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ABSTRACT In this paper, we focus on the camera localization problem using visual semantic information.
In contrast to the state of the artworks which often use visual features to do localization, we here propose
a coarse to a fine mechanism to localize the camera position. First, a semantic database including object
information around the target environment is constructed using a deep learning method. Second, for the
coarse step of the visual localization, we match class attributes of objects in the current frame to the object
database and find candidate frames that have similar objects. Third, the most similar candidate frame to
the current frame is selected by CNN features. For the fine step of localization, the final pose of the
camera can be estimated using feature matching with semantic information. Compared to the state of the
art visual localization methods, the proposed localization method based on semantic information has higher
localization accuracy. Furthermore, the proposed framework is not only useful for visual localization, but also
useful for other advanced tasks of robot, e.g., loop closing detection, object searching, and task reasoning.

INDEX TERMS Visual localization, semantic mapping, CNN features, SLAM.

I. INTRODUCTION
Simultaneous localization and mapping (SLAM) is a process
for robots to locate itself and build a map in an unknown
environment with laser, camera or other sensors. In recent
years, with the rapid development of computer vision meth-
ods and the improvement of visual sensors performance,
visual SLAM has made a significant progress. Traditional
visual SLAM algorithms mainly focus on the precise recon-
struction of the environment geometry, which can be used
for localization. However, the robot requires more semantic
information of the working environment to finish advanced
tasks, e.g., find a cup in the kitchen and pouring water into it.
The geometry is important, but the semantic is the future,
which is a basic and necessary capability for smart service
robot. Semantic SLAM refers that the SLAM system not only
includes traditional geometric structure information, but also
the semantic information such as objects attribution [1], [2].
The advantages of semantic SLAM over traditional SLAM
are following [3]: firstly, traditional SLAM algorithms
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usually assume that the environment is static, but the seman-
tic SLAM can predict the movable property of objects.
Secondly, semantic SLAM can achieve intelligent path plan-
ning, e.g., the robot can move the objects away in the envi-
ronment to get a better path. Thirdly, semantic SLAM can
improve the storage efficiency and scalability of SLAM sys-
tem using the knowledge sharing and management of similar
objects. The core of semantic SLAM is accurate object recog-
nition in the environment.

Deep learning technology has achieved rapid development
in the field of object recognition, which can be used for
semantic mapping. Ren et al. [4] propose a multi-object
detection method based on the Faster R-CNN network.
It utilizes a Region Proposal Network (RPN) network for
area selection, and combines with the Fast R-CNN network
to detect multiple objects. Liu et al. [5] introduce a direct
target object detection algorithm based on SSD network,
which can save the detection time compared to the Faster
R-CNN network by removing the RPN for area selection.
However, these methods can only obtain a rectangular area
which includes the target object and some background infor-
mation. To estimate a better boundary of the target object,
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He et al. [6] propose an instance segmentation framework
based on Mask R-CNN network, which adds a branch layer
for predicting the target mask on the basis of Faster R-CNN
network, and achieves pixel-level object segmentation.

The improved object recognition and segmentation accu-
racy using deep learning have attracted many resea-
rchers to explore new methods for semantic SLAM [7].
McCormac et al. [8] employ a convolutional neural net-
work (CNN) for dense 3D semantic map construction, which
uses the Elastic Fusion SLAM [9] algorithm to estimate the
egomotion, and predicts the pixel-level object class labels
in 2D key image frames based on CNN. These labels can
be upgraded using conditional random fields and Bayesian
theory according to different views. Li and Belaroussi [10]
propose to use the CNN for semi-dense 3D semantic map
construction, which utilizes the LSD-SLAM [11] algorithm
to estimate the camera pose, and uses the conditional random
fields for noise smoothing. These semantic SLAMalgorithms
consider the deep learning as the segmentation tool to classify
the 2D pixels and 3D point clouds in the map, but how to
manage these objects and how to use the semantic map is still
a undergoing question.

Visual localization as an indispensable part in visual
SLAM system has made great progress in recent years.
Especially for the rapid development of Deep Learning tech-
nology, a number of alternative technologies have been pro-
posed for visual localization. Chen et al. [12] use the CNN
features to retrieve the most similar image, and then esti-
mate the camera pose with the corresponding ORB feature
points. Kendall et al. [13] construct a CNN model (PoseNet)
to directly regress the camera pose with RGB input.
Guo et al. [14] use the pose predicted by PoseNet as the
initial result, and use LSTM as a temporal filter to refine
the pose. Taira et al. [15] retrieval the candidate images
with NetVLAD network, and estimate the camera pose with
densely matching. However, The methods mentioned above
have not considered the semantic information of images to
improve the localization accuracy and efficiency.

In this paper, we propose a deep learning based visual
semantic database construction method, and introduce a
coarse to fine visual localization method using semantic
information. The main contributions of this paper can be
concluded as follows:

(1) We construct a semantic database based on objects
information, which is helpful for localization.

(2) Our method is training free for different scenarios,
because we don’t need to train a unique model for specific
scene.

(3) The proposed coarse to fine mechanism can increase
the localization accuracy and efficiency with the objects
information.

The rest of this paper is organized as follows: the pro-
posed ideas are introduced in Section II, and the experimental
results are shown in Section III. Finally, we conclude the
paper and discuss future works in Section IV.

FIGURE 1. The structure of visual semantic database.

II. THE PROPOSED METHOD
This paper constructs the visual semantic database based on
the Mask R-CNN network, and uses MySQL to manage the
semantic database. The structure of visual semantic database
in this paper is shown in Fig. 1. The semantic database
includes keyframes with corresponding RGB image, depth
image, CNN features, and recognized object informationwith
corresponding keypoints, descriptors and categories.

The algorithm of this paper includes two stages: the con-
struction of visual semantic database and the global visual
localization. At the phase of the first stage, we use the
Mask R-CNN network to extract the category and position
information of objects in the key frames. The keypoints
and descriptors corresponding to the recognized objects are
extracted using the SURF algorithm. Besides, we also extract
the CNN features of the rgb image for scene classification.
The CNN features and the objects information are then stored
in the visual semantic database. The second stage is the global
visual localization, whose flow chart can be seen in Fig. 2.
Given an image from a camera, the localization algorithm
obtains the CNN image features, detects and recognizes the
objects with the Mask R-CNN network, and extracts the
SURF features for each object. We then conduct a two-layer
filtering mechanism to find out candidate key frames in the
semantic database: the object attributes are first used to select
the candidate key frames, and the CNN features are then
used to select the most similar key frame. Finally, Bundle
Adjustment(BA) can be used for estimating the transform
matrix between the query image and candidate frames in the
semantic database. One of the advantages of our algorithm is
that many irrelevant frames in the database can be excluded
with the proposed two-layer mechanism, which can improve
the matching efficiency.

A. OBJECT DETECTION BASED ON
MASK R-CNN NETWORK
The deep learning has showed impressive performance for
object detection and segmentation. The Faster R-CNN net-
work proposed by Ren et al. [4] and the SSD network
proposed by Liu et al. [5] can find the objects using a
rectangle box, which also includes background information.
To achieve better boundaries of objects, we use the Mask
R-CNN proposed by He et al. [6], which can be seen in Fig. 3.
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FIGURE 2. The flow chart of global visual localization based on semantic
database.

The Mask R-CNN network basically has following mod-
ules: the Backbone network are used to extract the high-
level features of the input image, the candidate regions of

objects are acquired using a RPN network, the RoiAlign layer
normalizes the features of candidate regions to fixed size
for the subsequent classification recognition. There are three
types loss: the classification loss Lcls to identify the target
category, the detection loss Lbox to regress the square box for
the target region, and the segmentation loss Lmask to identify
the target at the pixel-level. The final loss function is

L = Lcls + Lbox + Lmask . (1)

By minimizing the loss function using the backpropagation
algorithm, the Mask R-CNN network can obtain the target
category, the square box and the mask simultaneously.

B. DEEP FEATURES EXTRACTION BY CNN
The pose estimation accuracy mainly depends on the sim-
ilarity of two images, which can be seen as the image
retrieval problem. Recent years, deep learning has showed
its advantages for solving image retrieval problem [16]. The
CNN features in the middle layers exhibit robustness against
appearance changes, whereas the features from the top layers
are more robust with respect to viewpoint changes. Here we
adopt the pretrained resnet50 [17] CNN models on Places
dataset, which has shown great performance in place recog-
nition [18]. To handle the viewpoint changes, we use the
output of avgpool layer (top layer) in resnet50 as the image
features for matching, which has 2048 dimensions, as shown
in Fig. 4.

To match two images, the similarity score scorei is cal-
culated using the cosine distance between the L2-normed
image features of the queue image (vectorq) and the retrieved
image (vectori), which is shown as:

vectori =
∥∥∥vector1i , vector2i , · · · , vector2048i

∥∥∥
2
, (2)

vectorq =
∥∥∥vector1q , vector2q , · · · , vector2048q

∥∥∥
2
, (3)

scorei = vectori ∗ vectorTq . (4)

FIGURE 3. The architecture of Mask R-CNN network.
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FIGURE 4. Visualization of CNN features. (a) the features of the queue image; (b) the features of the retrieved image with a
top score; (c) the features of retrieved image with a second top score; (d) the features of an unrelated image.

C. OBJECTS FEATURE EXTRACTION AND MATCHING
BASED ON SURF
To estimate relative pose between image frames, a feature list
corresponding to the object is required. In this work, we use
the speed up robust feature (SURF) to detect the feature
corners of objects, which is not only faster in speed, but also
robust under complex conditions such as scale change and
lighting [19]–[21]. The SURF algorithm firstly determines
the pre-selected points using the Hessian matrix, which has
faster extraction speed than SIFT algorithm. In order to solve
the problem of inconsistency in size and resolution of the
same object due to distance, the SURF algorithm constructs
scale space using different size of Gaussian template. The
hessian matrix is used on each scale to obtain candidate
extreme points. Then each extreme point is compared with
8 adjacent points on the same scale, 9 points on the upper
scale and 9 points on the lower scale. When the extreme
point value is the largest or smallest of the 26 points, this
extreme point is considered as a true feature point. For the
feature descriptor, the SURF algorithm calculates the sum of
Haar wavelet responses both in the X direction and Y direc-
tion with a radius of 6s, where s is the scale of the feature.
Then the main direction of the feature point is chosen as
the longest direction by traversing the whole circular region
around the feature point, and the feature descriptor is obtained
according to the Haar wavelet response of the main direction.

To accelerate the detection and matching speed, here we
only extract the keypoints of objects detected by Mask
R-CNN network, and then match them based on the keypoint
descriptors. If the Euclidean distance ratio between the near-
est neighbor feature point and the second nearest neighbor

FIGURE 5. Detection and matching of SURF features: (a) and (b) show the
detected keypoints in a pair of images; (c) shows the matching result.

feature point is smaller than a certain threshold, the pair of the
current feature point and the nearest neighbor feature point
is added to the feature matching list. The results of feature
detection and matching from two images are shown in Fig. 5.
Compared to the keypoints extraction and matching from the
whole image, our method is more efficient.

D. CAMERA POSE ESTIMATION
We employ the Bundle Adjustment (BA) to estimate the rel-
ative pose between the input image and the candidate image.
The BA algorithm is also known as the beam adjustment
algorithm [22]. The algorithm simultaneously optimizes the
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TABLE 1. The experiment datasets from different scenarios of ICL-NUIM
and TUM RGB-D.

camera pose and spatial position of feature point with the
principle that rays reflected from each feature point can con-
verge to the camera optical center after optimization. The loss
function is:

1
2

m∑
i=1

n∑
j=1

∥∥zij − h (ξi, pj)∥∥2. (5)

where zij represents the pixel coordinate of feature point pj
with the camera pose ξi, and h represents the observa-
tion equation of feature point pj with the camera pose ξi.
By minimizing the cost function using nonlinear optimiza-
tion, BA can estimate accurate camera pose and spatial coor-
dinate of feature points.

III. EXPERIMENT AND ANALYSIS
A. DATA ACQUISITION
Our visual localization method requires the rgb-d images and
their associated poses, so we use the ICL-NUIM dataset [23]
and the TUM RGB-D dataset [24], [25]. The ICL-NUIM
dataset consists of rgb-d images from two indoor scenes,
living room and office room. The image size is 640 × 480
and the ground-truth trajectories are offered. The TUM
RGB-D dataset includes 89 rgb-d sequences with different
camera motions. The images have 640 × 480 resolution and
the ground-truth trajectories are captured by a high accuracy
motion-caption system. These datasets are employed to verify
to performance of our localization method. As illustrated
in Table 1, we only use these images that do not have common
views as the key frames in our semantic database, whereas
other images can be used as test images for localization.

TABLE 2. The detected results on COCO minival dataset.

B. NETWORK TRAINING
To recognize the objects in datasets, we fine-tune the
Mask R-CNN network that has trained on public COCO
dataset. Considering the indoor environment, we select
those objects that appear frequently in indoor environment
from COCO dataset [26] as the sub-dataset for training,
i.e., bottle, chair, potted plant, screen, notebook, mouse,
keyboard, cell phone, book, cup and so on. The architecture of
Mask R-CNN can be seen from Fig. 3. The Backbone is made
up of resnet101 network [17] with FPN (feature pyramid
networks) [27], which can extract high-level features of the
input image with different scales. The RPN (Region Proposal
Network) produces the candidate regions of objects, and the
RoiAlign layer normalizes the features of candidate regions
to fixed size for the subsequent classification recognition.
The fine-tune mechanisms are as following: we first train the
classification portion, then we train the FPN plus classifica-
tion portion with learning rate of 0.001. Finally, all layers
of Mask R-CNN network are fine-tuned with learning rate
of 0.0001. The results of bounding box and segmentation on
COCO minival dataset are reported in Table 2.

C. LOCALIZATION RESULTS AND ANALYSIS
Fig. 6 and Fig. 7 summarize the performance of our coarse
to fine localization method. As shown in Fig. 6, more than
80% of the queue images are localized within 2.5 degrees.

FIGURE 6. Cumulative distribution of angle error.
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FIGURE 7. Cumulative distribution of location error.

From Fig. 7, we can see that above 90% of the queue images
are localized within 0.3m. Besides, we report the perfor-
mance of orientation and translation errors for each scene,
and compares them with [12], as can be seen in Table 3.
The work of [12] is similar to our work, e.g., we both uti-
lize the CNN features to select the most similar candidate
frame, and use the matched feature points of the queue frame
and candidate frame to compute the pose of queue frame.
The main difference is that the method presented in [12]
searches the whole database using CNN features to find
the most similar candidate frame, and utilizes the matched
keypoints of ORB features between the queue frame and
candidate frame to estimate the pose, whereas our method
proposes a coarse to fine searching mechanism which is more
efficient. We first utilize the object information to exclude
the unrelated frames in the database, then the CNN features
are used to select the most similar candidate frame from
the remaining frames in the database. At last, the keypoints

of SURF features between the objects in the queue frame
and candidate frame are matched to estimate the pose of
queue frame.

For ICL-NUIM dataset, the mean error of orientation and
translation of our proposed method is 1.7307◦ and 0.0628m,
and the median error is 0.3327◦ and 0.0118m. For TUM
RGB-D dataset, the mean error is 2.9210◦ and 0.1581m,
and the median error is 0.6641◦ and 0.0291m. Our method
can achieve more than 90% average localization success rate
for most scenarios of ICL-NUIM dataset and TUM RGB-D
dataset. For the officeRoom dataset, the number of objects is
too few to have enough keypoints of recognized objects for
pose estimation, which can be solved by using the keypoints
of whole image for matching. Although the median error of
orientation estimated by our method is higher than the work
in [12], both the mean errors of orientation and translation
of our proposed method are lower. The possible reasons are
following: first, the SURF keypoints in general are more
robust than ORB keypoints for illumination and scale change,
so the mean errors of our method are lower. Second, our
method only uses the keypoints of objects to accelerate local-
ization speed. For the scenarios that do not have enough
objects, we can not extract enough keypoints for matching,
which can explain that the median error of our algorithm
is higher.

We compare the proposed localization method with three
CNN-based state of the art methods: (i) PoseNet [13]:
a CNN model that directly regresses the camera pose with
RGB input. (ii) 4D PoseNet [14]: a modified version of
PoseNet with RGB-D input. (iii) CNN+LSTM [14]: it uses
the PoseNet as the pose estimator and the LSTMas a temporal
filter to estimate pose. Table 4 summarizes the mean errors
of these methods on ICL-NUIM dataset. We can see that our
method can achieve better accuracy both in orientation and
translation compared to others.

We implement the proposed localization method on a
computer with Intel Xeon E5-1650 v3 CPU @ 3.50GHz

TABLE 3. Localization performance for different scenarios.
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TABLE 4. Comparison of mean errors for ICL-NUIM dataset.

using a NVIDIA TITAN XP GPU. Based on the coarse
to fine mechanism for excluding most images in database,
the proposed method takes 296.5ms to find the most similar
candidate frame and 277.9ms to estimate the final pose with-
out optimization.

IV. CONCLUSION
This paper proposes a deep learning based visual seman-
tic database construction method, and its application for
visual localization with a coarse to fine mechanism. The
visual semantic database includes the CNN features of image,
the objects information recognized by Mask R-CNN and the
SURF features of objects. To improve the algorithm effi-
ciency, we use a coarse to fine mechanism to find out the can-
didate frames, i.e., a coarse searching step using object class
and a fine searching step using the CNN features of image.
Finally, a high accuracy localization result can be derived
using the novel BA algorithm.We demonstrate our idea on the
public datasets of ICL-NUIM and TUMRGB-D, which show
improved performance considering the accuracy and effi-
cient of the localization algorithm. Furthermore, the semantic
database is also possible shared with other robots on a cloud
platform, and can be further used for robot task reasoning,
loop close detection, human-robot interaction and so on.
In future, we would like to improve the SLAM system perfor-
mance using image assessment and enhancement techniques
to handle poor image quality problems due to camera shake or
compression [28]–[30].

REFERENCES
[1] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha, ‘‘Visual

simultaneous localization and mapping: A survey,’’ Artif. Intell. Rev.,
vol. 43, no. 1, pp. 55–81, 2015.

[2] C. Cadena et al., ‘‘Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age,’’ IEEE Trans. Robot., vol. 32,
no. 6, pp. 1309–1332, Dec. 2016.

[3] R. F. Salas-Moreno, ‘‘Dense semantic SLAM,’’ Ph.D. dissertation,
Dept. Comput., Imperial College London, London, U.K.,
2014.

[4] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time
object detection with region proposal networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 91–99.

[5] W. Liu et al., ‘‘SSD: Single shot multibox detector,’’ in Proc. Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 21–37.

[6] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask
R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 2980–2988.

[7] Y. Zhao, G. Liu, and G. Tian, ‘‘A survey of visual SLAM based on deep
learning,’’ Robot, vol. 39, no. 6, pp. 889–896, 2017.

[8] J. McCormac, A. Handa, A. Davison, and S. Leutenegger,
‘‘SemanticFusion: Dense 3D semantic mapping with convolutional
neural networks,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May/Jun. 2017, pp. 4628–4635.

[9] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and
S. Leutenegger, ‘‘ElasticFusion: Real-time dense SLAM and light source
estimation,’’ Int. J. Robot. Res., vol. 35, no. 14, pp. 1697–1716,
2016.

[10] X. Li and R. Belaroussi. (2016). ‘‘Semi-dense 3D semantic map-
ping from monocular SLAM.’’ [Online]. Available: https://arxiv.org/
abs/1611.04144

[11] J. Engel, T. Schöps, and D. Cremers, ‘‘LSD-SLAM: Large-scale direct
monocular SLAM,’’ in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland:
Springer, 2014, pp. 834–849.

[12] Y. Chen, R. Chen, M. Liu, A. Xiao, D. Wu, and S. Zhao,
‘‘Indoor visual positioning aided by CNN-based image retrieval:
Training-free, 3D modeling-free,’’ Sensors, vol. 18, no. 8, p. 2692,
2018.

[13] A. Kendall, M. Grimes, and R. Cipolla, ‘‘Posenet: A convo-
lutional network for real-time 6-dof camera relocalization,’’
in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Jun. 2015,
pp. 2938–2946.

[14] F. Guo, Y. He, and L. Guan, ‘‘RGB-D camera pose estimation
using deep neural network,’’ in Proc. IEEE Global Conf. Signal Inf.
Process. (GlobalSIP), Nov. 2017, pp. 408–412.

[15] H. Taira et al., ‘‘InLoc: Indoor visual localization with dense
matching and view synthesis,’’ in Proc. CVPR, Jun. 2018,
pp. 7199–7209.

[16] N. Sünderhauf, S. Shirazi, F. Dayoub, B. Upcroft, and M. Milford,
‘‘On the performance of ConvNet features for place recognition,’’ in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep./Oct. 2015,
pp. 4297–4304.

[17] K. He, X. Zhang, S. Ren, and J. Sun. (2015). ‘‘Deep residual
learning for image recognition.’’ [Online]. Available: https://arxiv.org/
abs/1512.03385

[18] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba,
‘‘Places: A 10 million image database for scene recognition,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 6, pp. 1452–1464,
Jun. 2018.

[19] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, ‘‘Speeded-up robust
features (SURF),’’ Comput. Vis. Image Understand., vol. 110, no. 3,
pp. 346–359, 2008.

[20] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[21] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, ‘‘ORB: An efficient
alternative to SIFT or SURF,’’ in Proc. Int. Conf. Comput. Vis., Nov. 2011,
pp. 2564–2571.

[22] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, ‘‘Bundle
adjustment—Amodern synthesis,’’ in Proc. Int. Workshop Vis. Algorithms.
Berlin, Germany: Springer, 1999, pp. 298–372.

[23] A. Handa, T. Whelan, J. McDonald, and A. J. Davison, ‘‘A benchmark
for RGB-D visual odometry, 3D reconstruction and SLAM,’’ in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), Hong Kong, May/Jun. 2014,
pp. 1524–1531.

[24] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
‘‘A benchmark for the evaluation of RGB-D SLAM systems,’’
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2012,
pp. 573–580.

[25] R. Mur-Artal and J. D. Tardós, ‘‘ORB-SLAM2: An open-source SLAM
system for monocular, stereo, and RGB-D cameras,’’ IEEE Trans. Robot.,
vol. 33, no. 5, pp. 1255–1262, Oct. 2017.

[26] T.-Y. Lin et al., ‘‘Microsoft COCO: Common objects in context,’’
in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2014,
pp. 740–755.

[27] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proc. CVPR,
Jul. 2017, pp. 936–944.

[28] K. Bahrami and A. C. Kot, ‘‘Efficient image sharpness assessment based
on content aware total variation,’’ IEEE Trans. Multimedia, vol. 18, no. 8,
pp. 1568–1578, Aug. 2016.

[29] Q. Wu et al., ‘‘Blind image quality assessment based on multichannel fea-
ture fusion and label transfer,’’ IEEE Trans. Circuits Syst. Video Technol.,
vol. 26, no. 3, pp. 425–440, Mar. 2016.

[30] K. Gu, G. Zhai, X. Yang, W. Zhang, and C. W. Chen, ‘‘Automatic
contrast enhancement technology with saliency preservation,’’ IEEE
Trans. Circuits Syst. Video Technol., vol. 25, no. 9, pp. 1480–1494,
Sep. 2015.

VOLUME 7, 2019 21969



W. Zhang et al.: Coarse to Fine Indoor Visual Localization Method Using Environmental Semantic Information

WEI ZHANG received the B.Sc. degree from
the College of Information and Control Engi-
neering, China University of Petroleum, Qingdao,
Shandong, China, in 2016. He is currently
pursuing the master’s degree with the School of
Control Science and Engineering, Shandong Uni-
versity, Jinan, Shandong. His research interests
include simultaneous localization and mapping
and deep learning.

GUOLIANG LIU (S’11–M’12) received the B.Sc.
degree in physics from Shandong Normal Univer-
sity, Jinan, China, in 2005, the M.Eng. degree in
control science and engineering from the National
University of Defense Technology, Changsha,
China, in 2008, and the Ph.D. degree in Com-
puter Science from the University of Göttingen,
Göttingen, Germany, in 2012. He was a Staff
Researcher with Lenovo Group, from 2012 to
2014. He is currently an Associate Professor of

control science and engineering with the School of Control Science and
Engineering, Shandong University, Jinan. His research interests include
distributed camera networks, information fusion, human action recognition,
human–robot safe interaction, and autonomous robot.

GUOHUI TIAN received theM.S. degree in indus-
try automation from Shandong University, Jinan,
China, in 1993, and the Ph.D. degree in automatic
control theory and application from Northeastern
University, Shenyang, China, in 1997. He was
a Postdoctoral Researcher with the Engineering
Department, Tokyo University, from 2003 to 2005.
He is currently a Professor with the School of
Control Science and Engineering, Shandong Uni-
versity. His research mainly focuses on service
robots and smart space.

21970 VOLUME 7, 2019


	INTRODUCTION
	THE PROPOSED METHOD
	OBJECT DETECTION BASED ON MASK R-CNN NETWORK
	DEEP FEATURES EXTRACTION BY CNN
	OBJECTS FEATURE EXTRACTION AND MATCHING BASED ON SURF
	CAMERA POSE ESTIMATION

	EXPERIMENT AND ANALYSIS
	DATA ACQUISITION
	NETWORK TRAINING
	LOCALIZATION RESULTS AND ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	WEI ZHANG
	GUOLIANG LIU
	GUOHUI TIAN


