This module is the most important part in the algorithm for
detecting inconsistencies violating variable RHS rules. And
this module dominates cost of inconsistency detection based
on CFDs.
This block is a sub-module of the MATCH block. Merging

two attributes A and B means to find the tuples agreeing on
both A and B. The results contain a list of tuple sets. Each
tuple set has a condition set. All the tuples in the same tuple
set agree on same condition. For example, given a tuple set
{t1, t2, t3} and its condition set {A = 1,B = 2}, we mean
t1[A] = t2[A] = t3[A] = 1, t1[B] = t2[B] = t3[B] = 2.
To get the result merged by attributes A and B, we need to
check each value a forA and each value b forB from the result
of the GROUP module. TsetA=a,B=b is merged by TsetA=a
and TsetB=b. TsetA=a,B=b = TsetA=a ∩ TsetB=b.
The pseudo code of the merge algorithm is shown in

Algorithm 5. We get two tuple sets from the two lists of tuple
sets of the two attributes, separately. Then we check the size
of these two tuple sets. If both of them and their intersection
contain more than one tuple, we store the intersection tuple
set in the list of tuple sets which is prepared as the output
of this algorithm. Meanwhile, we store the conditions of the
two tuple sets together as the condition set of the intersection

Algorithm 5 Merge
1: Input: two lists of tuple sets according to two different

attributes sets M , N
2: Output: a list of tuple sets matching on all attributes in

the input two lists
3: i← 0
4: for all m ∈ V_setM and n ∈ V_setN do
5: if |tuple_setM=m ∩ tuple_setN=n| > 1 then
6: Cseti← {M = m,N = n}
7: TsetCseti ← tuple_setM=m ∩ tuple_setN=n
8: i← i+ 1
9: return TsetCsetk (k = 0, 1, .., i)

VOLUME 7, 2019 22383

M. Zhang et al.: One-Pass Inconsistency Detection Algorithms for Big Data

(Line 6-7). The loop continues until all the tuple sets in one
list make intersection with all the tuple sets in the other lists.
Example 9: We use the grouped result in Table 4, and we

merge attributes Dept and Title:

(1)TsetDept=1,Title=1 = {t1, t2},

(2)TsetDept=1,Title=2 = {t3, t5, t6}.

We do not need to calculate the intersection (TsetDept=1 ∩
TsetTitle=3), since TsetTitle=3 contains only one tuple. As we
know, one tuple is impossible to cause violation when detect-
ing with variable CFD.

Then we analyze the cost of this block MERGE. As the
tuples in TsetA=a and TsetB=b are ordered by the tuple
ID, the cost of (TsetA=a ∩ TsetB=b) is O(M + N), where
M = |TsetA=a| and N = |TsetB=b|. We assume that there
are p values {a1, a2, ..., ap} whose tuple set |TsetA=ai | >
1 in attribute A and q values {b1, b2, ..., bq} whose tuples
set |TsetB=bi | > 1 in B. We only care about the tuple set
containing more than one tuple, since one tuple causes no
violation of a variable RHS rule.
C(Merge(A,B)) denotes the cost of merge(attribute

A,attribute B)

C(Merge(A,B)) (1)

=

∑
1≤i≤p,1≤j≤q

cost(TsetA=ai ∩ TsetB=bj) (2)

=

∑
1≤i≤p

q · |TsetA=ai | +
∑
1≤j≤q

p · |TsetB=bj | (3)

= q ·
∑
1≤i≤p

|TsetA=ai | + p ·
∑
1≤j≤q

|TsetB=bj | (4)

≤ q · tuplesnum+ p · tuplesnum = (p+ q) · tuplesnum

(5)

It shows that C(Merge(A,B)) ≤ (p+q) · tuplesnum, where
p is the number of distinct values in the tuple set containing
more than one tuple in the grouped result of attribute A, and
q is that in attribute B, tuplesnum is the number of tuples in
the database. If both the value sets of A and B we got from
the RANGE module are ‘‘_’’, C(Merge(A,B)) = (p + q) ·
tuplesnum. The cost is affected by both the tuplesnum and
the size of value sets of the attributes need to be merged.
We prove the following proposition and propose a conception
of redundancy to help us analyse the complexity of this
module.
Theorem 1: The number of distinct values of one attribute

with the |Tset| > 1 is no more than the tuplesnum/2.
Proof 1: We assume k as the number of distinct values of

one attribute A with |tupleset| > 1. It means that there is a
set S containing k tuplesets, and the size of each tupleset is
at least 2. As we know, each tuple in the tupleset is different
with the tuples in both the same tupleset and other tuplesets.
The sums of all the |tuplesets| of attributeA equals tuplesnum,
then

∑
1≤i≤k |S[i]| ≤ tuplesnum. If k > tuplesnum/2, then∑

1≤i≤k |S[i]| > 2k > tuplesnum which conflicts with

the result above. The assumption is not supposed, and the
proposition is true.

Then we can give the upper bound of the p and q men-
tioned before. p ≤ tuplenum/2, and q ≤ tuplenum/2.
C(Merge(A,B)) ≤ (p + q) · tuplenum ≤ (tuplenum)2. Thus
the cost of this module C(Merge(A,B)) is bounded by both
the tuplesnum and the number of distinct values in A, B.
It also has an upper bound O(|T |2), the worst-case complex-
ity, which is impossible in reality.
Definition 9: Redundancy: We define the redundancy

(RDD) of an attribute with the rate RDD(attributeA) =
(1 − DA/T), where DA is the number of distinct values on
attribute A, and T is the number of tuples in database. The
redundancy of a database R is defined as RDD(database) =
(1− 1

T

∑
Ai∈attr(R) DAi)

According to the definition of redundancy, we can learn
that database with high RDD must have a small number of
distinct values. The RDD of some attributes in the real world
may be very high. For example, in a relation of personal
information, the RDD of an attribute ‘‘gender’’ must be very
high, since there are only two distinct values ‘‘male’’ and
‘‘female’’. And in the real world, we only use FDs as con-
straints for the attributes with high RDD. There is no signifi-
cance to use an FD for attributes such as ‘‘ID’’ whose values
are all distinctive. In real world, the RDD of the dataset which
can be restricted by FDs may be very high even close to 1.

With the help of redundancy, we show the complexity of
thismodule. The time complexity of thismodule isO(|D|·|T |)
where |T | is the number of tuples in database, and |D| is the
number of distinct conditions preparing to be merged. After
the definition of redundancy, we can use RDD to express |D|,
|D| = (|T | − RDD · |T |). As in real world big data RDD is
very likely to be high and even close to 1, meanwhile, |D|will
be much smaller than |T |, then the cost of this module can be
performed in O(T) time.
In the MERGE part, we discussed the complexity when

there are two attributes involved in the LHS of a variable RHS
rule. The cost of merging two attributes is C(Merge(A,B)) ≤
(p+q) · tuplesnum, where p and q are the numbers of distinct
values of attribute A and B respectively. For the variable
RHS rule with more than two attributes on the left, we first
merge the first two attributes and get the merged result.
Then, we repeatedly merge the result with a new attribute
until all the attributes are processed. Assume that there are
three attributes A,B,C on the LHS, and the numbers of their
distinct values are a, b, c. We first merge A and B, and the
cost is C(Merge(A,B)) ≤ (a + b) · tuplesnum. Then we
merge the result and the attribute C . Suppose that the merged
result of A and B contains m distinct value combinations,
the cost in this step is C(Merge((A,B),C)) ≤ (m + b) ·
tuplesnum. The upper bound of m is a · b, but it is usually
much smaller than that, since some value combinations may
not cover more than one tuple. For example, if we merge
the two attributes Title and AT in table 1, the result only
contains two tuple sets: TuplesetTitle=1,AT=10 = {t1, t2} and
TuplesetTitle=2,AT=20 = {t3, t5}. The result does not contain

22384 VOLUME 7, 2019

M. Zhang et al.: One-Pass Inconsistency Detection Algorithms for Big Data

TuplesetTitle=2,AT=30 = {t6} and TuplesetTitle=3,AT=20 =
{t4}, since there is only one tuple in each of them. When
the redundancy is high, the number of distinct values of each
attribute involved in the rule is small, and the number of
distinct value combinations may not be very large. That is,
in each iteration, the cost is nearly linear.

In this module, we just use the grouped result S instead
of the original database. We can get the tuple set with cer-
tain attribute value in constant time with the help of the
hash index. The cost of one tuple set retrieve is O(1). The
cost of retrieving all tuple sets for the detection is bounded
by O(|

∑
attr(φ)|), where |

∑
attr(φ)| is the number of

attributes in the rules. This cost is much smaller than the cost
of scanning the whole database. That is also a reason for the
efficiency of our detection method.

F. CORRECTNESS
1) THE CORRECTNESS OF THE ALGORITHM
FOR CONSTANT RHS RULES
Suppose we have a constant RHS rule φ(R : X → A, tp),
the tuples matching the LHS of this rule are in the set
Leftset = {t|t[X] = tp[X], t ∈ R}, and the tuples matching
the RHS of this rule are in the set Rightset = {t|t[A] =
tp[A], t ∈ R}. Then the inconsistencies TS can be calculated
by (Leftset − Rightset).
Proof 2: In order to prove the algorithm for constant RHS

rules, we need to prove that (1) TS ⊂ (Leftset − Rightset):
all the inconsistencies of this rule are in the set (Leftset −
Rightset), (2) (Leftset−Rightset) ⊂ TS: each tuple in the set
(Leftset − Rightset) is inconsistent.
(1)Assume that there exists one inconsistent tuple t not

in the set (Leftset − Rightset). Then, t[X] = tp[X] and
t[A] 6= tp[A], that means t ∈ Leftset /∈ Rightset . Therefore,
t ∈ (Leftset − Rightset). However, by the above assumption
t /∈ Leftset−Rightset . This contradiction leads us to conclude
that the original assumption is incorrect. That is, (Leftset −
Rightset) covers all the inconsistencies of φ.
(2)Assume that there exists one tuple t in (Leftset −

Rightset) which is not the inconsistency. t ∈ Leftset and
t /∈ Rightset due to the assumption. That is, t[X] = tp[X]
and t[A] 6= tp[A]. Then, t is the inconsistent tuple according
to the definition of inconsistency. This contradiction leads us
to conclude that the original assumption is incorrect. That is,
each tuple in the set (Leftset − Rightset) is inconsistent.

2) THE CORRECTNESS OF THE ALGORITHM FOR
VARIABLE RHS RULES
Suppose we have a variable RHS rule φ(R : X →

A, tp), x1, x2, ..., xp are all the distinct value combinations
of the LHS, a1, a2, ..., aq are all the distinct values of the
RHS. The tuples matching the LHS of this rule are in
the set Leftset1,Leftset2, ...,Leftsetp, Leftseti = {t|t[X] =
xi, t ∈ R}, and the tuples matching the RHS of this rule
are in the sets Rightset1,Rightset2, ...,Rightsetq, Rightsetj =
{t|t[A] = aj, t ∈ R}. The inconsistencies are contained

by a list of sets:Iset1, Iset2, ..., Isetp, Iseti = {Leftseti ∩
Rightsetj|Leftseti ∩ Rightsetj 6= 0,Leftseti ∩ Rightsetj 6=
Leftseti, 1 ≤ j ≤ q}. Tuples in each member of the Iseti
conflict with other tuples in other members of the same Iseti.
Proof 3: In order to prove the correctness of the algorithm

for variable RHS rules, we need to prove that (1) each incon-
sistent tuple pair of this rule is contained in one of the Isets,
(2) each tuple in the Isets conflicts with others.

(1)Assume that there exists a inconsistent tuple pair: t1,t2,
and they are not contained by any Iseti. We can know that
t1[X] = t2[X] and t1[A] 6= t2[A] since the assumption.
There exists one xi and two different values am, an that
t1[X] = t2[X] = xi and t1[A] = am, t2[A] = an. Then,
t1 ∈ (Leftseti ∩ Rightsetm) and t2 ∈ (Leftseti ∩ Rightsetn).
As the description above, (Leftseti∩Rightsetm) and (Leftseti∩
Rightsetn) are different members of the same Iseti. That is,
we can we can find a Iseti whose two different members con-
tain the tuple t1 and t2, respectively. The result contradicts
the assumption.

(2)Assume that there exist two tuples t1, t2 where t1
and t2 are in the different members (Leftseti ∩ Rightsetm),
(Leftseti ∩ Rightsetn) of the same Iseti, and they are not
inconsistent pair. It is clear from the assumption that t1 ∈
(Leftseti ∩ Rightsetm) and t1 ∈ (Leftseti ∩ Rightsetn). Then
t1 ∈ Leftseti, t1 ∈ Rightsetm, t2 ∈ Leftseti, t2 ∈ Rightsetn.
That is, t1[X] = t2[X] = xi and t1[A] = am, t2[A] = an.
Since (Leftseti ∩ Rightsetm) and (Leftseti ∩ Rightsetn) are
different, we can know that m 6= n and t1[A] 6= t2[A]. Since
t1[X] = t2[X] and t1[A] 6= t2[A], t1 and t2 conflict with
each other. This contradiction leads us to conclude that the
original assumption is incorrect.

V. DETECTING THE VIOLATION OF DC
We detect the violation of denial constraints with the result of
the GROUP Module in the previous section. We propose two
algorithms for constant DCs and variable DCs in Section V-A
and Section V-B, respectively.

A. THE VIOLATION OF CONSTANT DC
The violation of constant DC can be detected easily with the
result of GROUPModule. The process is similar to the detec-
tion with constant CFD. The pseudo code of our algorithm is
shown in Algorithm 6.

We first get the result of the Group Module (Line 3).
We can get the tuples matching each predicate simply with
the grouped data. As all the predicates of one DC cannot be
true at the same time due to the definition of DC, we can
get the violation by capturing the tuples matching all the
predicates at the same time. Taking one predicate into con-
sideration, we get the tuples matching the predicate t[A]θc
by calculating the union of all the tuple sets whose value v of
attribute A satisfies the predicate vθc. Then we get the tuples
matching all the predicates by calculating the intersection of
the tuples matching each predicate (Line 7). At last, each DC
corresponds to one inconsistency set containing the tuples
violating the DC.

VOLUME 7, 2019 22385

M. Zhang et al.: One-Pass Inconsistency Detection Algorithms for Big Data

Algorithm 6 The Inconsistency Detection Algorithm With
Constant DC
1: Input: a relation R, a list of DCs

∑
2: Output: {V1,V2...Vm}, Vi is the set of tuples violating

the ith DC in
∑

3: G = Group() //We use G(A, a) to indicate the tuples
matching the condition A = a

4: for each DC φi in
∑

do
5: Vi = ∅
6: for each Ai = {t[A]θc} in φi do
7: Set∩ = {∪G[A, a]|aθc}
8: Vi = Set
9: return {V1,V2...Vm}

Example 10: Consider one constant DCφ:∀t,¬(t[Title] ≥
2∧ t[BP] ≥ 2000). We use this denial constraint to detect the
inconsistency in Table 1.

We first get the tuples matching the predicates t[Title] ≥
2 and t[BP] ≥ 2000 from the grouped table (Table 4),
respectively.

(1)Tuples matching the predicate t[Title] ≥ 2:

tuplesett[Title]≥2 = tuplesetTitle=2 ∪ tuplesetTitle=3
= {t3, t4, t5, t6}

(2)Tuples matching the predicate t[BP] ≥ 2:

tuplesett[BP]≥2 = tuplesetBP=2000 = {t4, t5, t6}

The inconsistency of DC φ:

tuplesett[Title]≥2 ∩ tuplesett[BP]≥2000 = {t4, t5, t6}.

B. THE VIOLATION OF VARIABLE DC
The inconsistency detection with variable DCs is more com-
plex than that with constant DCs. In this section, we only con-
sider the variable DCs in the form: ∀tα, tβ ,¬(tα.A1θ1 tβ .A1∧
... ∧ tα.Amθmtβ .Am), where A1...Am is the attributes in R.
FD is a special case of DC when all the operators are

‘=’ except one ‘6=’. In this part, we first consider the θi ∈
{<,>,≤,≥}. Then we extend the method to take operators
{=, 6=} into consideration. The extension can be processed
easily by finding the tuple pairs matching the predicates
whose operators are in {=, 6=} from the result pair list con-
sisting of tuples matching the predicates whose operators are
in {<,>,≤,≥}.

For example, the inconsistent pairs of ∀t1, t2¬(t1[H] >
t2[H]∧t1[T] > t2[T]) in Table 5 is (t1, t5), (t2, t5), (t6, t5),
(t4, t5). If we add a predicate in the DC and convert that into
∀t1, t2¬(t1[H] > t2[H] ∧ t1[T] > t2[T] ∧ t1[P] = t2[P]),
the new inconsistent pairs can be generated from the forward
list by checking that whether the two elements in each pair
are in the same tuple set in the grouped result of the attribute
in the new predicates. Then we get the result (t1, t5), since
they are in the same tuple set tuplesetP=77 = {t1, t5}.

TABLE 5. A elevation relation.

As we only take {<,>,≤,≥} into consideration in this
part, the denial constraints can be simplified to the form:
¬(A1θ1 ∧ ... ∧ Amθm). We find the violation of the rule by
capturing the tuples matching ((A1θ1) ∧ ... ∧ (Amθm)).

Then a denial constraint can be simply converted into a
SQL query. The denial constraint simplified as the¬((A >)∧
(B >)) meaning that if t1[A] > t2[A] and t1[B] > t2[B], then
the t1 and t2 conflict with each other. We use a tuple pair
(t1, t2) to indicate the inconsistency. The violation of each
variable DC is a list of inconsistent pairs.
Example 11: Consider the elevation relation in Table 5.

There are three attributes involved in the table: Height(H),
Temperature(T), Pressure(P). Assume that we have a denial
constraint ∀t1, t2¬(t1[H] > t2[H]∧ t1[T] > t2[T]), which
can be simplified as ¬((H >) ∧ (T >)). We attempt to get
the inconsistencies by capturing the tuple pair(t1, t2), where
(t1[H] > t2[H]∧ t1[T] > t2[T]). This denial constraint can
be simply converted into the following SQL query.

QV : select t1.id , t2.id from R t1, R t2
where t1[H] > t2[H] AND t1[T] > t2[T]

However, the efficiency of this query is very low. This query
is processed as a Cartesian product, meaning that the time
complexity is O(n2). We attempt to capture a more efficient
algorithm which is suitable for detecting the inconsistencies
with DCs in big data. The time complexity of the new algo-
rithm can be reduced to O(n · logn).

1) THE FRAMEWORK
In this part, we describe the framework of the algorithm to
capture the inconsistencies with variable DCs. This algorithm
starts from an extension of GROUPmodule, namedGROUP’.
The only difference between the GROUP’ and GROUP is
that we store the relative positions with the tuple IDs. Then
we can get the violation from the relative position without
checking the database. We proved a theorem to convert the
problem of capturing the inconsistent tuple pair into getting
the ascending ordered pair in a permutation.

We use the idea in [38] and [39] to get the ascend-
ing ordered pair. In [39], James proposed an O(n · logn)
algorithm to solve the common subsequences problem.
Khayyat et al. [38] proposed a fast inequality join method.
They put columns to be joined in sorted arrays and use
permutation arrays to encode positions of tuples in one sorted
array. As the sorting can be processed in the GROUPmodule,
we only need to adjust the GROUP module to capture the
permutation array together with certain tuple sets.

22386 VOLUME 7, 2019

M. Zhang et al.: One-Pass Inconsistency Detection Algorithms for Big Data

TABLE 6. Group result of elevation relation.

TABLE 7. Group’ result of elevation relation.

Algorithm 7 The Inconsistency Detection Algorithm With
Variable DC
1: Input: a relation R, a variable DC φ
2: Output: a list V of tuple pair (ti, tj).
3: G = GROUP′() // We add the relative position to each

tuple stored in the grouped result.
4: for i = 1 to m do //m is the number of predicate Ai in φ
5: V∩ = Relative_Position(A0,Ai,G)
6: return V

We first describe the framework of algorithm with the
pseudo code in Algorithm 7 in detail. In the third line of
Algorithm 7, we extend the Group Module and store the
relative positions with the tuple IDs. In order to get the
relative positions, we first sort the tuples by the two attributes,
respectively. Then we store the relative positions with the
tuple IDs. We can get the tuples matching two predicates
by the algorithm RelativePosition. Then we can capture the
violation by calculating the intersection of the results of
RelativePosition.

In order to explain the function of GROUP’, we make the
following example.
Example 12: Consider that we have the DC in last exam-

ple, which can be simplified as ¬((H >) ∧ (T >)).
We first group and sort (in ascending order) the tuples by two
attributes respectively:

Group and sort by H :

1{t3}, 2{t4}, 3{t6}, 4{t1, t2}, 5{t5}.

Group and sort by T :

1{t2}, 2{t1, t6}, 3{t4}, 4{t3, t5}.

The relative position of T in H :

{(t2, 4)}, {(t6, 3), (t1, 4)}, {(t4, 2)}, {(t3, 1), (t5, 5)}.

Then we can get the tuples matching the two predicates
by capturing the ascending ordered pair(making comparison
with the second member of each item) in the relative position
list {(t2, 4)}, {(t6, 3), (t1, 4)}, {(t4, 2)}, {(t3, 1), (t5, 5)}. The

ascending ordered pairs are ((t2, 4), (t5, 5)), ((t6, 3), (t5, 5)),
((t1, 4), (t5, 5)), ((t4, 2), (t5, 5)), and the corresponding
inconsistent tuple pairs are (t2, t5), (t6, t5), (t1, t5), (t4, t5).
As we know, we can get the inversion pairs easily with
a traditional function MergeSort. We proposed a func-
tion MSort developed from the MergeSort to capture the
ascending ordered pairs. The function MSort is described in
Algorithm 10. For instance, in the example above, we do
not take the ascending ordered pair ((t6, 3), (t1, 4)) and
((t3, 1), (t5, 5)) into consideration since the operator of tuple
T is ‘‘>’’ and the two members of each pair are in the same
set. If the DC is changed as ¬((H >) ∧ (T ≥)), then the
ascending ordered pair ((t6, 3), (t1, 4)) and ((t3, 1), (t5, 5))
should be taken into consideration, and the violation pairs
should include (t1, t6) and (t1, t5). We first introduce two
definitions before we analyse the different cases of a rule.
Definition 10: Ascending Ordered Pairs: Suppose that A

and B are two members in a permutation and their positions
in the permutation are A.id and B.id respectively. (A,B) is
called an ascending ordered pair if A.id < B.id and A ≤ B.
Definition 11: Strictly Ascending Ordered Pairs: Suppose

that A and B are two members in a permutation and their
positions in the permutation are A.id and B.id , respectively.
(A,B) is called a strictly ascending ordered pair if A.id <

B.id and A < B.
Taking a DC containing two attributes as an exam-

ple ¬((Hθ1) ∧ (T θ2)), and the relative position of T in
H is in a permutation {(t2, 4)}, {(t6, 3), (t1, 4)}, {(t4, 2)},
{(t3, 1), (t5, 5)}. We classify the rule into four cases accord-
ing to the two operators.

(1) θ1 = ‘≥’ and θ2 = ‘≥’. In this case, the inconsisten-
cies are ascending ordered pairs in the relative position per-
mutation: ((t2, 4), (t1, 4)), ((t2, 4), (t5, 5)), ((t6, 3), (t1, 4)),
((t6, 3), (t5, 5)), ((t1, 4), (t5, 5)), ((t4, 2), (t5, 5)), ((t3, 1),
(t5, 5)).
(2) θ1 = ‘>’ and θ2 = ‘≥’. In this case, the inconsis-

tencies are the strictly ascending ordered pairs in the rela-
tive position permutation: ((t2, 4), (t5, 5)), ((t6, 3), (t1, 4)),
((t6, 3), (t5, 5)), ((t1, 4), (t5, 5)), ((t4, 2), (t5, 5)), ((t3, 1),
(t5, 5)). We can know that ((t2, 4), (t1, 4)) is not the strictly
ascending ordered pair. It is not the inconsistent pair since
their positions in T are same.
(3) θ1 = ‘≥’ and θ2 = ‘>’. In this case, the incon-

sistencies are ascending ordered pairs in the relative posi-
tion permutation and the two members of each pair are
from different partitions: ((t2, 4), (t1, 4)), ((t2, 4), (t5, 5)),
((t6, 3), (t5, 5)), ((t1, 4), (t5, 5)), ((t4, 2), (t5, 5)). We can
know that ((t6, 3), (t1, 4)) and ((t3, 1), (t5, 5)) are not the
inconsistent pairs since the two members of each pair are in
the same partition.

(4) θ1 = ‘>’ and θ2 = ‘>’. In this case, the inconsisten-
cies are the strictly ascending ordered pairs in the relative
position permutation and the two members of each pair are
from different partitions: ((t2, 4), (t5, 5)), ((t6, 3), (t5, 5)),
((t1, 4), (t5, 5)), ((t4, 2), (t5, 5)). As ((t2, 4), (t1, 4)) is not
the strictly ascending ordered pair, and ((t6, 3), (t1, 4)),

VOLUME 7, 2019 22387

M. Zhang et al.: One-Pass Inconsistency Detection Algorithms for Big Data

((t3, 1), (t5, 5)) contain two members from the same parti-
tion, they are not inconsistent pairs.

In the four cases above, we only consider ‘>’ and ‘≥’
since that we can change the relative position permutation
to accommodate to different operators. For example, if θ1 =
‘>’ and θ2 = ‘<’, we can just change the relative position:
{(t2, 2)}, {(t1, 2), (t6, 3)}, {(t4, 4)}, {(t5, 1), (t3, 5)}. Then,
it can be regarded as the case (4) above.

We proved that the problem in these cases can be converted
into capturing the ascending ordered pairs in the relative
position permutation P.
Theorem 2: When detecting the violation of a DC
¬((A, op1) ∧ (B, op2)). There is an one-one correspondence
between the candidate inconsistent tuple pair and the ascend-
ing ordered pair in the permutation P. If op1 is ‘>’, the cor-
respondence is between the candidate inconsistent tuple pair
and the strictly ascending ordered pair. If op2 is ‘>’, the cor-
respondence is between the candidate inconsistent tuple pair
and the ascending ordered pair whose two members are from
different partitions in the permutation.
Proof 4: We just prove the condition in case (4) in previous

discussion as an example. The proof of the other three cases
can be easily captured in the similar way. When detecting the
violation of a DC ¬((A >) ∧ (B >)). There is an one-one
correspondence between the candidate inconsistent tuple pair
and the strictly ascending ordered pair whose two members
are from different partitions in the permutation P.
We proved the theorem in the following two steps:
(1) Assume that there exists one candidate inconsistent

tuple pair (t1, t2),Ai,Aj are the ids of t1, t2 respectively in the
tuple list sorted by attribute A and Bi,Bj are the ids of t1, t2
respectively in the tuple list sorted by attribute B. Assume
(t1, t2) matches the two predicates ((A >), (B >)), meaning
that t2[A] > t1[A], t2[B] > t1[B].

ListA : ...t1(Ai)...t2(Aj)...

ListB : ...t1(Bi)...t2(Bj)...

Permutation : ...Ai(Bi)...Aj(Bj)...

The relative position of t1 in the ListA is Ai and the relative
position of t2 in the ListA is Aj. As t2[A] > t1[A], t2[B] >
t1[B], we can get that Ai < Aj and Bi < Bj. Then (Ai,Aj) is a
strictly ascending ordered pair. And since Bi < Bj, Ai and Aj
must in different partitions of the permutation.

That is, the candidate inconsistent tuple pair (t1, t2) corre-
sponds to a strictly ascending ordered pair (Ai,Aj) whose two
members are in different partitions.

(2) Assume that there exists a strictly ascending ordered
pair (Ai,Aj) in the permutation, and Ai Aj are in different
partitions of the permutation. Suppose Ai and Aj correspond
to t1 and t2 respectively. The position ofAi in the permutation
is Bi and the position of Aj in the permutation is Bj. As (Ai,Aj)
is a strictly ascending ordered pair, then Ai < Aj. As Ai Aj are
in different partitions of the permutation, then Bi < Bj. It is
clear that t2[A] > t1[A], t2[B] > t1[B] since Ai < Aj and
Bi < Bj. (t1, t2) is a candidate inconsistent tuple pair.

That is, one strictly ascending ordered pair (Ai,Aj) whose
two members are from different partitions corresponds to one
inconsistent tuple pair (t1, t2).
With the help of Theorem 2, the problem of capturing the

candidate inconsistent tuple pair can be converted into getting
the ascending ordered pair in the permutation. We will get
ascending ordered pairs in Section V-B.2, and Section V-B.3.

2) RELATIVE POSITION
In the Algorithm 8, we get a list of tuple pairs. The two tuples
in one pair match the given two predicates. The permutation
P contains the relative positions (positions in the list sorted
by the attribute of the first predicate) of the tuples sorted by
the attribute of the second predicate. The permutation can be
partitioned into several parts, we use partition to store the
start position of each part. The permutation P and partition
are set as empty sets at the beginning (Line 3-4). In Line 5-21,
we useG[B = bi].set to indicate the set of pairs in which each
pair is in the form (tuple_id, position). tuple_id is the index
of the tuple matching the condition B = bi and position is
the relative position of the tuple in the list sorted by the first
predicate. In Line 5-12, θ1 and θ2 are inverse meaning that
((θ1 ∈ {<,≤}) and (θ2 ∈ {>,≥})) or ((θ1 ∈ {>,≥}) and
(θ2 ∈ {<,≤})), then we need to get the inversion pair instead
of the ascending ordered pair from the permutation. In order
to avoid changing the algorithm of capturing the ascending
ordered pairs, we simply adjust the relative positions in the
permutation.We use the number of the values of first attribute

Algorithm 8 Relative Position
1: Input: the first predicate of a rule A0 = Aθ1, one

predicate Ai = Bθ2, Group result G
2: Output: a list V of tuple pair (ti, tj).
3: permutationP = ∅.
4: partation = ∅
5: if ((θ1 ∈ {<,≤})and(θ2 ∈ {>,≥}))or((θ1 ∈ {>,≥
})and(θ2 ∈ {<,≤})) then

6: for each value bi of attribute B do
7: for j = 0 to n do //nis the number of the G[B =
bi].set

8: int pos = G[A].valuenum + 1 − G[B =
bi].set[j].position

9: add (G[B = bi].set[j].tuple_id, pos) into P.
10: add P.size() into partition.
11: else
12: for each value bi of attribute B do
13: for j = 0 to n do //nis the number of the G[B =

bi].set
14: int pos = G[B = bi].set[j].position
15: add (G[B = bi].set[j].tuple_id, pos) into P.
16: add P.size() into partition.
17: Violation(P, partition, θ1, θ2)
18: return V.

22388 VOLUME 7, 2019

M. Zhang et al.: One-Pass Inconsistency Detection Algorithms for Big Data

to minus the relative position in order to get the new position
(Line 8). Then we add the pair (tuple_id, position) into the
permutation set P (Line 9). After checking the tuples sharing
the same attribute value, the algorithm adds the position of
the next part into the partition set. If the two operators are
not inverse (Line 13-21), then there is no need to change
the relative position. We use an example to explain the first
condition (Line 5-12).
Example 13: In Example 12, we get the relative positions

of T in H :

{(t2, 4)}, {(t1, 4), (t6, 3)}, {(t4, 2)}, {(t3, 1), (t5, 5)}.

Consider that we change the operator of the second pred-
icate of DC in Example 12, and get a new rule simplified as
¬((H >) ∧ (T <)). Then, as the two operators are inverse,
we need to adjust the relative position before storing that into
the permutation P. Taking the tuplesetT=12.5 = {(t2, 4)} as
an example, the relative position of t2 in the list sorted by the
first attributeH is 4. We get the new position by the following
calculation:

valuenum(H)+ 1− position = 2.

Then we repeat this step and add the pairs (t2, 2), (t1, 2),
(t6, 3), (t4, 4), (t3, 5), (t5, 1) into the permutation P. At the
same time, these pairs are partitioned into the following four
parts: {(t2, 2)}, {(t1, 2), (t6, 3)}, {(t4, 4)}, {(t3, 5), (t5, 1)}.
The second part starts from position 2, the third part starts
from the position 4 and the last part starts from position 5.
We store the first position of each part (start from the second
part) into the partition set: partition = {2, 4, 5}.

3) VIOLATION
The Algorithm 9 is called at the end of the Algorithm 8.
This algorithm can get the ascending ordered pairs of the
permutation P. If the second operator θ2 ∈ {≤,≥}, then
the algorithm can just call the MSort function (Line 2). The
MSort function is developed from the traditional MergeSort
Function, it is easy to get the ascending ordered pairs
from the process of MergeSort . If the second operator

Algorithm 9 Violation
violation(P, partition, θ1, θ2)
1: if θ2 ∈ {≤,≥} then
2: MSort(0, P.size− 1, P, theta1,1)
3: else
4: start ← 0
5: for i = 0 to partition.size do
6: MSort(start , partition[i]− 1, P, θ1, 2)
7: start = partition[i]
8: for i = 0 to partition.size do
9: if i+ 1 = partition.size() then
10: break
11: Merge(0, partition[i]− 1, partition[i+ 1]− 1, P,

θ1, 1)

Algorithm 10 MSort
MSort(left , right , P, θ1,kind)
1: if left < right then
2: mid = (left + right)/2
3: MSort(left , mid , P, kind)
4: MSort(mid + 1, right , P, kind)
5: Merge(left , right , mid , P, theta1, kind)

θ2 ∈ {<,>}, which means that we do not care the
ascending ordered pair whose two members involved in the
same partition. For instance, in Example 13, the permuta-
tion is: {(t2, 2)}, {(t1, 2), (t6, 3)}, {(t4, 4)}, {(t5, 1), (t3, 5)},
the pairs (t1, t6) and (t5, t3) are not included in the candidate
inconsistent pair list since they are in the same partition,
though their positions are in ascending order. Then, the algo-
rithm applies the MSort function on each partition (Line 6),
and Merge all the partitions together (Line 13).
Example 14: In example 12, the ascending ordered pair

(3, 4) and (1, 5) is not involved into the pairs in ascending
order. Consider that we change the second operator of DC in
Example 11.and get a new DC ¬((H >) ∧ (T ≥)).

The relative position of T in H :

{(t2, 4)}, {(t6, 3), (t1, 4)}, {(t4, 2)}, {(t3, 1), (t5, 5)}.

We can simply apply the function MSort this time since
the second operator is ‘‘ ≥’’ instead of ‘‘ >’’, there is no
need to take the partition into consideration.

The ascending ordered pairs are ((t2, 4), (t5, 5)), ((t1, 4),
(t5, 5)), ((t6, 3), (t5, 5)), ((t4, 2), (t5, 5)), ((t6, 3), (t1, 4)),
((t3, 1), (t5, 5)) and the corresponding inconsistent tuple
pairs are (t2, t5), (t1, t5), (t6, t5), (t4, t5), (t6, t1), (t3, t5).
The MSort and Merge function (Algorithm 10,11) are

developed from the traditional MergeSort function. We just
adjust the function Merge. If the first operator θ1 ∈ {<,>},
then the op in Line 9 (Function Merge) is ‘‘ ≥’’, which
means that the pair (t1, t2) where t1[A] = t2[A] would
not be included in the candidate inconsistent pairs list. Else,
the operator op is ‘‘ >’’. The variable kind in the input
indicates the situation in the function Violation. If kind = 2,
meaning that the current pair is from the same partition,
then the algorithm would not add the pair into the candidate
violation list. If kind = 1, then the algorithm will add the
pair into the inconsistent pairs list (Line 13-17 in Function
Merge).
After introducing the two algorithms for detecting the

violation of DCs, we analyze the complexity and correctness
of the algorithms. As the complexity of GROUP module has
been analyzed before, we just discuss the complexity after the
GROUP module.
Complexity Analysis:
The complexity of the detection algorithm with the constant
DCs:
Time Complexity: It is easy to detect the inconsistencies

with constant DCs, similar to detect inconsistencies with

VOLUME 7, 2019 22389

M. Zhang et al.: One-Pass Inconsistency Detection Algorithms for Big Data

Algorithm 11 Function Merge
Merge(left , mid , right , P, θ ,kind)
1: temp = ∅
2: i = left, j = mid + 1
3: while i ≤ mid and j ≤ right do
4: if θ ∈ {<,>} then
5: op = ‘‘ >=’’
6: else
7: op = ‘‘ >’’
8: if P[i].position op P[j].position then
9: add P[i] into temp
10: i← i+ 1
11: else
12: if kind = 1 then
13: for m = i to mid do
14: add (P[m],P[j]) into V
15: add P[j] into temp
16: j← j+ 1
17: for p = i to mid do
18: add P[p] into temp
19: for q = j to right do
20: add P[q] into temp
21: i = 0
22: for k = left to right do
23: P[k]← temp[i]
24: i← i+ 1

constant RHS rules. With the help of the grouped result,
we can capture the tuples matching certain predicate in time
O(1). The rest of the job is to calculate a list of intersections.
As the ids of tuples in each tuple set are sorted in order,
the complexity of calculating one intersection is O(n). Then
the time complexity of this part isO(n), where n is the number
of records in the relation.

Space Complexity: The space complexity in this algorithm
is the complexity of calculating the intersection of two sorted
set. It is clearly that the complexity is O(n).
The complexity of the detection algorithmwith the variable

DCs:
Time Complexity:We adjust the GROUPmodule and store

the relative position together with certain tuple. The time
complexity of GROUP’ is O(n · logn) , where n is the num-
ber of records in the relation. After getting the permutation
containing the relative positions, we convert the problem of
capturing the inconsistent tuple pairs into getting the ascend-
ing ordered pairs in the permutation. The method of getting
the ascending ordered pairs in the permutation develops from
MergeSort algorithm whose complexity is O(n · logn). In the
process of merging two sorted arrays into a single sorted array
which costs O(n), the ascending ordered pairs are detected
when exchanges appear. And the tree structure forMergeSort
method has height at mostO(logn). Thus, the time complexity
ofMergeSort isO(n · logn). Since the ascending ordered pairs

can be detected in the process of MergeSort , the complexity
of this part is O(n · logn) as well.

Space Complexity: The space complexity for MergeSort is
O(n). We add a permutation containing the relative position,
the space complexity is O(n). Thus, the space complexity of
this part is O(n) as well.
The correctness of the algorithms:
The correctness of the algorithm for constant DCs:
Suppose we have a constant DC ¬(A1 ∧ ... ∧ Am). Each

Ai is built-in atoms of the form t[A]θc , A is an attribute
in R, c is a constant and θ ∈ {=, 6=, <,>,≤,≥}. Tuples
matching each predicate Ai are collected in the tuple set Si.
Then, the inconsistencies can be calculated by (S1∧ ...∧Sm).
Proof 5: In order to prove the correctness of the algorithm

for constant DCs, we need to prove that (1)all the inconsis-
tencies of this rule are in the set (S1 ∧ ...∧ Sm), (2)each tuple
in the set (S1 ∧ ... ∧ Sm) is inconsistent.
(1) Assume that there is an inconsistent tuple t , and t /∈

(S1 ∧ ... ∧ Sm). As t violates the DC, t must match all the
predicates A1,A2, ...,Am. That is, t ∈ S1, t ∈ S2, . . . , t ∈ Sm.
Then, we can get t ∈ (S1 ∧ ... ∧ Sm) which contradicts the
assumption, the assumption is incorrect.

(2) Assume that there is a tuple t ∈ (S1 ∧ ... ∧ Sm), and
t does not violate the rule. We can know that t ∈ S1, t ∈
S2, . . . , t ∈ Sm from the assumption. That is, t matches all
the predicates A1,A2, ...,Am. Then, t must violate the rule by
the definition of DC. This contradiction leads us to conclude
that the original assumption is incorrect.
The correctness of the algorithm for variable DCs:

We had proved that detecting the inconsistent pairs with
a variable DC can be converted into getting the ascending
ordered pair in a permutation (Theorem 2). As we know,
the inversion pairs can be captured easily by a most com-
mon sorting method MergeSort. The process of capturing the
ascending ordered pairs is similar to capture the inversions.
That is, our method developed from the function MergeSort
can capture the inconsistencies violating variable DCs.

VI. EXPERIMENTAL STUDY
In this section, we used two real-world datasets and two
synthetic datasets to evaluate the performance of our incon-
sistency detection algorithm experimentally.
Dataset 1: This dataset is a synthetic dataset. It contains a

relation of elevation which is shown in Table 5. We extend
the attributes and involve two other attributes in the relation.
There are five attributes in the relation: H (Height), T (Tem-
perature), P (Air Pressure), O (Oxygen level), D (atmosphere
density). There are 30M tuples in the dataset.

We use the rules such as

(1)t1, t2¬(t1.T > t2.T ∧ t1.P > t2.P ∧ t1.H > t2.H),

(2)t1, t2¬(t1.H > t2.H ∧ t1.O > t2.O).

Dataset 2: This dataset is generated with the distribu-
tion of an original dataset about Child Health. The original
dataset contains 25000 tuples of human heights and weights

22390 VOLUME 7, 2019

M. Zhang et al.: One-Pass Inconsistency Detection Algorithms for Big Data

FIGURE 1. The impact of ATTR. (a) Detection with cDCs (Dataset1). (b) Detection with vDCs (Dataset1). (c) Detection with cDCs
(Dataset2). (d) Detection with vDCs (Dataset2).

of 18 years old children. It can be found from this website2.
We generate 25M tuples based on the distribution of the Child
Health dataset. In addition, we add 2 attributes about body
mass index(BMI) and FatIndex. The WHO definition is: a
BMI greater than or equal to 25 is overweight a BMI greater
than or equal to 30 is obesity. We set FatIndex according to
the WHO definition. If BMI≥30, we set FatIndex as 3; else
if BMI≥25, we set FatIndex as 2; otherwise, it is set as 1.
Dataset 3: This dataset is a synthetic dataset about salary.

This dataset contains 30M tuples, and the attributes of this
dataset is shown in Table 1.
Dataset 4: This dataset is U.S. Pollution Data 3 about

pollution including NO2, O3, SO2 and CO. It contains 1.75M
number of tuples and 29 attributes. We use the attributes
about the mean, the maximum and air quality index of each
pollution to conduct our experiments.

We conducted all the experiments on aWindows 7machine
with a 3.10GHz Intel CPU and 4GB of Memory. Each exper-
iment was run 5 times, and the average result is reported.
In the experiments, we use our detection methods and the
SQL-based methods to detect the inconsistencies with same

2 http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_020108
_HeightsWeights

3https://www.kaggle.com/sogun3/uspollution

rules, respectively. The DBMS we used to implement the
SQL queries is MySQL, and the data is stored in the DBMS
without index. We also compare the performance of our
method with the performance of implementing SQL queries
in BigQuery. The SQL queries are formed like the examples
in Section 1. The detection results of our inconsistency detec-
tion method are same with the result of the SQL queries, and
the results also accord with the reality.

The performance of the cRHS and vRHS inconsistency
detection algorithm is shown in our previous work [37].
We will only discuss the performance of the DCs inconsis-
tency detection algorithm in the following part.

CFD Inconsistency Detection

A. THE PERFORMANCE OF THE DC INCONSISTENCY
DETECTION ALGORITHM
The Impact of noise on detection time In this part, we evaluate
the performance of the inconsistency detection algorithm we
proposed to detect the violation of DCs.
EXP 1: The impact of number of attributes and tuples in

datasets: We use ‘‘ATTR’’ and ‘‘DataSize’’ to indicate the
number of attributes and the number of tuples, respectively.
The experimental result is shown in Figure 1. In this experi-
ment we test the impact of number of tuples and number of

VOLUME 7, 2019 22391

M. Zhang et al.: One-Pass Inconsistency Detection Algorithms for Big Data

FIGURE 2. Performance Comparison. (a) Dataset 1. (b) Dataset 2. (c) Dataset 3. (d) Dataset 4.

attributes on the detection time. We conduct the DCs incon-
sistency detection algorithm on the Dataset 1 and Dataset 2.
The experimental result on the other two datasets are similar
to that shown in Figure 1. The number of tuples ranges from
5M to 30M, in 5M increments.

We use two lists of constant DCs to detect the violation in
the datasets. Each list contains five DCs. In the first list, there
are two attributes in each DC. In the second list, there are
three attributes in each DC. Fig. 1(a) and Fig. 1(c) indicate
that the detection time increases with the number of tuples.
As in ourmethod, the violation of constant DCs is captured by
calculating the intersection of the tuples matching each pred-
icates, more attributes means more intersections. As shown
in Fig. 1(a) and Fig. 1(c), it is clear that the detection time
also increases with the number of attributes.

We use two variable DCs to detect the violation. The first
one contains two attributes, and the second one contains
three attributes. The complexity of our detection method is
O(n · logn). Fig. 1(b) and Fig. 1(d) indicate that the detec-
tion time increases with the number of tuples, and the line
accords with the theoretical result. The number of attributes
also has impact on the detection time when detecting with
variable DCs. The reason is that in our detectionmethodmore
attributes result in more intersections. That is, the detection
time also increases with the number of attributes.

EXP 2: The efficiency of our detection method: In this
experiment, we compare our DCs inconsistency detection
algorithm with the SQL-based methods. We conduct the
experiment on the four datasets, the experimental result is
shown in Figure 2. As we know, a denial constraint can be
easily converted into a SQL query. We compare the perfor-
mance of our detection time with the SQL-based methods.
We implement the SQL queries in MySQL and BigQuery.
This experiment is processed on a small number of tuples due
to the low efficiency of query processing in MySQL and the
limit of files loaded from a local data source to BigQuery. The
noise of each dataset is nearly 5%. The SQL query of a denial
constraint is processed as a Cartesian product, meaning that
the time complexity isO(n2). The complexity of our detection
method isO(n·logn). It is also clear that our detection method
is much more efficient than the performance of conducting
queries in MySQL. We can also learn from this figure that
the efficiency of our method is comparable to BigQuery.
EXP 3: The impact of noise: In this experiment, we test the

impact of noise on detection time. Figure 3 shows the result
of conducting this experiment on Dataset 1 and Dataset 2.
The number of tuples is fixed as 5M. We use a variable DC
containing three attributes to detect the inconsistent tuple
pairs. The noise ranges from 1% to 5%, in 1% increments.
We observe from Figure 3 that the noise of the database has

22392 VOLUME 7, 2019

M. Zhang et al.: One-Pass Inconsistency Detection Algorithms for Big Data

FIGURE 3. The Impact of noise on detection time. (a) The impact of noise (Dataset 1). (b) The impact of noise
(Dataset 2).

impact on the detection time. The result is different from that
when detecting with variable CFD. More dirty data means
more inconsistent tuple pairs. As we adopt a variable DC
containing three attributes, we need to make intersection
of the tuple pairs. The complexity of intersection is O(n),
it causes the impact of noise on the detection time.
Summary of Experiments: In summary, the experiments

have following results.
(1) Our detection method is much more efficient than

conducting SQL queries in MySQL, and comparable to Big-
Query. The complexity of our method is O(n · logn) when
detecting the inconsistency of database with variable DCs.

(2) The detection time of our method is affected by both
the number of tuples and the number of attributes.

(3) The noise of database has impact on the detection time.

VII. CONCLUSIONS
We study the inconsistency detection problem in this paper.
We enrich our CFD inconsistency detection algorithm with
more examples to show the details and the proof of the
correctness. Detecting inconsistencies with high efficiency
benefits the database management for improving data quality.
We also proposed two algorithms to detect the inconsistencies
with constant DCs and variable DCs, respectively. The exper-
imental results indicate the high efficiency of our detection
algorithms.

Our future study will focus on repairing the inconsistencies
in big data. We aim to develop efficient methods to restore the
consistency of big data.

REFERENCES
[1] W. W. Wayne, ‘‘Data quality and the bottom line: Achieving business

success through a commitment to high quality data,’’ Data warehouse Inst.,
Renton, WA, USA, Tech. Rep. 1, 2002. [Online]. Available: www.dw-
institute.com

[2] S. Kolahi and L. V. S. Lakshmanan, ‘‘On approximating optimum
repairs for functional dependency violations,’’ in Proc. 12th Int. Conf.
Database Theory (ICDT), Saint Petersburg, Russia, Mar. 2009, pp. 53–62.
doi: 10.1145/1514894.1514901.

[3] L. Bertossi, Database Repairing and Consistent Query
Answering (Synthesis Lectures on Data Management). San
Rafael, CA, USA: Morgan Claypool Publishers, 2011. doi:
10.2200/S00379ED1V01Y201108DTM020.

[4] L. Bertossi, L. Bravo, E. Franconi, and A. Lopatenko, ‘‘The complex-
ity and approximation of fixing numerical attributes in databases under
integrity constraints,’’ Inf. Syst., vol. 33, nos. 4–5, pp. 407–434, 2008.
doi: 10.1016/j.is.2008.01.005.

[5] X. Chu, I. F. Ilyas, and P. Papotti, ‘‘Holistic data cleaning: Putting
violations into context,’’ in Proc. 29th IEEE Int. Conf. Data
Eng. (ICDE), Brisbane, QLD, Australia, Apr. 2013, pp. 458–469.
doi: 10.1109/ICDE.2013.6544847.

[6] A. Lopatenko and L. Bravo, ‘‘Efficient approximation algorithms
for repairing inconsistent databases,’’ in Proc. 23rd Int. Conf.
Data Eng. (ICDE), Istanbul, Turkey, Apr. 2007, pp. 216–225.
doi: 10.1109/ICDE.2007.367867.

[7] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis,
‘‘Conditional functional dependencies for data cleaning,’’ in Proc. 23rd
Int. Conf. Data Eng. (ICDE), Istanbul, Turkey, Apr. 2007, pp. 746–755.
doi: 10.1109/ICDE.2007.367920.

[8] S. Ma, L. Duan, W. Fan, C. Hu, and W. Chen, ‘‘Extending
conditional dependencies with built-in predicates,’’ IEEE Trans.
Knowl. Data Eng., vol. 27, no. 12, pp. 3274–3288, Dec. 2015.
doi: 10.1109/TKDE.2015.2451632.

[9] B. Demsky and M. Rinard, ‘‘Automatic detection and repair of errors in
data structures,’’ in Proc. ACM SIGPLAN Conf. Object-Oriented Program.
Syst., Lang. Appl. (OOPSLA), Anaheim, CA, USA, Oct. 2003, pp. 78–95.
doi: 10.1145/949305.949314.

[10] W. Fan and F. Geerts,Foundations of DataQualityManagement (Synthesis
Lectures on Data Management). San Rafael, CA, USA: Morgan Claypool
Publishers, 2012. doi: 10.2200/S00439ED1V01Y201207DTM030.

[11] P. Bohannon, M. Flaster, W. Fan, and R. Rastogi, ‘‘A cost-based model and
effective heuristic for repairing constraints by valuemodification,’’ inProc.
ACM SIGMOD Int. Conf. Manage. Data, , USA, Jun. 2005, pp. 143–154.
doi: 10.1145/1066157.1066175.

[12] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma, ‘‘Improving data quality:
Consistency and accuracy,’’ in Proc. 33rd Int. Conf. Very Large Data Bases
Vienna, Austria: University of Vienna, Sep. 2007, pp. 315–326. [Online].
Available: http://www.vldb.org/conf/2007/papers/research/p315-cong.pdf

[13] W. Fan, F. Geerts, N. Tang, and W. Yu, ‘‘Inferring data currency and
consistency for conflict resolution,’’ in Proc. 29th IEEE Int. Conf. Data
Eng. (ICDE), Brisbane, QLD, Australia, Apr. 2013, pp. 470–481. doi:
10.1109/ICDE.2013.6544848.

[14] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and
I. F. Ilyas, ‘‘Guided data repair,’’ Proc. VLDB Endowment, vol. 4, no. 5,
pp. 279–289, 2011. [Online]. Available: http://portal.acm.org/citation.
cfm?id=1952378&CFID=12591584&CFTOKEN=15173685

[15] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu, ‘‘Towards certain fixes with
editing rules and master data,’’ Proc. VLDB Endowment, vol. 21, no. 2,
pp. 213–238, 2012. doi: 10.1007/s00778-011-0253-7.

[16] J. Wijsen, ‘‘Condensed representation of database repairs for consistent
query answering,’’ in Database Theory—ICDT, Siena, Italy, Jan. 2003,
pp. 375–390. doi: 10.1007/3-540-36285-1_25.

[17] F. Korn, S. Muthukrishnan, and Y. Zhu, ‘‘Checks and balances: Monitoring
data quality problems in network traffic databases,’’ inProc. 29th Int. Conf.
Very Large Data Bases (VLDB), Berlin, Germany, Sep. 2003, pp. 536–547.
[Online]. Available: http://www.vldb.org/conf/2003/papers/S17P01.pdf

[18] H. Xiong, G. Pandey, M. Steinbach, and V. Kumar, ‘‘Enhancing data
analysis with noise removal,’’ IEEE Trans. Knowl. Data Eng., vol. 18,
no. 3, pp. 304–319, Mar. 2006. doi: 10.1109/TKDE.2006.46.

[19] F. Chiang and R. J. Miller, ‘‘Discovering data quality rules,’’ Proc. VLDB
Endowment, vol. 1, no. 1, pp. 1166–1177, 2008. [Online]. Available:
http://www.vldb.org/pvldb/1/1453980.pdf

VOLUME 7, 2019 22393

http://dx.doi.org/10.1145/1514894.1514901
http://dx.doi.org/10.2200/S00379ED1V01Y201108DTM020
http://dx.doi.org/10.1016/j.is.2008.01.005
http://dx.doi.org/10.1109/ICDE.2013.6544847
http://dx.doi.org/10.1109/ICDE.2007.367867
http://dx.doi.org/10.1109/ICDE.2007.367920
http://dx.doi.org/10.1109/TKDE.2015.2451632
http://dx.doi.org/10.1145/949305.949314
http://dx.doi.org/10.2200/S00439ED1V01Y201207DTM030
http://dx.doi.org/10.1145/1066157.1066175
http://dx.doi.org/10.1109/ICDE.2013.6544848
http://dx.doi.org/10.1007/s00778-011-0253-7
http://dx.doi.org/10.1007/3-540-36285-1_25
http://dx.doi.org/10.1109/TKDE.2006.46

M. Zhang et al.: One-Pass Inconsistency Detection Algorithms for Big Data

[20] L. Golab, H. J. Karloff, F. Korn, D. Srivastava, and B. Yu, ‘‘On generat-
ing near-optimal tableaux for conditional functional dependencies,’’ Proc.
VLDB Endowment, vol. 1, no. 1, pp. 376–390, 2008. [Online]. Available:
http://www.vldb.org/pvldb/1/1453900.pdf

[21] W. Fan, F. Geerts, L. V. S. Lakshmanan, and M. Xiong, ‘‘Discov-
ering conditional functional dependencies,’’ in Proc. 25th Int. Conf.
Data Eng. (ICDE), Shanghai, China, Mar./Apr. 2009, pp. 1231–1234.
doi: 10.1109/ICDE.2009.208.

[22] X. Chu, I. F. Ilyas, and P. Papotti, ‘‘Discovering denial constraints,’’
Proc. VLDB Endowment, vol. 6, no. 13, pp. 1498–1509, 2013. [Online].
Available: http://www.vldb.org/pvldb/vol6/p1498-papotti.pdf

[23] F. Geerts, G. Mecca, P. Papotti, and D. Santoro, ‘‘The LLUNATIC
data-cleaning framework,’’ Proc. VLDB Endowment, vol. 6,
no. 9, pp. 625–636, 2013. [Online]. Available: http://www.vldb.
org/pvldb/vol6/p625-mecca.pdf

[24] T. Bleifuß, S. Kruse, and F. Naumann, ‘‘Efficient denial constraint
discovery with hydra,’’ Proc. VLDB Endowment, vol. 11, no. 3,
pp. 311–323, 2017. [Online]. Available: http://www.vldb.org/pvldb/
ol11/p311-bleifub.pdf

[25] E. H. M. Pena and E. C. de Almeida, ‘‘BFASTDC: A bitwise algorithm for
mining denial constraints,’’ in Proc. 29th Int. Conf. Database Expert Syst.
Appl. (DEXA), Sep. 2018, pp. 53–68. doi: 10.1007/978-3-319-98809-2_4.

[26] J. Wang and N. Tang, ‘‘Dependable data repairing with fixing rules,’’
J. Data Inf. Qual., vol. 8, nos. 3–4, pp. 16:1–16:34, 2017. [Online].
Available: http://doi.acm.org/10.1145/3041761

[27] C. Xu, W. Xi, S. Cheung, X. Ma, C. Cao, and J. Lu, ‘‘Cina: Suppressing
the detection of unstable context inconsistency,’’ IEEE Trans. Softw. Eng.,
vol. 41, no. 9, pp. 842–865, Sep. 2015. doi: 10.1109/TSE.2015.2418760.

[28] W. Xi, C. Xu, W. Yang, X. Ma, P. Yu, and J. Lu, ‘‘Suppressing detection of
inconsistency hazards with pattern learning,’’ Inf. Softw. Technol., vol. 74,
pp. 219–229, Jun. 2016. doi: 10.1016/j.infsof.2015.08.003.

[29] P. Alpar and S. Winkelsträter, ‘‘Assessment of data quality in account-
ing data with association rules,’’ Expert Syst. Appl., vol. 41, no. 5,
pp. 2259–2268, 2014. doi: 10.1016/j.eswa.2013.09.024.

[30] Z. Abedjan, C. G. Akcora, M. Ouzzani, P. Papotti, and M. Stone-
braker, ‘‘Temporal rules discovery for Web data cleaning,’’ Proc. VLDB
Endowment, vol. 9, no. 4, pp. 336–347, 2015. [Online]. Available:
http://www.vldb.org/pvldb/vol9/p336-abedjan.pdf

[31] N. Talukder, M. Ouzzani, A. K. Elmagarmid, and M. Yakout, ‘‘Detecting
inconsistencies in private data with secure function evaluation,’’ Dept.
Comput. Sci., Purdue Univ., West Lafayette, IN, USA, Tech. Rep. 11-006,
2011.

[32] L. Li, X. Feng, H. Shao, and J. Li, ‘‘Source selection for inconsistency
detection,’’ in Proc. 23rd Int. Conf. Database Syst. Adv. Appl. (DASFAA),
Gold Coast, QLD, Australia, May 2018, pp. 370–385. doi: 10.1007/978-
3-319-91458-9_22.

[33] R. A. Shaikh, K. Adi, and L. Logrippo, ‘‘A data classification method for
inconsistency and incompleteness detection in access control policy sets,’’
Int. J. Inf. Secur., vol. 16, no. 1, pp. 91–113, 2017. doi: 10.1007/s10207-
016-0317-1.

[34] K. Anand, P. K. Chittimalli, and R. Naik, ‘‘An automated detection of
inconsistencies in SBVR-based business rules using many-sorted logic,’’
in Proc. 20th Int. Symp. Practical Aspects Declarative Lang. (PADL),
Los Angeles, CA, USA, Jan. 2018, pp. 80–96. doi: 10.1007/978-3-319-
73305-0_6.

[35] M. H. Farid, A. Roatis, I. F. Ilyas, H. F. Hoffmann, and X. Chu,
‘‘CLAMS: Bringing quality to data lakes,’’ in Proc. Int. Conf. Manage.
Data SIGMOD, San Francisco, CA, USA, Jun./Jul. 2016, pp. 2089–2092.
doi: 10.1145/2882903.2899391.

[36] X. Oriol and E. Teniente, ‘‘Incremental checking of OCL constraints with
aggregates through SQL,’’ in Proc. 34th Int. Conf Conceptual Modeling,
Stockholm, Sweden, Oct. 2015, pp. 199–213. doi: 10.1007/978-3-319-
25264-3_15.

[37] M. Zhang, H. Wang, J. Li, and H. Gao, ‘‘One-pass inconsistency detection
algorithms for big data,’’ in Proc. 21st Int. Conf. Database Syst. Adv. Appl.
(DASFAA), Dallas, TX, USA, Apr. 2016, pp. 82–98. doi: 10.1007/978-3-
319-32025-0_6.

[38] Z. Khayyat et al., ‘‘Lightning fast and space efficient inequality joins,’’
Proc. VLDB Endowment, vol. 8, no. 13, pp. 2074–2085, 2015. [Online].
Available: http://www.vldb.org/pvldb/vol8/p2074-khayyat.pdf

[39] J. W. Hunt and T. G. Szymanski, ‘‘A fast algorithm for computing longest
common subsequences,’’ Commun. ACM, vol. 20, no. 5, pp. 350–353,
1977.

MEIFAN ZHANG was born in Harbin,
Heilongjiang, China, in 1992. She received the
bachelor’s degree in computer science from the
Harbin Institute of Technology, in 2014, where
she is currently pursuing the Ph.D. degree. Her
research interests include big data analytics, data
quality, and machine learning.

HONGZHI WANG was born in 1978. He received
the Ph.D. degree in computer science from the
Harbin Institute of Technology, in 2008.

From 2008 to 2010, he was an Assistant Pro-
fessor with the Harbin Institute of Technology.
From 2010 to 2015, he was an Associate Profes-
sor. Since 2015, he has been a Professor with the
Department of Computer Science and Technology,
Harbin Institute of Technology. His research inter-
ests include big data management, data quality,

graph data management, and web data management.
Prof. Wang was a recipient of the Microsoft Fellowship, the Chinese

Excellent Database Engineer, and the IBM PHD Fellowship.

JIANZHONG LI was born in 1950. He received
the B.S. degree from Heilongjiang University,
in 1975.

He was with the University of California at
Berkeley, as a Visiting Scholar, in 1985. From
1986 to 1987 and from 1992 to 1993, he was
a Staff Scientist with the Information Research
Group, Lawrence Berkeley National Laboratory,
Berkeley, CA, USA. He was a Visiting Professor
with the University of Minnesota at Minneapolis,

Minnesota, MN, USA, from 1991 to 1992, and from 1998 to 1999. Since
1998, he has been a Professor with the Department of Computer Science and
Technology, Harbin Institute of Technology. His current research interests
include database management systems, data warehousing and data min-
ing, sensor network, and data intensive supercomputing. He has authored
three books, including the Parallel Database Systems, and the Principle of
Database Systems and Digital Library.
Prof. Li was a recipient of awards and honors, including the Chairman

of the ACM SIGMOD China and the Director of the China Computer
Federation.

HONG GAO received the Ph.D. degree from the
Harbin Institute of Technology.

She is currently a Professor and a Doctoral
Supervisor with the Harbin Institute of Technol-
ogy. She has published over 100 papers in her
career. She has long involved in the research work
of massive data computation and quality manage-
ment, wireless sensor networks, and graphic data
management and computation. She was a recip-
ient of awards and honors, including the Assis-

tant Director of the China Computer Federation Technical Committee on
Databases, a member of the China Computer Federation Technical Com-
mittee on Sensor Network, and the Deputy Director of the Massive Data
Computing Lab.

22394 VOLUME 7, 2019

http://dx.doi.org/10.1109/ICDE.2009.2080
http://dx.doi.org/10.1007/978-3-319-98809-2_4
http://dx.doi.org/10.1109/TSE.2015.2418760
http://dx.doi.org/10.1016/j.infsof.2015.08.003
http://dx.doi.org/10.1016/j.eswa.2013.09.024
http://dx.doi.org/10.1007/978-3-319-91458-9_22
http://dx.doi.org/10.1007/978-3-319-91458-9_22
http://dx.doi.org/10.1007/s10207-016-0317-1
http://dx.doi.org/10.1007/s10207-016-0317-1
http://dx.doi.org/10.1007/978-3-319-73305-0_6
http://dx.doi.org/10.1007/978-3-319-73305-0_6
http://dx.doi.org/10.1145/2882903.2899391
http://dx.doi.org/10.1007/978-3-319-25264-3_15
http://dx.doi.org/10.1007/978-3-319-25264-3_15
http://dx.doi.org/10.1007/978-3-319-32025-0_6
http://dx.doi.org/10.1007/978-3-319-32025-0_6

	INTRODUCTION
	RELATED WORK
	PRELIMINARIES
	RULES
	INCONSISTENCY DETECTION

	DETECTING THE INCONSISTENCIES OF CFD
	FRAMEWORK
	RANGE
	GROUP
	MATCH
	MERGE
	CORRECTNESS
	THE CORRECTNESS OF THE ALGORITHM FOR CONSTANT RHS RULES
	THE CORRECTNESS OF THE ALGORITHM FOR VARIABLE RHS RULES

	DETECTING THE VIOLATION OF DC
	THE VIOLATION OF CONSTANT DC
	THE VIOLATION OF VARIABLE DC
	THE FRAMEWORK
	RELATIVE POSITION
	VIOLATION

	EXPERIMENTAL STUDY
	THE PERFORMANCE OF THE DC INCONSISTENCY DETECTION ALGORITHM

	CONCLUSIONS
	REFERENCES
	Biographies
	MEIFAN ZHANG
	HONGZHI WANG
	JIANZHONG LI
	HONG GAO

