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ABSTRACT In this paper, an efficient numerical scheme is presented for seismic blind deconvolution in
a multichannel scenario. The proposed method iterate with two steps: first, wavelet estimation across all
channels and second, refinement of the reflectivity estimate simultaneously in all channels using sparse
deconvolution. The reflectivity update step is formulated as a basis pursuit denoising problem and a sparse
solution is obtained with the spectral projected-gradient algorithm–faithfulness to the recorded traces is
constrained by the measured noise level.Wavelet re-estimation has a closed form solution when performed in
the frequency domain by finding the minimum energy wavelet common to all channels. Nothing is assumed
known about the wavelet apart from its time duration. In tests with both synthetic and real data, the method
yields sparse reflectivity series and stable wavelet estimates results compared to existing methods with
significantly less computational effort.

INDEX TERMS Blind deconvolution, multichannel, spectral projected-gradient, iterative scheme.

I. INTRODUCTION
Seismic deconvolution is a standard procedure in seismic
data processing in which the effects of a source wavelet are
removed as much as possible [1], which also attenuates rever-
berations and short-period multiples. Deconvolution tech-
niques are widely used in seismic exploration [2], [3] and
seismology applications [4]–[6]. Knowledge of the source
wavelet is key, so a challenging problem in seismic decon-
volution is blind deconvolution where the blurring ker-
nel, i.e., the seismic source wavelet, is unknown and must
be estimated [7]. Recent work on multichannel semi-blind
deconvolution (MSBD) [8] addresses the situation where
there is uncertainty in the assumed wavelet. Other semi-blind
methods include the φHL regularization based method [9]
and the Least trimmed squares (LTS) regularization based
method [10] that preserve the spectral details.

In a seismic survey, the convolution of the source wavelet
with a subsurface reflectivity series is recorded as a seis-
mic trace. In a multichannel scenario [8], [11]–[13], the seis-
mic traces are typically modeled as convolutions of the
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same waveform with multiple reflectivity models. Early
work on seismic blind deconvolution depended on two
major assumptions: the impulse response of the earth is a
white sequence and the source wavelet is minimum phase.
In order to overcome these two limitations, homomor-
phic deconvolution [14], [15] and minimum entropy decon-
volution (MED) [16] were developed. In seismic applica-
tions, conventional multichannel methods cannot be applied
directly. The major cause is the great similarity between
neighboring reflectivity sequences, which makes the problem
either numerically sensitive or, at worst, ill-posed and impos-
sible to solve [17].

In recent attempts to tackle this issue, a sparsity pro-
moting regularization approach has been proposed by [18].
Newer methods, called sparse multichannel blind deconvo-
lution (SMBD) [19] and its variant modified SMBD [20],
have been shown to perform well for both synthetic and
real data sets. Kazemi et al. [21] used SMBD to estimate
source and receiver wavelets. However, computational com-
plexity of these SMBD methods is proportional to the square
of the number of traces which constrains them from being
applied to large data sets directly. A common solution for this
issue is to apply these algorithms on data patches. Another
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alternative is a series of variants of the deconvolution filter-
ing design method, such as the widely adopted predictive
deconvolution [22], and the fast algorithm for sparse mul-
tichannel blind deconvolution (F-SMBD) [17], [23]. These
approaches construct a deconvolution filter according to
some criteria such as least-squares, or the smoothed `1 norm
of the deconvolved signal. Compared with the SMBD meth-
ods, their computation time is much lower, but they tend to
produce a bandlimited deconvolution result that is not spiky
enough.

In this work we propose an iterative blind deconvolution
scheme with two phases: reflectivity series estimation based
on straightforward basis pursuit denoising, and least-squares
wavelet estimation that takes advantages of the common
wavelet present in all traces across a multichannel seismic
section. The only assumption needed for the wavelet is that its
time duration is limited, and known. The wavelet estimation
phase benefits from the bandlimited nature expected for a
seismic source wavelet, but that is not an assumption. In
particular, we note that a very recent semi-blind method [8],
which assumes the true wavelet belongs to a known dictio-
nary of possible finite-length wavelets, can be solved by the
proposed method without the need for a dictionary – known
duration is sufficient.

The basis pursuit algorithm used here is the spec-
tral projected-gradient (SPG) algorithm, which converges
quickly, and suitable for large scale problems. More impor-
tantly, using SPG mitigates the tricky issue of choosing good
regularization parameters, using instead a constraint based
on noise power which can be measured. In methods using
regularization, the determination of a good λ parameter is
crucial to control the balance between sparsity of the reflec-
tivity and loyalty to the data. In current blind deconvolution
methods ad-hoc parameter choices are often used, but the
optimal regularization parameters should be determined by
methods such as L-curve or general cross-validation (GCV)
which actually require multiple realizations of the numerical
experiments.

Tests of the proposed algorithm with both synthetic and
real data illustrate that this new approach gives fast (in terms
of computing time) and high quality deconvolution results (in
terms of a quality metric). In order to show the effectiveness
of the proposed method, recently proposed methods, such as,
SMBD and F-SMBD are used as reference techniques.

II. PROPOSED BLIND DECONVOLUTION ALGORITHM
The classic model for a recorded seismic trace [24] is the
output of a linear system where a seismic source wavelet
is convolved with the earth’s impulse response that is of
finite duration. In particular, the j-th received seismic trace
is written as

dj[n] = w[n] ∗ rj[n]+ zj[n] =
∑
k

w[n− k]rj[k]+ zj[n],

for n = 1, . . . ,N , (1)

FIGURE 1. Convolutional model, (a) short-duration wavelet, (b) true
reflectivity, (c) received traces with additive noise (SNR = 10 dB).

where N is the number of received data samples per trace. In
matrix-vector form, (1) becomes

dj =Wrj + zj, for j = 1, . . . , J , (2)

where J is the number of channels,W is anN×N convolution
matrix formed from w[n], rj the vector of reflectivities for
the j-th channel, dj the received data vector, and zj a noise
vector. Elements of the convolutional model are depicted
in Figure 1. All J channels can be combined into one matrix
equation

d =


d1
d2
d3
...

dJ

 =

W 0 0 · · · 0
0 W 0 · · · 0
0 0 W · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 0 W




r1
r2
r3
...

rJ

 = �x
(3)

where the received data vectors for all J channels are con-
catenated into one JN × 1 vector d, the reflectivity series
into one JN × 1 vector x = [rT1 , r

T
2 , . . . , r

T
J ]
T , and �

is a block diagonal matrix with the convolution matrix W
repeated along its diagonal.

The proposed method alternates between two steps:
wavelet estimation assuming the J reflectivities are known,
and reflectivity estimation given a known common wavelet
for all the channels. From the experiments it is noted
that convergence of both estimates within a few iterations
is usually obtained. Similar alternating strategies are dis-
cussed in Section IV. The specific method presented here is
named sparse multichannel blind deconvolution via spectral
projected-gradient (SMBD-SPG); it is implemented as in
Algorithm 1.
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Algorithm 1 Sparse Blind Deconvolution by Basis Pur-
suit Denoising
Input: Seismic traces dj, for j = 1, . . . , J
Initialization : Normalize the seismic section according to

its global maximal value

dj ← dj/max(abs(d)) for j = 1, . . . , J .
(4)

Initialize the estimated reflectivity r(0)j for each j ∈ [1, J ] using
a local peak finder
for k ← 1 to K do

Estimate common wavelet in Fourier domain (w̌ denotes
FFT)

w̌(k)
= (ŘH Ř+ λI)−1ŘH ď; (5)

Smooth w̌(k)
s using moving average filter and w(k),

<{ifft(w̌(k)
s )}, is multiplied by time window (further

smooths w̌(k));

Update all J reflectivity series x = [rT1 , r
T
2 , . . . , r

T
J ]
T at

once, using SPG to solve:

x(k) = argmin
x
‖x‖1 subject to ‖d−�(k)x‖2 ≤ ‖z‖2,

(6)
where �(k)

= block-Diag{W(k)
}, and W(k) is the

convolution matrix of w(k);
end
Output: Estimated source wavelet w(K ) and the J reflectivity

series r(K )
j for j = 1, . . . , J .

To initialize the iteration, we need estimates of the reflec-
tivities r(0)j for all the traces, so we apply a simple peak
locater (e.g., findpeaks in Matlab) on each received trace
dj to obtain an initial estimated reflectivity as shown in Fig-
ure 2. In order to avoid picking multiple local peaks within
the source wavelet itself, we constrain the distance between
adjacent peaks to be greater than the wavelet duration. In
practice, any efficient peak detector can be employed here to
estimate r(0)j . This initial step only needs to provide a rough
estimate of the reflectivity model which is then refined in
the subsequent iterative procedure. Although a better initial
estimate might lead to faster convergence, the deconvolved
output is not sensitive to this step once we run the algorithm
for a few iterations.

The common wavelet for all channels is estimated using
the reflectivity estimates from the previous iteration. A
minimum-energy wavelet is found subject to matching the
data as in the convolutionmodel (1). In the frequency domain,
the seismic trace is a product of Fourier transforms of the
wavelet and reflectivity series.

Dj(ejω) = Rj(ejω)W (ejω)+ Zj(ejω) (7)

which is then sampled with an FFT, F{·}, to create length-N
vectors ďj = F(dj), řj = F(rj), and w̌ = F(w). Taking all
J channels together, the FFTs of the data dj and reflectivity
estimates r(k)j at the k-th iteration are used to form ď and Ř(k)

FIGURE 2. Initial estimated reflectivity using findpeaks in Matlab
(index = 3) from the original trace (index = 2). The true reflectivity
(index = 1) is shown as a reference.

as

ď =

F(d1)
...

F(dJ )

 and Ř(k)
=

diag(F(r(k)1 ))
...

diag(F(r(k)J ))

 (8)

where the operator F is a length-N FFT.
Using the FFTs of the previous estimates of reflectivity

in all channels, ř(k−1)j = F{r(k−1)j }, the matrix Ř(k−1) is
formed as in (8) and the following frequency-domain problem
is solved for the minimum-energy wavelet common to all the
channels

w̌(k)
=argmin

w̌
‖w̌‖2 subject to ‖ď−Ř(k−1)w̌‖2 ≤ ‖z‖2 (9)

where z = [zT1 , . . . , z
T
J ]
T is the concatenated noise vector.

Next, (9) can be written into a Tikhonov regularization form

w̌(k)
= argmin

w̌
‖ď− Ř(k−1)w̌‖22 + λ‖w̌‖

2
2; (10)

for a certain λ, which leads to a closed-form solution

w̌(k)
= (ŘH Ř+ λI)−1ŘH ď, (11)

where Ř = Ř(k−1) for conciseness. The diagonal-blocks
structure of Ř implies that ŘH Ř is diagonal, which elimi-
nates the need to compute a matrix inverse in (11). Tikhonov
regularization is used here, which is the most commonly
used method to solve ill-posed inverse problems [25]. The
reflectivity is a nature of the earth and is non-zero. How-
ever, in the proposed method the initial estimate is obtained
using peak detector, which may make the problem ill-posed.
Furthermore, deconvolution is an inverse problem, however,
the noise term makes it become ill-posed [10].

In practice, a seismic source typically has a smooth
band-limited spectrum, but adding a regularization term
to (10) to control spectral smoothness is problematic. Instead,
we apply a frequency-domain smoothing filter to the solu-
tion w̌(k) from (11), i.e., zero-phase moving average filter is
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applied on the spectrum. A zero phase moving average filter
is an FIR filter of odd length with coefficients given as

f (n) =

{
1
M −(M − 1)/2 ≤ n ≤ (M − 1)/2
0 otherwise

where M is the (odd) filter length. Further, smoothing is
achieved by using window in the time domain (shown later
in Figures 5d), which is consistent with an assumed limit on
the time duration of the common wavelet. An IFFT yields the
wavelet estimate w(k).
Given the estimated wavelet w(k), the updated reflectiv-

ity r(k)j is obtained by deconvolving the wavelet. To obtain
a sparse result for the reflectivity sequences, we solve the
following basis pursuit denoising (BPDN) problem for all
channels at once:

x(k)=argmin
x
‖x‖1 subject to‖d−�(k)x‖2 ≤ ‖z‖2, (12)

where �(k)
= IJ ⊗W(k) is a block diagonal matrix in which

each block is the convolution matrixW(k) formed from w(k),
and the vector x is the concatenation of all J reflectivity series
x = [rT1 , r

T
2 , . . . , r

T
J ]
T . For fast numerical implementation,

instead of generating the large diagonal matrix with J copies
of W(k) and computing the matrix multiplication directly,
it is more efficient to calculate the individual convolutions
W(k)r(k)j .

As an aside, we note that including the Euclid decon-
volution term in this problem, which will be discussed in
Section IV, would destroy the computational simplicity of the
algorithm that solves BPDN.

Compared with the existing schemes such as SMBD,
F-SMBD, and modified SMBD [20], the primary motivation
of our proposed scheme is to provide a much faster numerical
approach with a simple way to estimate any parameters that
control the algorithm.

In (12) the vector z is the noise and we need an estimate of
the noise level ‖z‖2 to form the constraint. In seismic decon-
volution, the reflectivity series of two adjacent channels are
typically similar. Using this feature, we can easily estimate
the noise level for each channel using its neighboring chan-
nels, which serves as a good noise error bound (σ = ‖z‖2)
in the BPDN problem. In addition, this noise level estimate
can be an average of several channels, which reinforces the
lateral continuity in the data.

There are two factors that come into play when choosing a
method for solving the BPDN problem. One is computational
efficiency, the other is how to handle the constraint which
often involves regularization parameters. The BPDN problem
as stated in (12), or (29) in the Appendix, has a constraint that
is physically meaningful but not well suited to an algorithm.
The SPGL1 algorithm solves (12) with a sequence of LASSO
problems (30) where the `1 constraint for LASSO is related
to the noise constraint in (12). The convergence rate of this
approach is superlinear, and we have observed that 5–6 iter-
ations are sufficient for multichannel blind deconvolution.
One motivation of our proposed scheme is to provide a very

efficient numerical approach with a simple way to estimate
any parameters that control the algorithm – a topic that is
treated in the next section.

III. PARAMETER CHOICES
In SMBD-SPG several parameters require attention. First,
in a least squares problem Hx + n = b, where n is a noise
vector and b the vector of observations, the solution to the
Tikhonov regularization problem

min
x
‖Hx− b‖22 + λ‖x‖

2
2 (13)

has a closed-form

xλ = (HHH+ λI)−1HHb. (14)

If ‖n‖2 ≤ δ and HHb ∈ Range(HHH), we have a bound

‖xλ −HHb‖2 ≤ δ/
√
λ+ O(λ), (15)

so λ = Cδ2/3 is a asymptotic ‘‘brick wall’’ for Tikhonov
regularization [26]. For wavelet estimation in (10), if the
frequency-domain noise level ‖n‖2 can be estimated, we can
pick λ = C(‖n‖2)2/3 which is optimal in the asymptotic
sense.

Next, the noise levels ‖z‖2 = (
∑

j ‖zj‖
2
2)

1/2 must be cho-
sen for the constraint in BPDN (6). Here we need estimates
of the noise energy on the traces, for j = 1, . . . , J . If we
assume the noise is spatially stationary then the noise energy
has roughly the same level on neighboring channels. Because
the reflectivity is determined by the real earth, as well as the
relative locations of the sensors and the seismic source, a high
degree of resemblance for the reflectivity in spatially close
channels is commonly observed [27]. Under these assump-
tions, we can calculate the variance of the difference of two
adjacent traces to estimate the incoherent noise energy

Var (d1 − d2)

= Var (r1[n] ∗ w[n]+ z1[n]− r2[n] ∗ w[n]+ z2[n])

≈ Var (z1[n]− z2[n]) = 2Var (z[n]) (16)

which then leads to ‖zj‖2 ≈
√
NVar (zj[n]). For the high SNR

case, where a silent segment (noise only part) of traces can be
easily identified, we can use the silent segments to replace
the whole traces d1 and d2 in (16) for better estimation.
This time-domain estimate of the noise level can be used as
the frequency-domain noise estimate by virtue of Parseval’s
Theorem.

Finally, we note that the wavelet length could be estimated
based on knowledge of the seismic source used in the sur-
vey. However, in the examples presented here, we assume a
wavelet length of 51 sample points.

In the sequel, methods based on Euclid deconvolution are
briefly presented for comparison together with motivation for
the proposed method.
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IV. METHODS BASED ON EUCLID DECONVOLUTION
The algebraic structure of the multichannel deconvolution
problem can be exploited to eliminate the wavelet and write
the blind deconvolution problem as solving a large set of lin-
ear equations directly for the reflectivity series. This was done
in 1997 for seismic deconvolution by Rietsch [1] who coined
the term ‘‘Euclid technique.’’ The same equations were also
studied earlier in signal processing for applications such as
speech dereverberation and channel equalization [11], [28].
Recently, several authors have shown that a sparse solution
of the wavelet-free linear equations is feasible which leads
to a method called sparse multichannel blind deconvolu-
tion (SMBD) and its variants, F-SMBD andmodified SMBD.

The primary motivation of this work is to find an
efficient numerical scheme to replace the Euclid deconvo-
lution (later in equation (18)) which is based on the identi-
cal wavelet assumption across all channels. It turns out by
applying an iterative scheme which contains a simultaneous
wavelet estimation across all channels, we can relieve us
from using the Euclid deconvolution and handling the huge
matrix A, but still get high quality deconvolution results for
both synthetic and filed seismic data sets. Recently, several
iterative algorithms are proposed for the seismic deconvolu-
tion problem [8], [20]. Our proposed method improves those
schemes in different aspects. For example, compared with the
multichannel semi-blind deconvolution scheme in [8], which
begins with an assumed source wavelet, we begin with an
initial guess of the reflectivity which removes the assump-
tion on the source wavelet without sacrificing on the quality
of the deconvolution results. In addition, applying spectral
projected-gradient scheme and frequency-domain computa-
tion achieve a significant speed-up comparing with iterative
gradient descent.

A. EUCLID DECONVOLUTION
The z-transform of equation (1) gives

Dj(z) = W (z)Rj(z)+ Zj(z). (17)

By considering (17) for a pair of traces, we can eliminate
the wavelet term W (z) and obtain the following system of
equations

Dp(z)Rq(z)− Dq(z)Rp(z) = Zp(z)Rq(z)− Zq(z)Rp(z),

for p 6= q. (18)

It is convenient to write equation (18) in matrix form:

Dprq − Dqrp = Zprq − Zqrp, (19)

where Dp(q) and Zp(q) are N×N convolution matrices formed
from the received data and the noise in channels p and q.
Combining all instances of (19) into one equation, we have

Ax = e, (20)

where x is a JN -element vector of concatenated reflectivity
series for all J channels

x = [rT1 , r
T
2 , . . . , r

T
J ]
T , (21)

A is a 1
2 (J−1)JN×JN matrix consisting of convolutionmatri-

ces in blocks, and e is a 1
2 (J − 1)JN -element vector formed

by concatenating all the right-hand side vectors in (19).
If the convolution model is a perfect fit to the data, then

the noise terms zj in equation (2) are zero and ‖e‖ = 0.
Conversely, if ‖e‖ = 0 and all ‖rj‖ 6= 0, then all the noise
terms zj in equation (2) must be zero, which implies that the
convolution model is a perfect fit to the data. These facts
motivate an optimization problem that minimizes ‖Ax‖2.

B. NUMERICAL METHODS: SMBD AND F-SMBD
In this section, we revisit the SMBD and F-SMBD methods
which will serve as benchmarks for the comparison with our
proposed method. In general, the vector e in (20) is an error to
be minimized [19]. In SMBD, the energy ‖e‖22 is minimized
while observing a regularization constraint, i.e.,

x̂ = argmin
x

{
1
2
‖Ax‖22 + λRε(x)

}
, subject to xT x = 1.

(22)

The constraint xT x = 1 rules out a trivial solution in equa-
tion (22). To make the optimization easier, the regularization
term is defined with a differentiable smoothed `1-like norm

Rε(x) =
∑
n

(√
(x[n])2 + ε2 − ε

)
(23)

which is used to promote sparsity of the output x̂. Small
values of the parameter ε generate a mixed norm that behaves
like the `1 norm when |x[n]| > ε, i.e.,Rε(x) ≈ ‖x‖1.
Recently, a modified SMBD has been proposed [20] in

which the J reflectivity series and the source wavelet are
estimated via

{x̂, ŵ} = argmin
x,w

{
‖Ax‖22 + λx‖x‖1

+λn‖�x− d‖22 + λw‖w‖
2
2

}
, (24)

which is solved by an alternating minimization technique.
By fixing the sourcewavelet the problem can be solved for the
reflectivity using any `2-`1 solvers. By fixing the reflectivity,
using the updated version of it, the estimation of the source
wavelet can be cast as an `2-`2 problem which has a closed
form solution. This alternating process will be halted when
it converges. There are three regularization parameters one
needs to choose in this scheme.

In existing methods for sparse blind deconvolution,
a pseudo `1 norm regularization of the reflectivity, as in (23),
is used to obtain a least-squares problem. However, with
state-of-the-art algorithms it is feasible to attack the `1 norm
optimization directly, e.g. using SPGL1 as proposed in this
paper. Since the smoothed `1 norm is differentiable, one can
use steepest descent to minimize the objective function, but
this process usually needs a large number of iterations to
converge. Additionally, a good choice of the parameter λ
in (22) can only be determined by L-curve or GCV methods,
which require multiple realizations as well.
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FIGURE 3. Deconvolution result for SNR = 10 dB. (a) True reflectivity. Deconvolution result for (b) SMBD-SPG (5 iterations), (c) SMBD, (d) F-SMBD.

FIGURE 4. Smoothed normalized PSD of the true reflectivity, noisy data
and recovered reflectivity series. SNR = 10 dB, SMBD-SPG with
5 iterations. PSD computed per channel via MATLAB’s pwelch function
with section length = 100 and overlap = 60, and then averaged over all
channels.

The F-SMBD method devises a single deconvolution filter
v[n] that operates on all the traces yj[n] = dj[n] ∗ v[n] =∑

k v[k]dj[n − k] by minimizing the sum of the smoothed

FIGURE 5. Wavelet estimation after 5 iterations. (a) spectrum before
smoothing, (b) smoothed and true spectrum, (c) time-domain wavelet
before smoothing, (d) wavelet after smoothing.

`1 norms of the deconvolved traces yj[n]. Thus the following
optimization problem is solved for the vector of P filter
coefficients v = [v[1], . . . , v[P]]T ,

v̂ = argmin
v

L(v) = argmin
v

∑
j

Rε(yj), subject to vT v = 1,

(25)
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FIGURE 6. Wavelet estimation after one iteration: (a) spectrum before
smoothing, (b) smoothed and true spectrum. Wavelet estimation after
three iterations: (c) spectrum before smoothing, (d) smoothed and true
spectrum.

FIGURE 7. Comparison among SMBD, F-SMBD, and SMBD-SPG for
different attributes of the synthetic data example. (a) Recovered wavelet
(by SMBD-SPG) and true wavelet when SNR = 10 dB; (b) Normalized
correlation coefficient γ vs. SNR (mean and standard deviation averaged
over 20 traces); (c) Simulation time vs. number of traces with
SNR = 10 dB, each trace contains 350 samples; (d) Quality metric Q vs.
SNR (mean and standard deviation over 20 traces).

where the sparsity-promoting norm Rε is defined
as

Rε(yj) =
∑
n


√√√√y2j [n]

σ 2
yj
+ ε2 − ε

 (26)

and σ 2
yj =

∑
n y

2
j [n]/N is the estimated variance of the

deconvolved reflectivity series. As in SMBD the constraint

FIGURE 8. (a) Stacked CMP data for 3 s and 500 traces. Deconvolution
results for (b) SMBD-SPG (5 iterations).

vT v = 1 is imposed to avoid a trivial solution. The decon-
volved traces yj[n] = dj[n] ∗ v[n] are per channel esti-
mates of the reflectivity series. Steepest descent provides a
reliable iterative solution to the minimization problems
in (22) and (25).1

The number of parameters in F-SMBD is P, the length
of deconvolution filter, while the number in SMBD is JN ,
so the computational complexity of F-SMBD is significantly
lower than SMBD. Furthermore, SMBDandmodified SMBD
require that regularization parameter(s) in (22) or (24) be
chosen which is accomplished with the L-curve or cross val-
idation strategy. Finally, the matrix A in (20) has 1

2 (J − 1)JN
rows, so when the number of traces is large, the memory
requirement for SMBD, or modified SMBD, might be too
high to store A for an entire seismic section. Although,
there are some efficient approaches to compute the Ax and
AHA either in the frequency domain, or by exploiting the
sparsity of A, usually with hundreds of traces a patch-by-
patch strategy would be employed to manage memory and
computation.

V. SYNTHETIC DATA TEST
For this test, 20 traces are generated with a sampling fre-
quency of 500Hz using the reflectivity shown in Figure 1b,
which can be downloaded from [29]. The received data
in Figure 1c is the convolution of the reflectivity with a

1In equation (16) of [17] there is a typo for the k-th component of ∇L,
which should be

∇Lk =
∑
j

∑
n

{y2j [n]/σ
2
yj + ε

2
}
−1/2

σ 4yj{
σ 2yjyj[n]dj[n− k]−

y2j [n]

N

∑
n
yj[n]dj[n− k]

}
.
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FIGURE 9. (a) Subset of the stacked CMP data for 1.5 ≤ t ≤ 2.5 s and 500 traces. Deconvolution results for (b) SMBD, (c) F-SMBD,
(d) SMBD-SPG (5 iterations).

Ricker wavelet of center frequency 40Hz with 50 degrees of
phase shift (see Figure 1a) plus additive white Gaussian noise
(AWGN) of SNR = 10 dB. The SNR adopted in this work for
the signal-plus-noise model, i.e., x = s+ n is defined as

SNR = 10 log10

(
‖s‖22
‖n‖22

)
, (27)

where ‖s‖22 is the total signal energy and ‖n‖22 the noise
energy.

For the F-SMBD algorithm, a length-51 deconvolution
filter is used, which is initialized with a single spike located
at the middle of the filter. Other parameters used for F-SMBD
are ε = 1, and step size µ = 0.02. For the SMBD algorithm,
the regularization parameter λ is set to 4, the smoothed norm
parameter ε is set to 0.0001, and α = 0.2. The number of
iterations for SMBD and F-SMBD is set to 800 and 500,
respectively, which ensures that both algorithms converge.

The recovered reflectivity series using the three meth-
ods are shown in Figures 3b, 3c, and 3d. For SMBD-SPG
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the number of iterations is set to 5, i.e., K = 5 in
Algorithm 1. Within the blue and red rectangles, we notice
that SMBD-SPG is better than SMBD and F-SMBD for weak
and close reflectors, in the sense that information with better
precision is preserved for interpretation. Next, the quality of
the three methods is evaluated using the normalized power
spectrum density (PSD), shown in Figure 4. SMBD-SPG
yields the flattest PSD among the three schemes, which is
closest to the PSD of the true reflectivity. SMBD is nearly
as flat in the frequency domain, while F-SMBD exhibits an
obvious band limit to frequencies below 80Hz.

Although the SMBD-SPG scheme is iterative, in many
cases only a few iterations are needed to get a good approxi-
mation of the wavelet due to the smoothing filter. For exam-
ple, the result in Figure 3b is obtained after only 5 iterations.
The smoothing in frequency-domain is achieved by using
a moving average filter on the spectrum. The estimated
wavelet with and without smoothing in frequency can be
found in Figure 5. Note the accurate match in Figure 5b after
applying the frequency-domain smoothing filter, which is
length-11 with uniform values. After getting the time-domain
wavelet, a portion of it is taken (which consists of 51 samples
and indicated as a rectangle in Figure 5d) to be used for
updating the reflectivity with BPDN (6). In Figure 6 we show
the estimated wavelet’s spectrumwith andwithout smoothing
after 1 and 3 iterations, so we can observe the amount of
improvement over iterations.

To compare the performance of SMBD-SPG with SMBD
and F-SMBD, the normalized correlation coefficient γ and
the quality Q is used to measure the similarity between the
reflectivity x and its estimate x̂.

γ =
x̂T x

‖x̂‖2‖x‖2
, (28a)

Q = −20 log10

(
‖x− x̂(xT x)/(x̂T x̂)‖2

‖x‖2

)
, (28b)

where x and x̂ are long vectors formed by concatenating
true and estimated reflectivity series, respectively. Recovered
wavelet by SMBD-SPG) and true wavelet when SNR =
10 dB is depicted in Figure 7a. After running 10Monte-Carlo
realizations of the random noise for various levels, the mean
value and standard deviation for γ and Q versus SNR are
shown in Figure 7b and 7c. The SMBD-SPG algorithm (after
5 iterations) outperforms the SMBD algorithm in terms of γ
for all noise levels.

To show that the proposed algorithm is faster than SMBD
and F-SMBD, measured calculation time for the algorithms
is plotted against the number of traces (each trace contains
350 time samples) in Figure 7d. For 60 traces the computation
time of 5 iterations of SMBD-SPG equals 0.1773 s, which
is 0.0926% of the SMBD time and 2.38% of F-SMBD.
Throughout this paper, all experiments were performed on
Matlab R2016b with a 3.5GHz Intel i7 quad-core CPU and
32GB RAM. Table 1 summarizes the computational com-
plexity of various deconvolution methods.

TABLE 1. Comparison of the computational complexity of SMBD,
F-SMBD, and SMBD-SPG.

FIGURE 10. Histogram of normalized (a) stacked CMP data, and for
deconvolution results of (b) SMBD, (c) F-SMBD, (d) SMBD-SPG
(5 iterations).

VI. REAL DATA RESULTS
In this section, results obtained using SMBD, F-SMBD
and SMBD-SPG on a real seismic data set are presented.
The seismic data is from the National Petroleum Reserve,
Alaska (NPRA) Legacy Data Archive by USGS (1976), Line
ID 31-81 [30]. For the real data scenario, we run SMBD
on blocks of duration 0.6 s in time and 100 traces. For
F-SMBD, the deconvolution filter length is taken as 51 sam-
ples with a spike at the middle of the filter for initialization.
The learning rate for F-SMBD is set to µ = 0.02. The
deconvolution filter for F-SMBD is obtained for part of the
data, i.e., time range [0.6, 2.4], and traces 251 to 254. For
SMBD-SPG, the blocks are the same as in SMBD. The
remaining parameters of both algorithms are unchanged from
the synthetic data test. The average processing times for
each patch are 95.22 s and 0.7618 s for SMBD and SMBD-
SPG, respectively. Recently, the authors of SMBD proposed a
modified SMBD [20]method by adopting an iterative scheme
that alternates between wavelet estimation and reflectivity
estimation. It turns out the performances have been greatly
improved, however each iteration of the modified SMBD
requires similar computational efforts to SMBD.

Figure 8 shows the input data and the deconvolution results
for SMBD-SPG. For comparison, the details of a zoomed-in
seismic section before and after deconvolution are shown
in Figure 9 for all methods. It is clear from these results
that the proposed algorithm has a more spiky deconvolution
output and more weak reflections are preserved than the
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FIGURE 11. Recovered wavelet in three sample processing blocks for SMBD-SPG.

other two algorithms. In Figure 11 we show three processing
blocks in blue rectangles and their corresponding recovered
source wavelets, where the consistency and quality of the esti-
mates is easy to observe. Since the deconvolution results are

approximation of the reflectivity, they actually have majority
of values around zero. If we show the normalized deconvo-
lution results in the range [−1, 1], most of the values are
covered by a tiny portion of the color range. This generates
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a image of large amount of very light color pixels, which
makes the visibility bad and ruins many meaningful details.
Therefore, we use a zero centered interval [−m,m] to include
95% of normalized values in the histogram and show the
cropped histogram in Figure 10. All values goes beyond the
interval [−m,m] are pulled back to the edge points of it, and
the values inside the interval are intact. Thus, the colorbar we
used in Figure 8 and 9 applied on a smaller range of values,
which enriches visual effects with more details.

VII. CONCLUSIONS
In themultichannel blind deconvolution problem, the assump-
tion of an identical seismic source wavelet in all channels
leads naturally to a two-step algorithm that alternately esti-
mates the wavelet given the reflectivity and then updates
the reflectivity given the wavelet. Previous multichannel
blind deconvolution methods have used the identical wavelet
assumption to obtain the Euclid deconvolution property in
equation (19) which eliminates the wavelet. However, we use
all the channels at once to recover thewavelet in the frequency
domain which effectively increases the SNR of the recovered
wavelet. For the reflectivity update we exploit sparsity in
order to express the reflectivity update as basis pursuit denois-
ing. The reflectivity estimate is updated for all channels
via sparse recovery with BPDN, which can be efficiently
solved using the SGPL1 package—one of the best available
fast `1 methods. This approach ensures the computational
efficiency of SMBD-SPG. Furthermore, in SMBD-SPG only
two parameters must be set, which makes the scheme easy to
implement for real applications. As a final comment, we note
that the Euclid deconvolution property leads to a term ‖Ax‖2
in the SMBD objective functionals in equation (22) and (24),
which cannot be incorporated into the BPDN framework and
its efficient algorithmic solution.

In the simulation with synthetic data, the quality of the
recovery is evaluated versus the known true reflectivity. The
SMBD-SPGmethod is robust to noise, i.e., it provides results
better than SMBD and F-SMBD with respect to the normal-
ized correlation and quality metric for a wide range of SNR.
In addition, to achieve these better quality deconvolution
outputs, the computation time for SMBD-SPG is significantly
less than SMBD and F-SMBD (more than two orders of
magnitude faster in some cases in Figure 7d).

APPENDIX
SPG
The SPG method employed in this paper, which provides a
very efficient numerical solution to equation (12), is based on
the general idea of sparsity promoting least squares optimiza-
tion, for details see [31]–[33]. In basis pursuit the `1 norm is
minimized subject to an `2 constraint

min
x
‖x‖1 subject to ‖Hx− b‖2 ≤ σ (29)

where σ is the RMS error in matching the noisy measure-
ments b with the model Hx. For any σ ≥ 0 the basis pursuit

FIGURE 12. Pareto curve and first three iterations of SPG.

problem (also known as BPDN if σ > 0) has an equivalent
LASSO problem [31], [34]

min
x
‖Hx− b‖2 subject to ‖x‖1 ≤ τ. (30)

In other words, after solving (30) for a given τ , the minimum
value of ‖Hx − b‖2 provides the value of σ that would be
needed in (29) to get the same x with the smallest ‖x‖1. The
set of all (σ, τ ) pairs in this equivalence implicitly define a
function φ(τ ) = σ , which is convex and differentiable. The
graph of a typical φ(τ ) is the Pareto curve shown in Figure 12.

We want to solve the BPDN problem in (29), but it is
more efficient to solve a sequence of LASSO problems (30)
to get the BPDN solution. One catch is that we know σ ,
but we don’t know τ . Thus we must generate a sequence of
τk → τ̂ , where τk+1 = τk + 1τk , for which (30) yields
a sequence of solutions {xk} with `2 error σ̂k . For this σ̂k ,
the update of τk is based on a straight line extrapolation
using the derivative of the Pareto curve at (τk , σk ): thus,
1τk = (σ̂k − φ(τk ))/φ′(τk ) where φ′(τk ) = −‖HH (Hxk −
b)‖∞/φ(τk ). During the SPG method we (approximately)
evaluate σk = φ(τk ) = ‖Hxk − b‖2 whenever we solve (30),
which yields the sequence of filled red dots on the Pareto
curve in Figure 12. The convergence rate of this approach
is superlinear which is much faster than that of conventional
steepest descent gradient methods which is used in existing
schemes such as SMBD and F-SMBD. As an final comment,
we note that including the Euclid deconvolution term ‖Ax‖22
in the objective functional, as in (22) for SMBD or in (24) for
modified SMBD, would destroy the computational simplicity
of the SPG algorithm that solves BPDN.
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