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ABSTRACT Metal oxide semiconductor (MOS) gas sensor array dynamic measurement uncertainty
evaluation, which currently mainly uses static measurement approximation estimations, cannot accurately
distinguish the measured value of the sudden change of the measured value caused by the dynamic mutation
of the measured gas or the actual sensor array local fault caused by the sudden change of the measured
value, thereby resulting in a dynamic measurement process of the MOS gas sensor array uncertainty
evaluation results and the validationmeasurement value reliability being greatly reduced. This paper presents
a dynamic adaptive Kalman filter andGray bootstrap comprehensive modified prediction model for the
dynamic measurement uncertainty evaluation. The dynamic adaptive Kalman filter and Gray bootstrap
method is used to estimate the good performance of the probability distribution function of the measured
value, and the uncertainty evaluation of the dynamic measurement state of the MOS gas sensor array is
realized. Using the correlation of the dynamic adaptive Kalman filter and Gray model multisensor output,
a new MOS gas sensor array measurement value confirmation algorithm is proposed to distinguish the
measured value mutation caused by the normal dynamic mutation of the measured gas and the fault of
the real sensor array. Finally, the MOS gas sensor array measurement is set up, and the experiments show
that the proposed MOS gas sensor array dynamic measurement uncertainty evaluation and an optimization
algorithm is effective.

INDEX TERMS Sensor array, dynamic measurement, uncertainty, dynamic adaptive Kalman filter.

I. INTRODUCTION
The uncertainty in sensor array measurement is the main
indicator of the quality of the sensor evaluation measurement,
which is used to characterize the dispersion of the measured
value [1]–[3]. Currently, the domestic evaluation of sen-
sor dynamic measurement uncertainty is still in its infancy
and a complete fundamental theoretical system has not been
formed.

The International Measurement Uncertainty Research
Committee proposed that GUM (Guide to the Expression
of Uncertainty in Measurement) is only suitable for static
measurement conditions. In real-life measurement systems,
the dynamic uncertainty is often evaluated. In the case of
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less demandingmeasurements, the static measurement uncer-
tainty estimation is often used instead of the dynamic mea-
surement uncertainty estimation. In an MOS gas sensor array
system, the static approximation substitution method has a
large error compared with the real uncertainty estimation.

The paper in [4] and [5] proposed a new strategy for
using polynomial prediction filters and validating the random
fuzzy variables (VRFV) for online measurement verification
and verification uncertainty (VU) estimation of multifunc-
tional self-verification sensors, but they lack a comprehen-
sive performance comparison with other common prediction
algorithms. The paper in [6] considered a wavelet analysis,
aimed at measuring the synthesis of transient disturbances
and provides a general expression that affects the uncertainty
of the synthesis. Simulations have been performed to verify
the correctness of the above expressions, but the scheme

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

35779

https://orcid.org/0000-0002-9446-0782
https://orcid.org/0000-0002-5664-1208


W. Zhang et al.: Gas Sensor Array Dynamic Measurement Uncertainty Evaluation and Optimization Algorithm

regarding the uncertainty in Wavelet-Based signal analysis
is not suitable for gas sensor array dynamic measurement
uncertainty evaluation. The paper in [7] proposed a sensor
error detection, isolation and recovery strategy, proposing a
GM (1,1) (Gray Model) Gray Bootstrap model for sensor
array uncertainty evaluation. The feasibility of the proposed
sensor array dynamic measurement uncertainty evaluation
model is verified, but there is a large error between the model
and the actual dynamic measurement uncertainty evaluation.
The scheme does not consider the impact of sensor array
failure or the sudden change of the measured gas.

In the papers in [4], [5], and [8], a functional framework
of a multifunctional self-verification sensor was proposed.
Aimed at the influence of a sudden failure of the sensor
on the evaluation of uncertainty, a functional scheme of the
FDIR strategy for a predictive filter was proposed. The sensor
output value is compared with the actual sensor output. The
absolute value of the difference is then compared with the
set safety threshold to correct the sensor measurement value.
This paper provides a feasible solution for the sensor dynamic
measurement to distinguish sensor faults, but does not pro-
vide a solution for the uncertainty assessment of the sensor
array dynamic measurement. The paper in [9] and [10]
presented a novel dictionary learning method to improve the
gas identification performance of electronic noise. They are
simpler, but they also lead to very competitive classification
results. This method is not only effective in signal analysis
but also useful for enhancing the performance of the current
electronic noises. However, the article does not assess the
dynamic measurement uncertainty of the proposed measure-
ment scheme. The paper in [11]–[14] designed a low-power,
handheld gas sensor array with temperature sensitivity and
cross-sensitivity for industrial applications. It can accurately
measure such gases as O2, CO, CH4 and H2S. Additionally,
a surface fitting algorithm was proposed to reduce the influ-
ence of the cross-sensitivity and improve the measurement
accuracy by one to two orders of magnitude. This paper
solved the gas sensor cross-sensitivity problem, but did not
propose a reasonable solution to the uncertainty measure-
ment of the entire measurement dynamic system. The paper
in [15]–[18] compiled an authoritative review of works pub-
lished on measurement uncertainty since 2004 and described
the measurement uncertainty evaluation scheme. However,
there are few papers on the dynamic uncertainty of sensor
arrays. In the papers in [19]–[21], the uncertainty of the
generalized Lambda distribution of expressions is described,
but the proposed algorithm is not suitable for the estimation
of measurement uncertainty of MOS gas sensor arrays. The
paper in [18], [22], and [23] discussed the uncertainty assess-
ment in indirect measurements, where the main concern is the
measurement model. Its input is modeled as a dependent ran-
dom variable, but this method has a large error in evaluating
the dynamic uncertainty of the MOS gas sensor array and the
calculation process is complicated. In the paper in [7], Shen
et al. proposed a traditional GUM self-confirmed multisensor
uncertainty evaluation method in 2012. This method mainly

analyzes various uncertainty sources and derives the uncer-
tainty of the MRVM data reconstruction model. The trans-
fer function finally uses the static measurement uncertainty
GUM uncertainty synthesis formula to obtain the dynamic
sensormeasurement uncertainty. Thismethod solves the eval-
uation problem of dynamic measurement uncertainty, but the
scheme still results in a large error.

Due to the time-varying nature, complexity and uncer-
tainty of dynamic measurement systems, traditional predic-
tion models (such as autoregressive moving average models
and nonlinear regressionmodels) are not suitable for dynamic
measurement systems. In this paper, a dynamic uncertainty
evaluation method based on a dynamic, adaptive Kalman
filter-Gray Bootstrap method is proposed. The dynamic per-
formance of the MOS gas sensor array is achieved by
the dynamic adaptive Kalman filter-Gray self-help method
to estimate the performance of the measured value proba-
bility distribution function. With an uncertainty evaluation
under the measurement state and using the dynamic adaptive
Kalman filter-Gray model to predict the value under the
dynamic measurement state, an XOR (exclusive or) MOS
gas sensor array measurement value confirmation algorithm
is proposed to accurately distinguish the normal dynamics
of the measured gas. Mutations and sudden changes in the
measured values are caused by faulty sensor arrays.

The model is based on Kalman filtering, Gray theory,
robust estimation, data fusion and variance component esti-
mation. It mainly usesKalman filtering to effectively estimate
the observations with noise and combines the Gray prediction
model to establish accurate values in small samples and poor
information states. Using the robust estimation theory, data
fusion technology and the variance component estimation
theory to construct a dynamic adaptive Kalman filter-Gray
comprehensive correction prediction model, the prediction of
the MOS gas sensor array becomes more accurate. The main
contributions of this paper are as follows:

(1) This paper presents a dynamic adaptive Kalman filter-
Gray bootstrap comprehensive modified prediction model,
where the advantages of Kalman filter theory in estimating
the observed values with noise are utilized. Combined with
the advantages of the Gray prediction model in establishing
the prediction model under the condition of poor information,
the dynamic adaptive Kalman filter-Gray synthesis is con-
structed by using robust estimation theory, data fusion tech-
nology and variance component estimation theory. Combined
with themodified predictionmodel, the sensor array canmore
accurately predict the gas in a dynamic environment.

(2) In this paper, a dynamic adaptive Kalman filter-Gray
prediction model is proposed. Based on the correlation of
the multi sensor output, an XOR MOS gas sensor array
measurement value confirmation algorithm is proposed to
accurately distinguish the measured value of the mutation
caused by the normal dynamic change of the measured gas
and the real sensor array obstacle. This further solves the
problem of confirming the decrease in the accuracy of the
measured value due to the failure of theMOSgas sensor array.
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FIGURE 1. Dynamic adaptive Kalman filter-Gray prediction model.

II. DYNAMIC ADAPTIVE KALMAN FILTER-GRAY
BOOTSTRAP COMPREHENSIVE MODIFIED PREDICTION
MODEL
The Gray system theory was proposed by Professor Deng
Julong from the Huazhong University of Science and Tech-
nology and applied to the Gray system, where ‘‘some infor-
mation is known and some information is unknown’’. In this
paper, based on Kalman filter theory, Gray theory, robust
estimation, data fusion and variance component estimation,
a dynamic adaptive Kalman filter-Gray prediction model is
established. This model mainly combines the advantages of
Gray prediction to achieve prediction in a poor information
state and Kalman filtering theory to effectively estimate the
observations containing noise, and then combines these with
a robust estimation theory. The flow chart of the dynamic
adaptive Kalman filter-Gray prediction model in this paper
is given in Figure 1.

The 4 steps of a dynamic adaptive Kalman filter-Gray
bootstrap comprehensive modified prediction model imple-
mentation process are given below:

The first step is GM (1,1) Modeling Based on Kalman
Filter.

1. Sensor array detection data accumulation processing.
It is assumed that for the indoor space to be tested, a num-

ber n of the MOS gas sensor sampling arrays are distributed.
In the dynamic measuring system, the gas sensor obtains the
original time series, expressed as in formula (1):

X = {x(1), x(2), · · · , x(k), · · · , x(n)} (1)

X(n): the measured value corresponding to the nth sampling
point.

Then, the measured values obtained by the MOS gas sen-
sors at the initial time are expressed as X (0):

X (0)
= {x(0)(1), x(0)(2), · · · , x(0)(n)}, n ≥ 2 (2)

A first-order Accumulation Generation Operation (1-
AGO) is performed on the data sequence detected by the
MOS gas sensor X (0), and a first-order accumulation genera-
tion sequence X (1) is obtained:

X (1)
= {x(1)(1), x(2)(2), · · · , x(1)(n)} (3)

x(1)(k) =
k∑
i=1

x(0)(i), k = 1, 2, · · · n (4)

The AGO processing of the sensor measurement data
sequence is important, as it enables the deterministic infor-
mation contained in the original data sequence to be mono-
tonically grown and enhanced by AGO processing. It can also
partially cancel random noise.

2. Calculating the filtered value of the accumulated
sequence

The following is done to obtain the filtered value of the
accumulated sequence. The filtering is derived from the con-
trol field while the measured value with error is processed
to obtain the desired estimated value. In fact, many measure-
ment errors are generated during the measurement process
of the MOS gas sensor array. Transforming the above equa-
tion (2) into equation (3), the Kalman filter model can then
be established.

X(k/k) = X(k/k − 1)+ Jk [Lk − BkX(k/k − 1)]�k

(5)

Dx(k/k) = (E− JkBk )Dk (k/k − 1) (6)

X(k/k − 1) = 8k,k−1X(k − 1/k − 1) (7)

Dx(k/k − 1) = 8k,k−1Dx(k − 1/k − 1)8T
k,k−1

+0k,k−1D�(k − 1)0Tk,k−1 (8)

Jk = Dx(k/k − 1)BTk [BkDx(k/k − 1)BTk
+D1(k)]−1 (9)

X(k/k) : the time n-dimensional state vector;
Lk : tk momenta m-dimensional observation vector;
D�(k−1) : tk time r-dimensional dynamic noise variance;
D1(k): tk M-dimensional observation noise at the moment;
8k/k−1 : n×nDimension state transition matrix from time

tk−1 to time tk ;
�k : tk dynamic noise matrix (n× r);
Jk : filter gain matrix;
The filtering model established by equation (5) is as fol-

lows:

X (1)
= (X (1)(1/1),X (1)(2/2), · · · ,X (1)(n/n)) (10)

3. Filter value subtraction processing
The filter model obtained above is subjected to subtraction

processing to reduce it to a data sequence:

X (0)
= (X (0)(1),X (0)(2), · · · ,X (0)(n)), n ≥ 2 (11)

The above equation (11) is not the original sequence (2).
The GM (1,1) model is established by using the abovemen-
tioned cumulative sequence, which is known from equa-
tion (4):

X (1)(k/k) =
k∑
i=1

X (0)(i), k = 1, 2, · · · n (12)

4. Establishing the GM (1,1) model by using the reduced
sequence
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The dynamic GM (1,1) model is established using equa-
tion (10) as follows:

dX (1)(k/k)
dt

+ a(k)X (1)(k/k) = b(k) (13)

The above equation discretizes the model as:

X (0)(k) = −a(k)X (1)(k/k)+ b(k) k = 2, 3 · · · n (14)

a(k) and b(k) in the above equation (14) are taken as the
dynamic parameters to be estimated. The response function
of the differential equation (14) above can be expressed as:

X̂(k) = {
∫ k

0
b(s)e

∫ k
0 a(r)drds+ c}e−

∫ k
0 a(r)dr (15)

In the above equation (15), b(s) and a(r) are to be esti-
mated.

where c is a constant, and X̂(k) is the predicted value of
X(k). The following uses the least squares method to find the
parameters a(k) and b(k). Assuming Equation (16) to be the
minimum:

s =
n∑

k=2

[−a(k)x(1)(k/k)+ b(k)− x(0)(k)]2 (16)

set a(k) and b(k) be continuous functions and thenwe approx-
imate with a polynomial of an appropriate number of terms.
Setting A and B to have the following polynomial:{

a(k) = a0 + a1k + a2k + · · · apkp

b(k) = b0 + b1k + b2k2 + · · · bqkq
(17)

The undetermined coefficients in the above equation are:
ak (k = 0, 1, · · · , p), and bl(l = 0, 1, · · · q) We set equa-

tion (18):

s =
n∑

k=2

[−a(k)x(1)(k/k)+ b(k)− x(0)(k)]2 (18)

the minimum undetermined coefficient of equation (18) sat-
isfies the equation set (19):

∂s
∂ak
= 0

∂s
∂bl
= 0 k = 0, 1, · · · , p, l = 0, 1, · · · q

(19)

i.e.:
n∑

k=2

[(−
p∑
i=0

aik iX (1)(k/k)

+

q∑
i=0

bik i)− X (0)(k)](−kkX (1)(k/k)) = 0 (20)

Assuming (21)–(23), as shown at the bottom of the next page:
The observation equations can be listed according to equa-

tion (24):

Y = Bβ (24)

Equation (24) is estimated according to the robust least
squares parameter:

Y = (BT P̄B)−1BT P̄Y (25)

The parameters ak (k = 0, 1, · · · , p) and bl(l = 0, 1, · · · q)
can be calculated by determining parameters a(k) and b(k).

Then, we can calculate the predicted value x̂(k + 1), and
the integral complex trapezoidal formula can obtain x̂(k + 1)
in a discrete form as in formula (26):

x̂(1)(k + 1/k + 1)

= {

k∑
t=1

(
q∑
i=0

ûit i)e

p∑
i=0

âi t
i+1

i+1
+ c}e

−

p∑
i=0

âik
i+1

i+1
(26)

In the above formula c = x(0)(1) is the final subtraction and
can obtain the predicted value x̂(0)(k + 1).

The second step is accuracy assessment and residual cor-
rection

5. Assessment of internal coincidence accuracy
To evaluate the aforementioned internal accuracy, the GM

(1,1) model established by formula (10):

dX (1)(k/k)
dt

+ a(k)X (1)(k/k) = b(k) (27)

Obtaining the model simulation value sequence:

X (1)
M = (X (1)

M (1/1),X (1)
M (2/2), · · ·X (1)

M (n/n)) (28)

The original data sequence is obtained using a transformation
of equation (28):

X = (X (0)(1),X (0)(2), · · ·X (0)(n)), n ≥ 2 (29)

And finding the model simulation sequence value:

X (0)
M =(X (0)

M (1/1),X (0)
M (2/2), · · ·X (0)

M (n/n)) (30)

Thus, the residual sequence can be obtained:

δ
(0)
M = (δ(0)M (1), δ(0)M (2), · · · , δ(0)M (n)), n ≥ 2 (31)

therefore:

δ
(0)
M (t) = X (0)(t)− X (0)

M (t) (32)

Relative error expression:

δ =
δ
(0)
M (t)

X (0)(t)
× 100% (33)

The original MOS gas sensor array measurement is set to
obtain X (0) and the corresponding residual series as s21 and
s22, respectively. The corresponding expressions of the calcu-
lation are as follows:

s21 =
1
n

n∑
k=1

(X (0)(k)− X̄
(0)
)2 (34)

s22 =
1
n

n∑
k=1

(δ(0)M (k)− δ̄(0)M ) (35)
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TABLE 1. Post-test difference ratio test standard.

The average calculation formula is:

X̄ (0)(k) =
1
n

n∑
k=1

X (0)(k) (36)

δ̄
(0)
M =

1
n

n∑
k=1

δ
(0)
M (k) (37)

The final calculation for the posterior difference ratio:

C =
s2
s1

(38)

The small error probability calculation expression is as fol-
lows:

P = P{|δ(0)M (k)− δ̄(0)M | < 0.6745s1} (39)

The two most important indexes of the posterior margin ratio
test are the posterior error ratio C and the small error ratio
P, in which the smaller the index C is the better, whereas
the larger the index P is the better. The specific indicator
standards are shown in Table 1:

6. Residual correction
The residual sequence GM (1,1) model is established using

the residual sequence (31) obtained above:
The first order cumulative generating sequence expression

for δ(1)M to δ(0)M is as follows:

δ
(1)
M = (δ(1)M (1), δ(1)M (2), · · · δ(1)M (n)) (40)

δ
(1)
M (k) =

k∑
i=1

δ
(0)
M (i), k = 1, 2, · · · n (41)

and set the matrix Z(1)δ to be the immediate mean generation
sequence of δ(1)M :

Z(1)δ = (z(1)(2), z(1)(3), · · · , z(1)(n)) (42)

among them:

Z(1)δ (k) = 0.5(δ(1)M (k)+ δ(1)M (k − 1))(k = 2, 3, · · · n) (43)

Set Â = [a, b]T to the parameter column and:

Y = [δ(0)M (2), δ(0)M (3), · · · , δ(0)M (n)]T (44)

B =
[
−z(1)(2) −z(1)(3) · · · −z(1)(n)

1 1 · · · 1

]
(45)

Obtain the GM (1,1) model:

δ
(0)
M (k)+ az(1)(k) = b (46)

The least squares parameter column of the above GM (1,1)
satisfies the following equation:

Â=(BTB)−1BTY (47)

then the albino equation of the GM (1,1) model established
by the above residual sequence:

dδ(1)M
dt
+ aδ(1)M = b (48)

and the time response function is obtained from the above
albino equation as:

δ1M (t) = (δ(1)M (1)−
b
a
)e−at +

b
a

(49)

The GM (1,1) model is obtained from the above equation as:
δ
(0)
M (k)+az(1)(k) = b, and the time corresponding sequence

expression is:

δ
(1)
M (k+1) = (δ(1)M (1)−

b
a
)e−at+

b
a
, k = 1, 2, · · · n (50)

setting γ = b
1+0.5a and θ = a

1+0.5a , the restore value is:

δ
(0)
M (k) = (γ − θδ(0)M (1))e−a(k−2) (51)

The third step is the predicted value data fusion.
The following is a data fusion of the predicted values of

the data detected by the MOS sensor. The accumulated data
sequence is:

X (1)
= (X (1)(1/1),X (2)(2/2), · · · ,X (1)(n/n),

X (1)(k/k) =
k∑
i=1

X (0)(i), k = 1, 2, · · · n (52)

The model is different when selecting the different elements
in the above data sequence X (1) to establish the following
equation (53):

dX (1)(k/k)
dt

+ a(k)X (1)(k/k) = b(k) (53)

β = (a0, a1, · · · , ap, b0, b1, · · · bq)T (21)

Y = (X (0)(2),X (0)(3), · · · ,X (0)(n)) (22)

B =


−X (1)(2/2) −2X (1)(2/2) · · · −2X (1)(2/2) 1 2 · · · 2q

−X (1)(3/3) −3X (1)(3/3) · · · −3X (1)(3/3) 1 3 · · · 3q
...

... · · ·
...

...
...

...
...

−X (1)(n/n) −nX (1)(n/n) · · · −nX (1)(n/n) 1 n · · · nq

 (23)
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We describe how to choose the following data sequence to
build a Gray model:

(X (1)(m− 1/m− 1),X (1)(m/m), · · · ,X (1)(n/n))m<n (54)

This paper uses a selection of unequal dimensional data
sequences:

X (1)
(t) = (X (1)(m− 1/m− 1),X (1)(m/m), · · · ,X (1)(n/n))

(55)

The above equation can be used to establish the model of
equation (56).

Through equation (56) the equation models can be estab-
lished, and the t prediction values can be simultaneously
obtained:

dX (1)(k/k)
dt

+ a(k)X (1)(k/k) = b(k) (56)

t: number of selected modeling data sequence; m-n+1:
dimension of the selected data sequence. This article will use
data fusion to solve for the best value.

Set the two predicted values to be the distance values
between X̂0

(i)(k + 1) and X̂0
(j)(k + 1), respectively, as follows:

dij = |X̂
(0)
i (k + 1)− X̂ (0)

j (k + 1)|, i, j ∈ {1, 2, · · · t} (57)

The support function rij between the two data must meet the
following two conditions:

(1) rij is inversely proportional to the relative distance;
that is, the greater the difference between the two values,
the smaller the degree of support between them.

(2) rij ∈ [0, 1]; therefore, the advantages of the member-
ship function in fuzzy set theory can be utilized to avoid the
absolute degree of mutual support.

The support matrix functions established in this paper are
as follows:

M =


e−d11 e−d12 · · · e−d1m

e−d11 e−d11 · · · e−d2m
...

...
...

...

e−dm1 e−dm2 · · · e−dmm

 (58)

M = (rij)m×m (59)

from X̂ (0)
(t) (k + 1) to X̂ (0)(k + 1), it is necessary to determine

the weight ratio ωi of X̂
(0)
(t) (k + 1) and satisfy:

m∑
i=1

ωi = 1 (60)

In addition, the above ωi comprehensively includes infor-
mation between ri1, ri2, · · · rim, so that a group of nonnegative
groups v1, v2, · · · , vn can be determined, which satisfies:

ωi =

m∑
j=1

vjrij (61)

The matrix expression of the function is:

H = MN (62)

H : Represents a column vector consisting of ωi; N :

Represents a column vector consisting of vj;M : Nonnegative
symmetric matrix; there is a maximum modulus eigenvalue,
and its corresponding eigenvector is Nλ = [vλ1, v

λ
2, · · · , v

λ
m].

The component is nonnegative and can be taken as:

ωi =
vλi
m∑
j=1

vλj

(63)

After fusion, the predicted values are:

X̂ (0)(k + 1) =
m∑
i=1

ωiX̂
(0)
(t) (k + 1) (64)

Residual calculation:

q(k + 1) = X (0)(k + 1)− X̂ (0)(k + 1) (65)

Relative error calculation:

δ =
q(k + 1)
X (0)(k + 1)

× 100% (66)

This paper requires δ < 10%.
The fourth step is dynamic noise variance correction
7. Adaptive Kalman filtering based on variance component

estimation
A dynamic variance correction is performed below. Adap-

tive Kalman filtering based on the principle of variance com-
ponent estimation is an adaptive filtering algorithm based on
the dynamic residual variance component of the prediction
residual calculation model. The Kalman filter equation is
rewritten into a Gauss-Markov model, and taking the one-
step predicted value X̂0(k+1) as a pseudo-observation value,
the covariance matrix is D(X̂0(k + 1)), and the observation
equation:

Lk = BkXk +1k (67)

The above is rewritten into an equation V = AX0(k)− L
The weight matrix of error equation P is as follows:

V =
[
VX̂0(k+1)
VLk

]
A =

[
E
B

]
L =

[
X̂0(k + 1)

Lk

]
P =

[
D−1 0
0 D0

1k

]
(68)

The above equation contains pseudo observations and actual
observations. In the following, based on the principle of
postestimation, the expression of the preresidual is assumed
to be:

V k = Bk X̂0(k + 1)− Lk (69)

the variance of Lk , X̂0(k + 1) is:

D(Lk ) = δ2L0P
−1
Lk (70)

D(X̂
0
(k + 1)) = δ2x0P

−1
X̂0(k+1)

(71)
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The above equation assumes that δ2L0 and δ
2
x0 are all equal to

1. Then, the variance of the residual is predicted:

D(Vk ) = BkD(X̂
0
(k + 1))BTk + D(Lk )

= δ2x0BkP
−1
x̂0(k+1)

BTk + δ
2
L0 + P

−1
Lk (72)

Through adjustment, the following is calculated:

E(VT
k PLkV k ) = tr(PLkD(V k ))

= tr(PLk (δ
2
x0BkP

−1
x̂0(k+1)

BTk )+ δ
2
L0P
−1
Lk ))

= δ2x0 tr(PLkBkP
−1
x̂0(k+1)

BTk )+ δ
2
L0m (73)

where m is the number of observations.
If the variance of the actual observation value L is taken

as a known value, the variance component δ2x0 estimate of
the pseudo observation value can be solved according to the
above equation:

δ2x0 =
E(VT

k PLkV k )− δ2L0m

tr(PLkBkP
−1
X̂0(k+1)

BTk )
(74)

D(X̂0(k + 1)) can be represented as two parts as follows, and
the dynamic noise variance component is represented by δ2�0

:

D(X̂
0
(k + 1))

= δ2x0P
−1
X̂0(k+1)

= δ2X0 (8k,kDX̂0(k+1)8
T
k,k−1 + 0k,k−1D�k−10

T
k,k−1

= δ2X08k,k−1DX̂0(k+1)8
T
k,k−1 + δ

2
�0
0k,k−1D�k−10

T
k,k−1

(75)

using the above equations with δ2L0 and δ
2
x0 as known values,

the estimated value of the dynamic noise variance component
δ2�0

is solved:

δ2�0
= [E(VT

k PLkVk)]

− δ2x0 tr(PLkBk8k,k−1Dx̂0(k+1)8
T
k,k−1B

T
k )

− δ2L0m]/tr(PLkBk0k,k−1D�k−10
T
k,k−1B

T
k ) (76)

By using the abovementioned prediction residual, the vari-
ance observation a priori value is known, and the variance
component of the predicted value is estimated by the above
steps. The dynamic noise variance component is estimated,
which can effectively overcome the filter’s instability.

8. Variance Compensation Adaptive Filtering
Variance compensation adaptive filtering is applied.

Assuming that V k is the prediction residual between the
measured value and the final predicted value, the variance
matrix Dw of V k is:

Dw=Bk+i8k+i,kDxk8
T
k+i,kB

T
k+i + D1k+i1k+i

+

k+i∑
γ=k+i

Bk+i8k+i0γ,γ−1D�y−1�y−18
T
k+i,γB

T
k+i (77)

Bk+i8k+i,k0γ,γ−1 = A(k+i,γ )
= [a(k+i,γ )hj ] (78)

In the above equation r = 1, · · · ,N k = 1, · · · , n,
assume that D�y−1�y−1 is a constant diagonal matrix over the
observation period tk+1, tk+2, · · · , tk+N , i.e., the expression
is as follows:

D�y−1�y−1 =


δ211 · · · · · · 0
0 δ222 · · · 0
...

...
...

...

0 · · · · · · σ 2
γ γ

 = D�� (79)

diagD�� = (δ211, δ
2
22, · · · , δ

2
rr )

T (80)

according to:

E(VT
k+i • V k+i) = tr[E(V k+i • VT

k+i)] = trDw (81)

V T
k+i • Vk+i = trDw + ηk+i (82)

ηk+i : Zero mean white noise sequence, r = 1, · · · ,N

Ek+i = VT
k+i • V k+i − tr[Bk+i8k+iDXk8

T
k+i,kB

T
k+i]

− trD1k+i1k+i (83)

E = [Ek+i, · · · ,Ek+N ]T (84)

η = [ηk+i, · · · , ηk+N ]T (85)

then:

E = AdiagD�� + η (86)

For the linear equations of the above equation for D��,
when N ≥ r there is a unique solution, and the LS of
diagD�� is estimated to find D�� over any period of time
as a real-time estimate of the dynamic noise covariance.

This paper first preprocesses the data detection of theMOS
gas sensor array, then accumulates the sequence of settlement
observation data to generate time series X (1). It then con-
structs the Kalman filter model by the X (1) sequence, then
obtains the filter value X (n)(n/n) of X (1) sequence through
Kalman filter to reduce the sequence:

X (0)(k + 1) = X (1)(k + 1/k + 1)− X (1)(k + 1) (87)

The GM (1,1) model is established, and the parameters
are obtained by the robust estimation method. The internal
matching accuracy is evaluated according to the established
model GM (1,1), and the residual correction model is estab-
lished for the sequence δ(0)M to correct the prediction model.
According to the prediction equations for data sequences of
different step sizes, multiple sets of predicted values X0

(t)(k+

1) are obtained, and the final predicted result X̂
(0)
(k + 1) is

obtained by data fusion. Finally, the final prediction result
X̂
(0)
(k + 1) is used to obtain the prediction residual based

on the observed value Lk+1. The variance component is esti-
mated based on the residual and the dynamic noise estimation
value δ2�0

is obtained. In this way, the dynamic noise variance
correction makes the filter equation continuously change in
order to overcome the instability of the filter.
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FIGURE 2. Block diagram of the measuring value of the MOS gas sensor array.

III. XOR MOS GAS SENSOR ARRAY MEASUREMENT
VALUE VALIDATION ALGORITHM
The measurement accuracy of the MOS gas sensor array
directly affects the qualitative analysis of the gas, which
leads to the failure of the entire detection and control system.
To solve the above problems, this paper proposes a method
for confirming the measured value based on an XOR MOS
gas sensor array. It is able to correctly identify the sudden
change of the measured gas, faults in the self-gas sensor array
and prevent failed sensor arrays from affecting subsequent
inspection and analysis results.

The block diagram of the measured value from the XOR
MOS gas sensor array proposed in this paper is shown
in Fig. 2.

With redundant MOS gas sensor arrays, all sensors can
independently represent the trend of the measured gas, and
the responses of all gas sensor arrays remain consistent with
the sudden change of the measured gas. The steps for con-
firming the measured value based on the XOR MOS gas
sensor array are as follows:

(1) Gas time series detected by all redundant MOS gas
sensor arrays:

X = {x(1), x(2), · · · , x(k), · · · , x(n)} (88)

establishing their respective dynamic adaptive Kalman filter-
Gray models.

(2) By using the above dynamic adaptive Kalman filter-
Gray model to obtain the final predicted value x(0)i (k + 1),
the error term δi between the detected value xi(k + 1) of
the real sensor array and the predicted value x(0)i (k + 1)
can be obtained. The error threshold δth and the threshold
value (δth = 4δi) are set. Once the predicted error value
|δi| is greater than the set error threshold δth, the sensor
measurement value is abrupted, and the output signal truth
table is set. The truth table is shown in Table 2:

(3) The XOR outputs at 1 sensor array and the redundant
sensor array. If the output is logic 1, it indicates that the sensor
array has a fault. If the output is logic 0, the detected gas has
a sudden change. The above fault description truth table is
shown in Table 3:

TABLE 2. Output signal truth table.

TABLE 3. XOR fault truth table.

When the MOS gas sensor array signal is abrupted by a
sudden change in the gas to be tested, the dynamic adaptive
Kalman filter-Gray model needs to be updated online to
ensure the prediction accuracy in the entire dynamic pro-
cess; when the MOS gas sensor array fails, the fault value
is replaced with the predicted measured value, and then the
adaptive Kalman filter-Gray model is updated.

The MOS gas sensor measurement value confirmation
algorithm is given below. The algorithm is as shown in the
following Algorithm 1:

The MOS gas sensor measurement value confirmation
algorithm proposed in this paper can determine the cause for
the abrupt signal change in the dynamic detection process of
the MOS gas sensor. If the MOS gas sensor array fails and
interferes at sample point k+ 1, the measured value xi(k+ 1)
will be replaced by x̂i(k + 1). The measured value sequence
will also be rewritten as Xnewi = {xi(2), xi(3), · · · , x̂i(k + 1)}
to update the dynamic adaptive Kalman filter-Gray model to
reduce the impact of sensor failure on its confirmed mea-
surement and dynamic measurement uncertainty evaluation
results.

IV. UNCERTAINTY EVALUATION ALGORITHM IN A
DYNAMIC MEASUREMENT STATE
In the machine olfactory system, the quality of the MOS
gas sensor array detection measurement directly affects the
accuracy of gas detection. The accuracy of the measured
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Algorithm 1 Fault Detection and Confirmation for Sensor
Arrays

Input: The measured data sequence X(i)of each sensor in
the sensor array.
Output: MOS sensor measurement value confirmation
result
1: Initialize the parameters of the Dynamic adaptive
Kalman filter-Gray model.
2: Build the Dynamic adaptive Kalman filter-Gray model
for each sensor.
3: for each sensor measured data sequencex(k + 1) do
4: Predict the current measured value x̂i(k+1) by Dynamic
adaptive Kalman filter-Gray model
5: Calculate difference |δi| between the measured data
value xi(k+1)and the predicted measured data value x̂i(k+
1)
6: if|δi|<δth then
7: No change in measured value, f (xi(k + 1)) = 0
8: else

Mutation of measured value, f (xi(k + 1)) = 1
With redundant gas sensor array XOR detection

9: end if
10: if g(xi(k + 1)) = 0 then

The measured value of sensor i is normal
11: end if
12: if g(xi(k + 1)) = 1 then

The measured value of sensor i is abnormal
13:end if
14: end for

values needs to be evaluated before the measured values are
used. The measurement uncertainty is an important indicator
for evaluating the quality of the measured values. Aimed
at the characteristics of the dynamic measurement system
of the MOS gas sensor array, in this paper we propose an
uncertain evaluation algorithm based on the dynamic adaptive
Kalman filter-Gray bootstrap method, which is based on the
uncertainty method of dynamic self-measurement in the Gray
bootstrap method.

(1) Detecting the original measured value sequence for the
MOS gas sensor array mentioned above:

X (0)
= {x(0)(1), x(0)(2), · · · , x(0)(n)}, n ≥ 2 (89)

Using the Bootstrap in statistics to perform a resampling of
X (0) by k times to obtain a new sequence X (0)

b ;
(2) Repeat the above step (1) B times to obtain an equal

possible resampling self-matrix:

Xbootstrap = (X (0)
1 ,X

(0)
2 , · · · ,X

(0)
b , · · · ,X

(0)
B ) (90)

The dynamic adaptive Kalman filter-Gray model is used to
model X (0)

b sequentially, obtaining the set of predicted mea-
surement values X̂ at time k+1:

X̂ = (x̂(0)1 (k + 1), x̂(0)2 (k + 1), · · · , x(0)B (k + 1)) (91)

(3) The probability density function when the actual mea-
sured value k+1 is approximated by the above equation (91):

fk+1 = f (x) (92)

where f (·) is the Gray self-help probability density function
and x represents a measured variable value used to describe
the measured value x̂(0)b (k + 1)during the dynamic measure-
ment process.

(4) The measured value at sample point k + 1 can be
estimated using the mathematical expectation of set X̂ of the
predicted measured values:

X0 = x̂(0)(k + 1) =
∫
+∞

−∞

f (x)xdx (93)

Rewriting the above expression into a discrete form:

X0 = x̂(0)(k + 1) =
T∑
t=1

F(xt )xt (94)

X0 : Estimated true value; T :fk+1 is divided into T groups
xt :Median value of the t group;
F(·) : Probability distribution function of X̂ ;
(3) Assuming the significant level is α, then in the case of

confidence level P = (1 − α) × 100%, the measured value
x̂(0)(k + 1) estimation interval can be defined as follows:

[XL ,XU ] = [Xα/2 ,X1−α/2] (95)

Xα/2 : Estimated measurement value corresponding to confi-
dence level α/2 at sample point n+1;
XL : Estimation interval lower bound;
XU : Estimated interval upper bound;
(6) The dynamic expanded uncertainty of the dynamic

adaptive Kalman filter-Gray bootstrap method at k+1 is
defined as:

U = XU − XL (96)

(7) K is added to the single step, the original measured
value sequence is updated and steps (1)-(6) are repeated to
evaluate the dynamic measurement uncertainty at the next
sampling point. Tomake a more appropriate representation of
the dynamic measurement uncertainty, the standard measure-
ment uncertainty u(k + 1) at sample point k + 1 is estimated
from the standard deviation of the prediction set X̂ :

u(k + 1) =

√∑B
b=1 (x

(0)
b (n+ 1)− X0)

2

B− 1
(97)

The uncertainty of the dynamic measurement for the entire
measurement system can be assessed using the average mea-
surement uncertainty:

Umean =

√√√√ 1
N

N∑
k=1

u2(k) (98)
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FIGURE 3. 3-array MOS gas sensor.

FIGURE 4. 3-array MOS gas sensor array signal acquisition board.

V. DYNAMIC MEASUREMENT UNCERTAINTY
EVALUATION EXPERIMENT
To verify the validity of the proposed algorithms, this exper-
iment uses 15 of the German UST company’s 3-array MOS
gas sensors to form a 45-array gas sensor. The 3-array MOS
gas sensor is shown in Figure 3. Each 3-arrayMOS gas sensor
array signal acquisition board is shown in Figure 4.

A. DYNAMIC ADAPTIVE KALMAN FILTER-GRAY
PREDICTION PERFORMANCE COMPARISON EXPERIMENT
1) EXPERIMENTAL METHOD
Dynamic adaptive Kalman filter-Gray prediction contrast
experiment. In this experiment, the 45-array MOS gas sensor
is used as the experimental setup for the target gas, pro-
ducing a normal response signal. It is then compared with
the common Gray GM (1,1) prediction model, a BP neural
network prediction model, and the RVM prediction model.
The experimental method is as follows: historical data is used
to model different prediction models in an online training
mode and the prediction of the next sampling point of the
sensor is realized in each sampling period. The prediction
accuracy of the predictionmodel is evaluated by the following
three commonly used evaluation indicators.

The Mean Absolute Percentage Error (MAPE) is a general
method for estimating the accuracy of the predictions. It can
represent the relative deviation between the measured values
and predicted values. The formula is given in equation (99):

MAPE =
1
n

n∑
k=1

|
x(0)(k)− x̂(0)(k)

x(0)(k)
| × 100% (99)

FIGURE 5. Static valve distribution laboratory equipment.

The Mean Squared Error (MSE) is an evaluation criterion
for testing the average of the prediction errors:

MSE =
1
n

n∑
k=1

(x(0)(k)− x̂(0)(k))2 (100)

The Absolute Mean Error (AME) is an evaluation criterion
for testing the average of the prediction errors:

AME =
1
n

n∑
k=1

|x(0)(k)− x̂(0)(k)| (101)

The above three prediction model evaluation methods are
used: MPAE, MSE, AME and prediction time are used to
evaluate the prediction effects of the above four prediction
models.

2) EXPERIMENTAL SAMPLE
As shown in Figure 5, the Static Valve Distribution Labora-
tory Equipment consists mainly of four parts: controller and
power; valve chamber; LabVIEW data acquisition interface;
and a gas source.

Taking CO as the experimental sample, the temperature
of the air chamber was set to 20◦C and relative humidity to
30%, The sensor array was placed in a 15 L measurement
chamber, gas sensor was heated to 320◦C, and the gas sample
was injected statically with a syringe. The operating voltage
of the sensors was kept constant at 5 V for the entire duration
of the experiments. The sampling frequency of the sensor data
continued at 5 Hz. The concentration of corresponding gas at
different time periods is shown in Table 4.

3) EXPERIMENTAL RESULTS AND ANALYSIS
As shown in Figure 5, the MOS gas sensor actually measures
the voltage value of the CO gas sensitive resistor. Using
Figures 6 and 7, which show the LabVIEW data acquisition
interface, 1200 sample resistance values can be obtained. The
data is stored in the file in Fig. 6, the 1200 sample resistance
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TABLE 4. Concentration of gas corresponding to different time periods.

FIGURE 6. LabVIEW data acquisition interface.

FIGURE 7. LabVIEW data storage interface.

values are calculated into the actual voltage value. The two-
dimensional coordinate map of the voltage sample value and
time relationship is shown in Figure 8.

Figure 9 shows the prediction results using the dynamic
adaptive Kalman filter-Gray bootstrap comprehensive modi-
fied predictionmodel. To verify the feasibility and superiority
of the algorithm, the data of the first 80 s are predicted in 2,
3, and 4 second interval. A total of 40 points are predicted.
57 points are predicted for 80 s∼160 s, 60 points are predicted
for 160 s∼240 s, and the last three points are predicted beyond
240 s.

First, the known historical data are preprocessed, and the
cumulative generating sequence X (1) is used to construct
the Kalman filter model. After a Kalman filter calculation,
the filtering value X (n)(n/n) of the X (1)sequence is obtained.
The GM (1,1) model is established by a cumulative sequence
X (0)(k + 1) = X (1)(k + 1/k + 1) − X (1)(k/k), and the
parameters are obtained by a robust estimation in the process

FIGURE 8. MOS gas sensor array detection of CO concentration
value-time diagram.

of establishing the GM (1,1) model. According to the internal
coincidence accuracy of the established model, the corre-
sponding residual correction model for the residual sequence
δ
(0)
M is established to modify the prediction model. According
to the prediction equation of different spacing data series,
multiple sets of predictive values X̂0

(t)(k + 1) are obtained.
The final prediction result X̂ (0)(k + 1) is synthesized by data
fusion. The final prediction result X̂ (0)(k + 1) is calculated
according to the observed value Lk+1, and the variance com-
ponent is calculated according to the residual. The dynamic
noise estimate σ 2

�0
is obtained, and the filtering equation

is optimized continuously by modifying the variance of the
dynamic noise to overcome the instability of the filtering.

Figure 10 shows the BP neural network model prediction
results. The number of neuron nodes in the input layer is set
to 30, and the number of neuron nodes in the output layer
is 3. At each point in time 30 measured values are known by
historical measurement, 3 predicted values with intervals of 2,
3, and 4 seconds are predicted, and the number of selected
nodes is continuously optimized by using a single-layer hid-
den layer network. This paper finally determines 10 nodes
in the hidden layer, the activation function is selected as the
tangent function, the initial = initial weight is set as the
random number between (−1, 1), the initial value is selected
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FIGURE 9. Dynamic adaptive Kalman filter-Gray bootstrap comprehensive
modified prediction model results.

FIGURE 10. BP neural network model prediction results.

as the random number between (0, 1), the learning rate is set
to 0.1, and the learning rate is initially set to 0.6, using the
method of varying learning rate.

Figure 11 shows the results of the Gray GM (1,1) pre-
diction model. From the sampled data, an estimated value
is predicted by Gray theory for every interval of 2, 3, and
4 seconds. From 0 to 80 seconds, 40 estimated values are
randomly predicted from the sampled 400 sample data. The
same is done from 81 to 160 seconds. Of the sample data,
57 estimates were randomly predicted at 161-240 seconds,
and 60 estimates were randomly predicted from the sampled

FIGURE 11. Gray GM (1,1) prediction model.

400 sample data. The last three points are predicted beyond
240 s.

The prediction model is as follows:

X = {x(1, x(2), · · · x(k), · · · , x(n)}(n = 10, 15, 20) (102)

where x(k) is the measured value corresponding to sampling
point k. To obtain the inherent law of the time series, the time
series X0 is accumulated and generated to obtain a first-order
cumulative generation sequence X1.

X (1)
= {x(1)(1), x(1)(2), · · · , x(1)(k), · · · , x(1)(n)} (103)

x(1)(k) =
k∑
i=1

x(0)(i), k = 1, 2, · · · n (104)

The basic form of the Gray prediction model GM (1,1) is
called the Gray difference equation as follows:

dx(1)(k)
dk

+ az(1)(k) = b, k = 2, 3, · · · n (105)

a and b are expressed as the development coefficient and
control coefficient, respectively. z(1)(k) is defined as the back-
ground value as:

z(1)(k) = αx(1)(k)+ (1− α)x(1)(k − 1) (106)

α is the background value adjustment factor, α ∈ [0,1], and
the Gray prediction in this paper uses a = 0.5. According to
the definition of the derivative:

dx(1)(k)
dk

= lim
1k→0

x(1)(k +1k)− x(1)(k)
1k

(107)

Let 1k be the unit interval, so the above formula is changed
to:

dx(1)(k)
dk

= x(1)(k + 1)− x(1)(k) = x(0)(k + 1) (108)

Substituting equations (106) and (108) into equation (105):

x(0)(k + 1) = a[−(αx(1)(k)+ (1− α)x(1)(k − 1))]+ b

(109)
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FIGURE 12. RVM model prediction results.

The parameters a and b to be determined can be obtained by
the least squares method:

â = [a, b]T = (BTB)−1BTY

Y =


x(0)(2)
x(0)(3)
...

x(0)(n)

 , B =


−z(1)(2)
−z(1)(3)

...

−z(1)(n)

 (110)

The Gray prediction GM (1,1) time response function:

x̂(1)(k + 1) = [x(1)(1)−
b
a
]e−ak +

b
a

k = 2, 3, · · · , 10/15/20 (111)

The predicted value of the k+1 sampling point is calculated
as follows:

x̂(0)(k + 1) = x̂(1)(k + 1)− x̂(1)(k)

= (1− ea)[x(0)(1)−
b
a
]e−ak

k = 1, 2, 3, · · · , 10/15/20 (112)

Figure 12 shows the results of the RVM prediction. The data
of the first 80 s are predicted by 2, 3, and 4 second intervals.
A total of 40 points are predicted, 57 points are predicted for
80 s-160 s, 60 points are predicted for 160 s-240 s, and the
last three points are predicted beyond 240 s.

The prediction model is as follows: the forecast output t∗

is expressed as:

p(t∗|t) =
∫
p(t∗|w,α, β)p(w,α, β|t)dωdαdβ (113)

This paper uses an iterative calculation to solve:

p(w,α, β|t) = p(w|α, β, t)p(α, β|t) (114)

The posterior distribution of the weight vector ω can be
expressed as:

p(ω|α, β, t) =
p(t|w, β)p(w|α)

p(t|α, β)

= (2π )−
N+1
2 |

∑
|
−

1
2

× exp{−
(w− µ)T

∑
−1(w− µ)

2
} (115)

FIGURE 13. Prediction accuracy histogram of the four prediction models.

Posterior variance
∑

and mean µ are:∑
= (β8T8+ A)−1

µ = β
∑

8Tt (116)

A = diag(a0, a1, · · · , aN ), edge integration of weight w :

p(t|α, β) =
∫
p(t|w, β)p(w|α)dw (117)

Ultra-parametric edge likelihood:

p(t|α, β) = N (0,C)

C = β−1I+8A−18T (118)

This paper uses an iterative method for an approximation.
Superparameters a and b are expressed as:

αnewi =
γi

µ2
i

βnew =

N −
∑
i
γi

||y−8µ||
(119)

For sample data x∗, its predicted output y satisfies the Gaus-
sian distribution:

p(y|t) ∼ N (µT8(x∗), β−1) (120)

The mean y = µT8(x∗) is the predicted output of sample B
of the RVM model in this paper.

The calculation formulas of the MAPE, MSE, and AME
methods are shown in the formula above (99)-(101), and the
prediction time is used as evaluation indicators to comprehen-
sively evaluate the prediction effects of different prediction
models. The evaluation results are shown in Figure 13.MAPE
(%): dynamic adaptive Kalman filter-Gray bootstrap compre-
hensive modified prediction model 0.543, BP neural network
(BPNN) 1.487, Gray GM (1,1) 1.632, RVM 0.832; MSE
(mV): dynamic adaptive Kalman filter-Gray bootstrap com-
prehensive modified prediction model 0.123, BPNN 1.304,
Gray GM (1,1) 0.691, RVM 0.627; AME (mV): dynamic
adaptive Kalman filter-Gray bootstrap comprehensive mod-
ified prediction model 10.32, BPNN 16.523, Gray GM (1,1)
19.322, RVM 13.345; Average Forecast Time (ms): dynamic
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FIGURE 14. Average absolute percentage error with different
parameters (%).

adaptive Kalman filter-Gray bootstrap comprehensive modi-
fied prediction model 1.65, BPNN 38.54,

Gray GM (1,1) 0.987, RVM 15.563; the BPNN has large
values of MAPE, MSE and AME, a poor prediction perfor-
mance and the longest average prediction time. The predic-
tion performance of the RVM under small sample training
conditions is smaller than that of the BP neural network and
Gray GM (1,1). MAPE, MSE, and AME demonstrate better
predictive performance but at the same time have a larger
average forecast time.

The dynamic adaptive Kalman filter-Gray prediction (m =
15, α− = 0.6) has the best prediction performance and the
prediction time is longer than the Gray prediction model GM
(1,1). It has obvious advantages over the BP neural network
and RVM prediction model. Therefore, the dynamic adaptive
Kalman filter-Gray prediction proposed in this paper can
meet the real-time requirements, while obtaining a higher
prediction accuracy.

The dynamic adaptive Kalman filter-Gray model proposed
in this paper combines the GM (1,1), and its prediction accu-
racy is affected by the modeling length m and the background
adjustment factor α. To obtain a suitable modeling length m
and background value adjustment factor α, α = 0.3, 0.4, 0.5,
0.6, 0.7, 0.8 and m = 3, 4, 5, 10, 15, 20, 25, 30, respectively,
to establish different Dynamic adaptive Kalman filter-Gray
model predictions of the measured value. MAPE is used
as the evaluation index to obtain the MAPE histogram 11.
As shown in Figure 14, it can be seen that the background
value adjustment factor α obtains a higher prediction accu-
racy between 0.5-0.7, and the Gray modeling length m takes
a reasonably small value to obtain a better prediction per-
formance. The general background value adjustment factor
α needs to select reasonable values according to different
engineering applications. The background value adjustment
factor of this paper takes α = 0.6, and the growth of the Gray
modeling length m may lead to a decrease in the prediction
accuracy. The detailed proof process is given in paper [24].
Therefore, this paper uses m = 15.

4) EXPERIMENTAL CONCLUSION
The proposed dynamic adaptive Kalman filter-Gray predic-
tion algorithm has a good prediction performance for anMOS
gas sensor array application. Compared with other prediction
algorithms, it has a short execution time and high prediction
precision. It is especially suitable for dynamic signal pretest-
ing under small sample and poor information conditions.

B. DYNAMIC ADAPTIVE KALMAN FILTER-GRAY
BOOTSTRAP METHOD UNCERTAINTY EVALUATION
EXPERIMENT
1) EXPERIMENTAL METHOD
A complete measurement dataset includes the measurement
value and the measurement uncertainty composition. Espe-
cially in the dynamic measurement process, the uncertainty
reflects the accuracy of obtaining the measured value. The
MOS gas sensor array measurement system is a typical
dynamic measurement system, and the determination of the
uncertainty source is difficult. Experimental principle: set the
dynamic adaptive Kalman filter-Gray bootstrap method mod-
eling length m= 15, resampling times B= 2500, background
value adjustment factor α and confidence level p = 97.5%.
The uncertainty of theMOS gas sensor array is evaluated. The
purpose of the experiment is to validate the dynamic adaptive
Kalman filter-Gray self-help method for an uncertainty eval-
uation using real MOS gas sensor experimental samples.

2) EXPERIMENTAL SAMPLE
Taking CO as the experimental sample, in the temperature
range: 20◦C C, relative humidity: 30%, during the first 80 s,
the CO gas concentration is 400 ppm, between 80-160 s the
CO gas concentration is 800 ppm and between 160-240 s
the CO gas concentration is 1200 ppm. The MOS gas sensor
response signal of each stage was acquired experimentally.

3) EXPERIMENTAL RESULTS
Using the introduction in ćô Uncertainty Evaluation Algo-
rithm In Dynamic Measurement State, calculate XL and XU
by using equations (89)-(95). Bring the predicted value of the
above dynamic adaptive Kalman filter-Gray comprehensive
correction prediction model into equation (91). As shown in
the experimental results of Figures 15 and 16, the confidence
interval obtained by the dynamic adaptive Kalman filter-Gray
Bootstrap method can envelope the measured signal value
of the MOS gas sensor array. The dynamic measurement
uncertainty of the MOS gas sensor array estimated by the
dynamic adaptive Kalman filter-Gray Bootstrap method is
shown in Figure 17, and can be calculated by equation (96).
The average uncertainty of the entire dynamic measurement
process is calculated by the following formula (102):

Umean =

√√√√ 1
N

N∑
k=1

u2(k) = 0.041 (121)

Therefore, the dynamic adaptive Kalman filter-Gray boot-
strap comprehensive modified prediction model proposed in
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FIGURE 15. MOS gas sensor array detection signal and confidence
interval diagram.

FIGURE 16. Confidence interval.

FIGURE 17. Uncertainty values in the dynamic measurement state of
MOS gas sensor array.

this paper can enable the evaluation of the uncertainty of
an MOS gas sensor array without prior knowledge of the
uncertainty source and its probability distribution.

VI. CONCLUSION
In this paper, based on the evaluation of the dynamic mea-
surement uncertainty of MOS gas sensor arrays, a dynamic
adaptive Kalman filter-Gray bootstrap comprehensive modi-
fied prediction model for uncertainty evaluation is proposed.

The dynamic adaptive Kalman filter-Gray bootstrap method
is used to measure the probability distribution function.
Through an effective estimation, the uncertainty evaluation
of the dynamic measurement state of the MOS gas sensor
array is realized through experiments and the reliability of
the evaluation result is improved. To improve the accuracy
of the measurement value, which is being reduced due to
partial failure of the MOS gas sensor array, sensor dynamics
are utilized. Using an adaptive Kalman Filter-Gray Prediction
Model Correlation of the multisensor output, an XOR MOS
gas sensor array measurement value confirmation algorithm
is proposed to accurately distinguish the measured value of
the measured gas from the normal dynamic abrupt change.
Finally, the MOS gas sensor array experimental platform is
built to verify the dynamic measurement uncertainty evalua-
tion algorithm, proving that the proposed two algorithms rep-
resent an improvement over current state of the art algorithms.
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