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ABSTRACT Underwater acoustic sensor networks (UASNs) play an important role in the ocean’s protection.
They can realize real-time data collection, monitoring, exploration, and many other underwater applications
by connecting and coordinating seafloor sensors and underwater vehicles. To achieve these application
objectives, such as fishes tracking in biological monitoring field and submarines tracking in military
field, target tracking is one of the key techniques. This paper presents a centralized fusion algorithm
based on the interacting multiple models and the adaptive Kalman filter (IMMCFAKF) for target tracking
in UASNs. Specifically, by introducing an adaptive forgetting factor into the optimal centralized fusion
Kalman filter algorithm, the optimal centralized fusion adaptive Kalman filter (CFAKF) algorithm is
obtained first. Then, combining the superiorities of both the optimal CFAKF algorithm and the conventional
IMM algorithm, the optimal IMMCFAKF is achieved. The numerical simulations are provided to demon-
strate the effectiveness of the proposed optimal IMMCFAKF algorithm.

INDEX TERMS Underwater acoustic sensor networks, target tracking, interacting multiple model, adaptive
forgetting factor, optimal centralized fusion, Kalman filter.

I. INTRODUCTION
Marine resources are rich and valuable. Exploring the oceans
is of great significance both in military and economic
fields. However, the complex underwater environment has
been restricting people’s observation and utilization of the
ocean. Nowadays, with the development of sensor technol-
ogy, communication technology, computer technology and
micro-electromechanical system technology, the application
of Underwater Acoustic Sensor Networks (UASNs) to under-
water data collection, tracking, monitoring and positioning
has attracted great attention [1]–[6].

The associate editor coordinating the review of this manuscript and
approving it for publication was Sammy Chan.

UASNs is a multi-hop self-organizing network system
which consist of a variable number of sensors and vehicles
that are deployed to perform collaborative monitoring tasks
by underwater acoustic communication. UASNs was first
developed for marine military defense. With the development
of related technologies, such as Internet of things [7]–[12],
wireless networks [13]–[22], and cooperation in scale-free
networks [23], [24], its application scope is no longer limited
to the military field. Now it is widely used in environmen-
tal monitoring, resource exploration, climate research and
industrial automation [25]–[27]. It has very high research
value and broad application prospects in economy and Com-
merce. In the research direction of UASNs, target tracking
technology is a key part and the basis of most applications.
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Whether in the military field for their own or enemy target
tracking, or in the marine resources exploration and so on,
underwater target tracking technology is needed as an assis-
tant to achieve the objectives.

In the UASNs environment, target tracking task is achieved
in multi-sensor system. In a multi-sensor tracking sys-
tem, fusion can be used to combine sensory information
to improve the tracking performance [28]. Multiple sensor
fusion is widely used as a method of extracting useful infor-
mation by observations obtained from multiple sensors. The
information can then be applied to practical situations, such
as target tracking in WSNs [29], [30].

As one of the most cost-effective approach for multi-
ple model estimation and fusion multiple model tracking,
the interacting multiple model (IMM) was firstly introduced
in [31], it stems from a special input mixing step introduced
at the beginning of each elemental filter in each cycle. It is
this effective input mixing process that leads to an improve-
ment in performance while without significantly increasing
the computational requirement [32], [33]. After years of
development, the IMM technique has been widely used
in many systems [34]–[37]. Lang et al. [38] devel-
oped a distributed multirate IMM fusion algorithm, where
out-of-sequence measurements were considered. Using
IMM design, the novel αβ and αβγ filters were pro-
posed to track a single maneuver target [39]. An extended
Kalman-based IMM smoother was proposed for mobile loca-
tion estimation with the data fusion of the time of arrival
(TOA) and the received signal strength (RSS) measure-
ments in a rough wireless environment [40]. To improve
the performance IMM Kalman filter in maneuvering tar-
get tracking, an Elman neural network is applied to
learn and predict the estimation errors of IMM Kalman
filter [41].

A standard IMM was carried out at each platform based
on its own independent mode set [42]. The combined
tracks at local platforms were transmitted to the fusion
center and further fused there with a constructed global
model [43]. There are basically two fusion architectures:
centralized [44], [45] and distributed [46]–[48]. For the dis-
tributed fusion, which is also called as the state-vector or track
fusion, a group of local Kalman filters are used in par-
allel to obtain individual sensor-based estimates and the
distributed fusion formulae are then applied to yield an
improved joint estimate. Hong [49] proposed an algorithm for
multi-resolutional distributed filtering with the wavelet trans-
form as a linking mechanism between different resolution
sensor domains. Reference [50] addressed a distributed esti-
mation fusion problem with nonlinear multiple dynamic
models under asynchronous multi-rate multi-sensor condi-
tions. The distributed fusion algorithm is then applied to
multiple nonlinear models using an IMM approach. To carry
out distributed fusion within the multiple model frame-
work, novel equivalent platform and global models are
constructed using the best fitting Gaussian approxima-
tion approach so that the developed distributed fusion

formulae can be applied directly in the fusion center
in [51].

The major advantages of the distributed fusion are reduced
computational burden of central processing unit and lower
communication loading along with parallel implementation.
However, the distributed architecture is not theoretically opti-
mal. Centralized fusion, which is also called measurement
fusion in target tracking, uses all local raw measurements
sent to a central processor. The processor categorizes all the
available information and updates the estimates using these
measurements. So, it can be widely used in many applica-
tions. Hu et al. [52] proposed a novel fusion algorithm that
could be applied to general asynchronous multi-rate sensors.
They derived a centralized fusion algorithm using an optimal
batch asynchronous fusion algorithm [53] and extended it to a
distributed fusion algorithm. The algorithms they developed
do not require any constraints on the number, sampling rates,
or initial sampling time instants of the sensors.

In this paper, a novel centralized fusion algorithm, named
IMMCFAKF, which based on interacting multiple model
and adaptive Kalman filter, is proposed for underwater tar-
get tracking. Firstly, the optimal centralized fusion adaptive
Kalman filter (CFAKF) algorithm is obtained by introducing
an adaptive forgetting factor into the optimal centralized
fusion Kalman filter (CFKF). Then, optimal IMMCFAKF
algorithm is proposed by combining the superiorities of
both the optimal CFAKF algorithm and the conventional
IMM algorithm. Finally, the numerical simulations are pro-
vided to demonstrate the effectiveness of the proposed opti-
mal IMMCFAKF algorithm.

The remainder of this paper is organized as follows.
Sections II presents the formulation of the problem.
In Section III, the optimal IMMCFAKF algorithm is derived.
The simulation and experiment results are presented in
Section IV and concluding remarks are given in Section V.

II. MODEL AND PROBLEM STATEMENTS
A target is set to move in a two-dimensional plane. Its state
X (k) is composed of position, velocity, and acceleration,
namely, X (k) = [x(k), ẋ(k), ẍ(k), y(k), ẏ(k), ÿ(k)]T . Con-
sider the following discrete-time linear motion model and
observation model (assumed in the sampling time kT ) with
N sensors to observe the same object in the Cartesian coordi-
nate system:{

X (k + 1) = A(k)X (k)+ B(k)w(k)
zi(k) = Ci(k)X (k)+ vi(k) i = 1, 2, · · · ,N

(1)

where xk ∈ Rn is the state vector, T is the sampling period,
zik ∈ Rmi (i = 1, 2, · · · ,N ) are measurement vectors, Ak ∈
Rn×n, Bk ∈ Rn×r and Ci,k ∈ Rmi×n are known matrices.
wk ∈ Rr and vi,k ∈ Rmi (i = 1, 2, · · · ,N ) are correlated
zero-mean Gaussian white noises, which satisfy

E{[w(k) vi(k) ]T [w(k) vi(k) ]} = δkl

[
Q(k) Si(k)
STi (k) Ri(k)

]
(2)

E{w(k)vTi (l)} = δklSi(k) (3)
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where Qk ≥ 0 and Ri,k > 0 are process and measure-
ment noise covariances, respectively, and δkj is the Kronecker
function

δkl =

{
1 if k = l,
0 if k 6= l.

Assumption 1: The initial state x(0) is independent of wk
and vi,k (i = 1, 2, · · · ,N ), and

E{x(0)} = x̂0, E{[x(0)− x̂0][x(0)− x̂0]T } = P0.

The objective of this paper is to generate the optimal
estimation of state x(k) by an optimal IMMCFAKF algorithm
based on the above description.

There are three kinds of motion models of a target in a two-
dimensional plane described as follows:

1) CV Model: Approximate constant velocity model
The acceleration of the CV model is regarded as a stochas-

tic perturbation (state noise). Then, the state transition matrix
and the disturbance transition matrix and the measurement
matrix are given as follows:

A(k) =


1 T 0 0 0 0
0 1 0 0 0 0
0 0 1 T 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

B(k) =


T 2/2 0
T 0
0 T 2/2
0
0
0

T
0
0

,

C(k) =
[
1 0 0 0 0 0
0 0 0 1 0 0

]
.

2) CT Model: Constant turning model
Here, only consider the Constant acceleration (CA) model

with known angular velocity. Then, the state transition matrix
and the disturbance transition matrix and the measurement
matrix are given as follows:

A(k) =



1
sin(ωT )
ω

0 −
1− cos(ωT )

ω
0 0

0 cos(ωT ) 0 −sin(ωT ) 0 0

0
1− cos(ωT )

ω
1

sin(ωT )
ω

0 0

0 sin(ωT ) 0 cos(ωT ) 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

B(k) =


T 2/2 0
T 0
0 T 2/2
0
0
0

T
0
0

 ,

C(k) =
[
1 0 0 0 0 0
0 0 0 1 0 0

]
.

3) CA Model: Constant acceleration model
The acceleration of the CA model is a constant value.

Then, the state transitionmatrix and the disturbance transition
matrix and the measurement matrix are given as follows:

A(k) =


1 T 0 0 T 2/2 0
0 1 0 0 T 0
0 0 1 T 0 T 2/2
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1

 ,

B(k) =


T 2/4 0
T/2 0
0 T 2/4
0
1
0

T/2
0
1

 ,

C(k) =
[
1 0 0 0 0 0
0 0 0 1 0 0

]
.

Remark 1: In CV, CT and CA models, C(k) =

[CT
1 (k), · · · ,C

T
i (k), · · · ,C

T
N (k)]

T . Here, N = 2.

III. OPTIMAL IMMCFAKF
In general, in the centralized fusion algorithm, let

z(k) =
[
zT1 (k) · · · z

T
i (k) · · · z

T
N (k)

]T (4)

C(k) =
[
CT
1 (k) · · · C

T
i (k) · · · C

T
N (k)

]T (5)

v(k) =
[
vT1 (k) · · · v

T
i (k) · · · v

T
N (k)

]T (6)

Then, the pseudo measurement equation of the fusion
center received all sensor measurements can be expressed
as:

z(k) = C(k)X (k)+ v(k) (7)

According to (2) and (3), it follows that

R(k) =



R1(k) · · · R1i(k) · · · R1N (k)
...

...
...

Ri1(k) · · · Ri(k) · · · RiN (k)
...

...
...

RN1(k) · · · RNi(k) · · · RN (k)

 (8)

S(k) =
[
S1(k) · · · Si(k) · · · SN (k)

]
(9)

A. OPTIMAL CFKF
Next, we first consider ∀ i = 1, 2, · · · ,N , namely, when all
the measurements are reliable, a recursive optimal centralized
fusion algorithm is given. z(k) can be written as

z(k) = C(k)X (k)+ v(k) (10)

For system (1), the optimal CFKF algorithm can be given
by:

X̂c(k|k − 1) = A(k − 1)X̂c(k − 1|k − 1)+ ŵb(k − 1|k − 1)

(11)
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Pc(k|k − 1) = A(k)Pc(k − 1|k − 1)AT (k)

+ A(k)Pcx̃w̃(k − 1|k − 1)

+Pcw̃x̃(k − 1|k−1)AT (k)+Pcw̃(k − 1|k − 1)

(12)

Kc(k) = Pc(k|k − 1)CT (k)[C(k)Pc(k|k − 1)CT (k)

+R(k)]−1 (13)
K c
w(k) = S(k)[C(k)Pc(k|k − 1)CT (k)+ R(k)]−1 (14)

ŵc(k|k) = K c
w(k)[z(k)− C(k)X̂c(k|k − 1)] (15)

X̂c(k|k) = X̂c(k|k − 1)+ Kc(k)[z(k)
−C(k)X̂c(k|k − 1)] (16)

Pc(k|k) = Pc(k|k − 1)− Kc(k)C(k)Pc(k|k − 1) (17)

where the upper or lower index c represents the centralized
fusion, Pcx̃w̃(k|k) = −Kc(k)S

T (k) is the filter error covari-
ance matrix between the state and the process noise, and
Pcw̃(k|k) = Q(k) − K c

w(k)S
T (k) is the filter error covari-

ance matrix between the process noises. X̂c(k| k − 1) and
Pc(k| k − 1) are the one-step prediction state estimate and
the one-step prediction error covariance of optimal CFKF
algorithm, respectively. Kc(k), and K c

w(k) are the Kalman
gain and the process noise gain of optimal CFKF algorithm
at time k , respectively. ŵc(k|k), X̂c(k|k) and Pc(k|k) are the
process noise estimate, the state estimate and the estimate
error covariance of optimal CFKF algorithm at time k , respec-
tively. The process derivation of optimal CFKF algorithm is
presented in APPENDIX.

B. OPTIMAL CFAKF
Inmost cases, themodel ismismatched from the truemodel in
case of parameter uncertainty or great noises, which results in
biased state estimations and generated large state estimation
errors using optimal CFKF algorithm. For example, if the
exact dynamic model is known, the innovation covariance is
equal to 3(k) = C(k)Pc(k|k − 1)CT (k) + R(k). However,
in the presence of uncertainties or great noises, the innova-
tion covariance will be increased. The increased innovation
covariance can be estimated as [54]

3′(k + 1) =

η(1)η
T (1), k = 0

ρ ·3′(k)+ η(k + 1)ηT (k + 1)
1+ ρ

, k ≥ 1
(18)

where ηk = zk − ẑk is the innovation, and 0 ≤ ρ ≤ 1
is a weighting factor which determines the weights given to
a priori data or current data. 3′(k) is also called estimated
innovation covariance. The relationship between 3′(k) and
3(k) can be expressed as3′(k) = τk3(k), where τk is a scalar
variable which can be estimated by

τk = max
{
1,

1
m
tr(3′(k)3−1(k))

}
(19)

or

τk = max
{
1,

tr(3′(k))
tr(3−1(k))

}
(20)

where tr denotes the trace operation of a matrix.

In case of uncertainties or biases in dynamic model,
the predicted error covariance Pc(k|k − 1) will be increased.
So we use a larger error covariance P′c(k|k−1) to compensate
the effect of biased dynamic models, which can be expressed
as

P′c(k|k − 1) = λkPc(k|k − 1) (21)

Here λk ≥ 1 is called an adaptive forgetting factor [55].
The relationship between 3′(k) and P′c(k|k − 1) now is

extended to optimal CFKF algorithm:

3′(k) = C(k)P′c(k|k − 1)CT (k)+ R(k) (22)

Following is the development of optimal CFAKF algorithm.
when λk is a scalar, it can be easily solved:

λk = max
{
1, tr(3′(k)−R(k))

tr(C(k)Pc(k|k−1)CT (k))

}
(23)

According to optimal CFKF algorithm described above
and equations (18)-(23), optimal CFAKF algorithm can be
implemented as follows:
Step 1: Compute the one-step prediction state estimate and

the one-step prediction error covariance.

X̂c(k|k − 1) = A(k − 1)X̂c(k − 1|k − 1)

+ ŵc(k − 1|k − 1) (24)

Pc(k|k − 1) = A(k)Pc(k − 1|k − 1)AT (k)

+A(k)Pcx̃w̃(k − 1|k − 1)

+Pcw̃x̃(k − 1|k − 1)AT (k)

+Pcw̃(k − 1|k − 1) (25)

Step 2: Compute the modified one-step prediction
error covariance and the innovation covariance of optimal
CFAKF algorithm.

P′c(k| k − 1) = λkPc(k| k − 1) (26)

3′(k) = τk3(k)

= τk [C(k)Pc(k|k − 1)CT (k)+ R(k)]

= C(k)P′c(k|k − 1)CT (k)+ R(k) (27)

Step 3: Compute the Kalman gain and the process noise
gain of optimal CFAKF algorithm.

K ′c(k) = P′c(k|k − 1)CT (k)[C(k)P′c(k|k − 1)CT (k)

+R(k)]−1 (28)

K ′cw(k) = S(k)[C(k)P′c(k|k − 1)CT (k)+ R(k)]−1 (29)

Step 4: Compute the update values of the process noise,
state and error covariance.

ŵ′c(k|k) = K ′cw(k)[z(k)− C(k)X̂c(k|k − 1)] (30)

X̂ ′c(k|k) = X̂c(k|k − 1)+ K ′c(k)[z(k)

−C(k)X̂c(k|k − 1)] (31)

P′c(k|k) = P′c(k|k − 1)− K ′c(k)C(k)P
′
c(k|k − 1) (32)

Remark 2: The proposed optimal CFAKF algorithm has
similar operations with optimal CFKF algorithm. The only
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difference is that τk and λk are added. And the addition will
slightly increase the computation costs. Therefore, the pro-
posed optimal CFAKF algorithm can be used for complex
dynamic systems with uncertainties or great noises without
posing excessive computation load.

C. OPTIMAL IMMCFAKF ALGORITHM
First, suppose that there are r models:

X (k + 1) = Aj(k)X (k)+ wj(k), j = 1, · · · , r (33)

where wj(k) is zero-mean Gaussian white noise of the jth
model, and Qj(k) is the process noise covariance of the jth
model. A Markov chain is used to control the transition
between these models, and the transition probability matrix
of the Markov chain is given by:

P =

 p11 · · · p1r
...

. . .
...

pr1 · · · prr


Then, the pseudo measurement equation for the jth model

can be expressed as:

z(k) = C(k)Xj(k)+ v(k), j = 1, · · · , r (34)

where v(k) is zero-mean Gaussian white noise for the jth
model, and R(k) is the pseudo measurement noise covariance
for the jth model.
According to general interacting multiple model (IMM)

algorithm [32] and optimal CFAKF algorithm, the optimal
IMMCFAKF algorithm is given as follows:
Step 1: Input interacting for model j.
The transition probability from model i to model j: pij.
The probability of model j at time k − 1: µj(k − 1).
The prediction probability of model j: c̄j =

∑r
i=1 pijµi

(k − 1).
The mixture probability from model i to model j: µij(k −

1|k − 1) =
∑r

i=1 pijµi(k − 1)/c̄j.
The hybrid state estimation of model j: X̂0j(k − 1|k − 1) =∑r
i=1 X̂i(k − 1|k − 1)µij(k − 1|k − 1).
The hybrid error covariance of model j: P0j(k−1|k−1) =∑r
i=1 µij(k − 1|k − 1){Pi(k − 1|k − 1)+ [X̂i(k − 1|k − 1)−

X̂0j(k − 1|k − 1)][X̂i(k − 1|k − 1)− X̂0j(k − 1|k − 1)]T }.
Step 2: Optimal centralized fusion adaptive Kalman filter-

ing for model jwith inputs X̂0j(k−1/k−1),P0j(k−1/k−1)
and z(k).
Compute the one-step prediction state estimation and the

one-step prediction error covariance.

X̂ cj (k|k − 1) = Aj(k − 1)X̂0j(k − 1|k − 1)

+ ŵcj (k − 1|k − 1) (35)

Pcj (k|k − 1) = Aj(k)P0j(k − 1|k − 1)ATj (k)

+Aj(k)Pcj,x̃w̃(k − 1|k − 1)

+Pcj,w̃x̃(k − 1|k − 1)ATj (k)

+Pcj,w̃(k − 1|k − 1) (36)

where Pcj,x̃w̃(k|k) = −K
′
j,c(k)S

T (k) and Pcj,w̃(k|k) = Qj(k) −
K ′j,cw(k)S

T (k).
Compute themodified one-step prediction error covariance

and the innovation covariance.

P′j,c(k| k − 1) = λj,kPcj (k| k − 1) (37)

3′j(k) = τj,k3j(k)

= τj,k [C(k)Pcj (k|k − 1)CT (k)+ R(k)]

= C(k)P′j,c(k|k − 1)CT (k)+ R(k) (38)

where

τj,k = max
{
1,

1
m
tr(3′j(k)3

−1
j (k))

}
or max

{
1,

tr(3′j(k))

tr(3−1j (k))

}
and

λj,k = max

{
1,

tr(3′j(k)− R(k))

tr(C(k)Pcj (k|k − 1)CT (k))

}
Compute the Kalman gain and the process noise gain.

K ′j,c(k) = P′j,c(k|k − 1)CT (k)[C(k)P′j,c(k|k − 1)CT (k)

+R(k)]−1 (39)

K ′j,cw(k) = S(k)[C(k)P′j,c(k|k − 1)CT (k)+ R(k)]−1 (40)

Compute the update values of the process noise, state and
error covariance.

ŵ′j,c(k|k) = K ′j,cw(k)[z(k)− C(k)X̂
c
j (k|k − 1)] (41)

X̂ ′j,c(k|k) = X̂ cj (k|k − 1)+ K ′j,c(k)[z(k)

−C(k)X̂ cj (k|k − 1)] (42)

P′j,c(k|k) = P′j,c(k|k − 1)− K ′j,c(k)C(k)P
′
j,c(k|k − 1)

(43)

Step 3:Model probability updation.
The likelihood function of model j: �j(k) =

1
(2π )n/2|3′j(k)|

1/2exp{− 1
2 ν

T
j [3

′
j(k)]

−1
νj}
, where νj = z(k) −

C(k)X̂ cj (k|k−1) and3
′
j(k) = C(k)P′j,c(k|k−1)C

T (k)+R(k).
The probability of model j at time k: µj(k) = �j(k)c̄j/c,

where c is a normalization constant, and c =
∑r

j=1�j(k)c̄j.
Step 4: Output interacting.
The total state estimation: X̂0j(k − 1|k − 1) =∑r
i=1 X̂i(k − 1|k − 1)µij(k − 1|k − 1).
The total estimation error covariance: P0j(k − 1|k − 1) =∑r
i=1 µij(k − 1|k − 1){Pi(k − 1|k − 1)+ [X̂i(k − 1|k − 1)−

X̂0j(k − 1|k − 1)][X̂i(k − 1|k − 1)− X̂0j(k − 1|k − 1)]T }.

IV. NUMERICAL SIMULATION AND EXPERIMENT
In this section, we use a numerical simulation and an experi-
ment to demonstrate the performance and effectiveness of our
proposed algorithm.
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FIGURE 1. The true trajectory and the results of the optimal IMMCFAKF
and three kind of model KFs.

A. NUMERICAL SIMULATION
For the simulation purpose, the target initial position coordi-
nate (x(0), y(0)) is set as (1000m, 1000m). The initial veloc-
ity (ẋ(0), ẏ(0)) is set as (10m/s, 10m/s). The sample period
is T = 1s. The angular velocity of CT model is ω =
−

π
270 rad/s, namely, it is a clockwise constant turningmotion.

The (ẍ(k), ÿ(k)) of CA model is (5m/s2, 5m/s2), namely, it is
a constant acceleration motion. x and y are independently
observed. Their standard deviations both are 50m. The target
motion model is CV model in 1s − 150s. The target motion
model is CT model in 151s− 300s. The target motion model
is CA model in 301s− 400s. The target motion model is CV
model in 401s− 500s.
In our proposed optimal IMMCFAKF algorithm, we use a

model sets, including CV, CT and CA models. The transition
probability matrix of the Markov chain is given by:

P1 =

 0.98 0.01 0.01
0.01 0.98 0.01
0.01 0.01 0.98

 .
The number of Monte Carlo simulation is 100. The true
trajectory of the target motion is shown in Fig. 1. And
Fig. 1 depicts the results of the optimal IMMCFAKF and CV,
CT, CA model Kalman filters (KFs). From Fig. 1, it can be
seen that 1) the result of CT model KF and the real value
has a large deviation, 2) the results of CV and VA model
KFs and the real value has a certain degree of deviation in
turning a corner, and 3) the result of the optimal IMMCFAKF
algorithm can better track the target. It is the best in the
tracking effect of four kinds of filters.

The root mean square errors (RMSEs) of positions in
X-direction and Y-direction of the optimal IMMCFAKF and
three kind of model KFs are depicted in Fig. 2. Meanwhile,
the model probability of three kind of model KFs are shown
in Fig. 3.

From Fig. 2, we can see that RMSEs of positions in
X-direction and Y-direction of the optimal IMMCFAKF is
smaller than that of other three kind of model KFs as a
whole. Meanwhile, it can be seen from Fig. 3 that the model

FIGURE 2. RMSEs of positions in X-direction and Y-direction of the
optimal IMMCFAKF and three kind of model KFs.

FIGURE 3. The model probability of three kind of model KFs when the
Markov transition probability matrix is P1.

probability of CA model tends to zero, and the model prob-
ability of CT model is greater than that of CV model in the
stage of CT motion. At this stage the optimal IMMCFAKF
depends on CT model. However, CV model play a major
role at other stage, which is consistent with our experience.
The optimal IMMCFAKF algorithm is used to complete
maneuvering target tracking by automatically adjusting the
model probability of each model. Compared with the single
model KF, the optimal IMMCFAKF algorithm has a better
tracking accuracy.

Next, the influence of different Markov transition proba-
bility matrix on the tracking results are discussed.

(1) The transition probability matrix of the Markov chain
is given by:

P2 =

 0.32 0.33 0.35
0.33 0.35 0.32
0.35 0.32 0.33


It can be observed from Fig. 4 that all the model probability

change trend is not big, but the model probability of CV
and CT models have very slight differences and are greater
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FIGURE 4. The model probability of three kind of model KFs when the
Markov transition probability matrix is P2.

FIGURE 5. Positions in X-direction and Y-direction of the optimal
IMMCFAKF and three kind of model KFs when the Markov transition
probability matrix is P2.

than that of CA model. Compared with the single model KF
in Fig. 5, the optimal IMMCFAKF algorithm has a better
tracking accuracy in the part about x ≤ 5300m of the whole
stage. However, its tracking accuracy is lower than that of
CV model KF in the rest of the whole stage, and lower than
that of the optimal IMMCFAKF when the Markov transition
probability matrix is P1.

(2) The transition probability matrix of the Markov chain
is given by:

P3 =

 0.01 0.98 0.01
0.98 0.01 0.01
0.01 0.01 0.98


Fig. 6 shows that the model probability of CV and CT

models are almost coincident, and the model probability of
CA model tends to zero. From Fig. 7, we can see that the
tracking accuracy of the optimal IMMCFAKF algorithm is
lower than that of CV model KF in the bulk of the whole
stage, and lower than that of the optimal IMMCFAKF when
the Markov transition probability matrix is P1 or P2.

FIGURE 6. The model probability of three kind of model KFs when the
Markov transition probability matrix is P3.

FIGURE 7. Positions in X-direction and Y-direction of the optimal
IMMCFAKF and three kind of model KFs when the Markov transition
probability matrix is P3.

(3) The transition probability matrix of the Markov chain
is given by:

P4 =

 0.01 0.01 0.98
0.01 0.98 0.01
0.98 0.01 0.01


It can be seen from Fig. 8 that the model probability of

CV and CAmodels are completely coincident, and the model
probability of CAmodel tends to zero. The model probability
of CT model is greater than that of CV and CA models in the
stage of CT motion. At this stage the optimal IMMCFAKF
depends on CT model. However, CV and CA models play
a major role at other stage. Fig. 9 shows that the tracking
accuracy of the optimal IMMCFAKF algorithm is better than
that of CV, CT, CA model KFs, and roughly equivalent to
that of the optimal IMMCFAKF when the Markov transition
probability matrix is P1.

In summary, the greater the sum of the diagonal or anti
diagonal elements of the Markov transition probability
matrix, the higher the tracking accuracy of the optimal
IMMCFAKF. On the contrary, the lower the tracking accu-
racy of that.
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FIGURE 8. The model probability of three kind of model KFs when the
Markov transition probability matrix is P4.

FIGURE 9. Positions in X-direction and Y-direction of the optimal
IMMCFAKF and three kind of model KFs when the Markov transition
probability matrix is P4.

V. CONCLUSIONS
In this paper, an optimal IMMCFAKF algorithm has been
proposed for tracking the moving targets in UASNs. Firstly,
the optimal CFAKF algorithm is presented, which intro-
duce an adaptive forgetting factor into the optimal CFKF
algorithm. Secondly, the optimal IMMCFAKF algorithm
is proposed based on the optimal CFAKF algorithm. The
proposed optimal IMMCFAKF algorithm possesses the
advantages of both the optimal CFAKF algorithm and
the conventional IMM algorithm. Finally, simulation results
and experiment results have been summarized as follows:
1) the tracking accuracy of the optimal IMMCFAKF is
the best in the tracking effect of four kind of filters,
and the relationship of different Markov transition prob-
ability matrix and the tracking accuracy of the optimal
IMMCFAKF is verified and given. The proposed algorithm
can be used in many ocean monitoring and exploration appli-
cations. In future work, we will focus on noise correlation
and distributed fusion in IMM algorithm for target tracking
in UASNs.

APPENDIX
The Process Derivation of optimal CFKF Algorithm: If all
the measurements are reliable, by using the projection
theory [56], the innovation sequence z̃(k|k − 1) is defined as
follows

z̃(k|k − 1) = z(k)− ẑ(k|k − 1) (44)

where

ẑ(k|k − 1) = C(k)X̂c(k|k − 1) (45)

Then, substituting (45) to (44) yields

z̃(k|k − 1) = z(k)− C(k)X̂c(k|k − 1) (46)

According to the projection theory [56], we have the follow-
ing fusion filter estimation

X̂c(k|k) = X̂c(k|k − 1)+ Kc(k)z̃(k|k − 1) (47)

Next, based on the projection theory [56], we have the
following fusion filter error and one-step prediction error for
the state

X̃c(k|k) = X (k)− X̂c(k|k)

= X̃c(k|k − 1)− Kc(k)z̃(k|k − 1) (48)

X̃c(k|k − 1) = x(k)− X̂c(k|k − 1)

= A(k − 1)x̃c(k − 1|k − 1)+ w̃c(k − 1|k − 1)

(49)

Then, another form of the innovation sequence as follows

z̃(k|k − 1) = C(k)X̃c(k|k − 1)+ v(k) (50)

From the projection theory [56], we have the following
white noise filter and the noise filter error

ŵc(k|k) = ŵc(k|k − 1)+ K c
w(k)z̃(k|k − 1)

= K c
w(k)z̃(k|k − 1) (51)

w̃c(k|k) = w(k)− ŵc(k|k)

= w(k)− K c
w(k)z̃(k|k − 1) (52)

We have the covariance matrix of z̃(k|k − 1)

Pz̃(k) = E{z̃(k|k − 1)z̃T (k|k − 1)}

= E{(C(k)X̃c(k|k − 1)+ v(k))

×(C(k)X̃c(k|k − 1)+ v(k))T }

= C(k)Pc(k|k − 1)CT (k)+ R(k) (53)

The gain for the white noise is computed by

K c
w(k) = E{w(k)z̃T (k|k − 1)}P−1z̃ (k)

= E{w(k)(C(k)X̃c(k|k − 1)+ v(k))T }P−1z̃ (k)

= E{w(k)vT (k)}P−1z̃ (k) = S(k)P−1z̃ (k) (54)

Similarly, we define the fusion filter gain for the state as
follows

Kc(k) = E{X (k)z̃T (k|k − 1)}P−1z̃ (k) (55)
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where,

E{X (k)z̃T (k|k − 1)} = E{X (k)[C(k)X̃c(k|k − 1)+ v(k)]T }

= E{X (k)X̃Tc (k|k − 1)CT (k)}

+E{X (k)vT (k)}

= Pc(k|k − 1)CT (k) (56)

Then, we have

Kc(k) = Pc(k|k − 1)CT (k)P−1z̃ (k) (57)

Substituting (48) into Pc(k|k), where Pc(k|k) =

E{X̃c(k|k)X̃Tc (k|k)}, we have the error covariance matrix for
the state

Pc(k|k) = Pc(k|k − 1)− E{X̃c(k|k − 1)z̃T (k|k − 1)}KT
c (k)

−Kc(k)E{z̃(k| k − 1)X̃Tc (k| k − 1)}

+Kc(k)Pz̃(k)K
T
c (k)

= Pc(k|k − 1)− Kc(k)E{z̃(k|k − 1)X̃Tc (k|k − 1)}

= Pc(k|k − 1)− Kc(k)C(k)Pc(k|k − 1)

= Pc(k|k − 1)− Kc(k)Pz̃(k)K
T
c (k) (58)

Then, substituting (49) into Pc(k|k − 1), where Pc(k|k −
1) = E{X̃c(k|k−1)X̃Tc (k|k−1)}, we have the prediction error
covariance matrix

Pc(k| k − 1)

= E{X̃c(k|k − 1)X̃Tc (k|k − 1)}
= A(k)Pc(k − 1|k − 1)AT (k)
+A(k)E{X̃c(k − 1| k − 1)w̃Tc (k − 1| k − 1)}

+E{w̃c(k−1| k−1)X̃Tc (k − 1| k−1)}AT (k)
+E{w̃c(k − 1| k − 1)w̃Tc (k − 1| k − 1)}

= A(k)Pc(k − 1|k − 1)AT (k)
+A(k)Pcx̃w̃(k − 1|k − 1)
+Pcw̃x̃(k − 1| k − 1)AT (k)
+Pcw̃(k − 1| k − 1) (59)

where

Pcx̃w̃(k|k) = E{X̃c(k|k)w̃Tc (k|k)}

= E{[X̃c(k|k − 1)− Kc(k)z̃(k|k − 1)]

× [w(k)− K c
w(k)z̃(k|k − 1)]T }

= −E{X̃c(k|k − 1)z̃T (k|k − 1)}K c,T
w (k)

−Kc(k)E{z̃(k|k − 1)wT (k)}

+Kc(k)E{z̃(k|k − 1)z̃T (k|k − 1)}K c,T
w (k)

= −Kc(k)Pz̃(k)K
c,T
w (k) = −Kc(k)ST (k) (60)

and

Pcw̃(k|k) = E{w̃c(k|k)w̃Tc (k|k)}

= E{[w(k)− K c
w(k)z̃(k|k − 1)]

×[w(k)− K c
w(k)z̃(k|k − 1)]T }

= Q(k)− K c
w(k)Pz̃(k)K

c,T
w (k)

−K c
w(k)Pz̃(k)K

c,T
w (k)+ K c

w(k)Pz̃(k)K
c,T
w (k)

= Q(k)− K c
w(k)Pz̃(k)K

c,T
w (k)

= Q(k)− K c
w(k)S

T (k) (61)

ACKNOWLEDGMENT
The authors would like to thank the Associate Editor and the
anonymous reviewers for their constructive suggestions and
comments, which are very valuable for improving the quality
of the paper.

REFERENCES
[1] G. Han, S. Shen, H. Song, T. Yang, and W. Zhang, ‘‘A stratification-based

data collection scheme in underwater acoustic sensor networks,’’ IEEE
Trans. Veh. Technol., vol. 67, no. 11, pp. 10671–10682, Nov. 2018.

[2] G. Han, J. Jiang, L. Shu, and M. Guizani, ‘‘An attack-resistant trust model
based on multidimensional trust metrics in underwater acoustic sensor
network,’’ IEEE Trans. Mobile Comput., vol. 14, no. 12, pp. 2447–2459,
Dec. 2015.

[3] J. Jiang, G. Han, C. Zhu, S. Chan, and J. J. P. C. Rodrigues, ‘‘A trust cloud
model for underwater wireless sensor networks,’’ IEEE Commun. Mag.,
vol. 55, no. 3, pp. 110–116, Mar. 2017.

[4] J. Jiang, G. Han, L. Shu, S. Chan, and K. Wang, ‘‘A trust model based on
cloud theory in underwater acoustic sensor networks,’’ IEEE Trans. Ind.
Informat., vol. 13, no. 1, pp. 342–350, Feb. 2017.

[5] A. A. Syed, W. Ye, and J. Heidemann, ‘‘T-Lohi: A new class of MAC
protocols for underwater acoustic sensor networks,’’ in Proc. IEEE 27th
Conf. Comput. Commun. (INFOCOM), Phoenix, AZ, USA, Apr. 2008,
pp. 231–235.

[6] V. Kebkal, O. Kebkal, and K. Kebkal, ‘‘Network coding for underwater
acoustic sensor networks,’’ inProc.MTS/IEEEOCEANS, Bergen, Norway,
Jun. 2013, pp. 1–5. doi: 10.1109/OCEANS-Bergen.2013.6607957.

[7] M. Li, Y. Sun, Y. Jiang, and Z. Tian, ‘‘Answering the min-cost quality-
aware query on multi-sources in sensor-cloud systems,’’ Sensors, vol. 18,
no. 12, p. 4486, 2019.

[8] C. Zhu, V. C. M. Leung, K. Wang, L. T. Yang, and Y. Zhang,
‘‘Multi-method data delivery for green sensor-cloud,’’ IEEE Commun.
Mag., vol. 55, no. 5, pp. 176–182, May 2017.

[9] C. Zhu, L. Shu, V. C. M. Leung, S. Guo, Y. Zhang, and L. T. Yang, ‘‘Secure
multimedia big data in trust-assisted sensor-cloud for smart city,’’ IEEE
Commun. Mag., vol. 55, no. 12, pp. 24–30, Dec. 2017.

[10] Y. Wang, Z. Tian, H. Zhang, S. Su, and W. Shi, ‘‘A privacy preserving
scheme for nearest neighbor query,’’ Sensors, vol. 18, no. 8, p. 2440, 2018.
doi: 10.3390/s18082440.

[11] C. Zhu, J. J. P. C. Rodrigues, V. C. M. Leung, L. Shu, and L. T. Yang,
‘‘Trust-based communication for the industrial Internet of Things,’’ IEEE
Commun. Mag., vol. 56, no. 2, pp. 16–22, Feb. 2018.

[12] C. Zhu, V. C. M. Leung, J. J. P. C. Rodrigues, L. Shu, L. Wang, and
H. Zhou, ‘‘Social sensor cloud: Framework, greenness, issues, and out-
look,’’ IEEE Netw., vol. 32, no. 5, pp. 100–105, Sep./Oct. 2018.

[13] W. Han, Z. Tian, Z. Huang, S. Li, and Y. Jia, ‘‘Bidirectional self-
adaptive resampling in Internet of Things big data learning,’’ in Mul-
timedia Tools and Applications. New York, NY, USA: Springer, 2018.
doi: 10.1007/s11042-018-6938-9.

[14] Z. H. Wang, C. Liu, J. Qiu, Z. Tian, X. Cui, and S. Su, ‘‘Auto-
matically traceback RDP-based targeted ransomware attacks,’’ Wireless
Commun. Mobile Comput., vol. 2018, Dec. 2018, Art. no. 7943586.
doi: 10.1155/2018/7943586.

[15] Z. Tian, S. Su, W. Shi, X. Du, M. Guizani, and X. Yu, ‘‘A data-
driven method for future Internet route decision modeling,’’ Future Gener.
Comput. Syst., vol. 95, pp. 212–220, Jun. 2018. doi: 10.1016/j.future.
2018.12.054.

[16] J. Qiu, Y. Chai, Y. Liu, Z. Gu, S. Li, and Z. Tian, ‘‘Automatic non-
taxonomic relation extraction from big data in smart city,’’ IEEE Access,
vol. 6, pp. 74854–74864, 2018. doi: 10.1109/ACCESS.2018.2881422.

[17] Y. B. Sun, M. H. Li, S. Su, Z. H. Tian, W. Shi, and M. Han, ‘‘Secure
data sharing framework via hierarchical greedy embedding in darknets,’’
in Mobile Networks and Applications. New York, NY, USA: Springer, to
be published.

[18] X. Yu, Z. Tian, J. Qiu, and F. Jiang, ‘‘A data leakage prevention method
based on the reduction of confidential and context terms for smart mobile
devices,’’ Wireless Commun. Mobile Comput., vol. 2018, Oct. 2018,
Art. no. 5823439. doi: 10.1155/2018/5823439.

[19] Z. Tian et al., ‘‘A real-time correlation of host-level events in cyber range
service for smart campus,’’ IEEE Access, vol. 6, pp. 35355–35364, 2018.
doi: 10.1109/ACCESS.2018.2846590.

25956 VOLUME 7, 2019

http://dx.doi.org/10.1109/OCEANS-Bergen.2013.6607957
http://dx.doi.org/10.3390/s18082440
http://dx.doi.org/10.1007/s11042-018-6938-9
http://dx.doi.org/10.1155/2018/7943586
http://dx.doi.org/10.1016/j.future.2018.12.054
http://dx.doi.org/10.1016/j.future.2018.12.054
http://dx.doi.org/10.1109/ACCESS.2018.2881422
http://dx.doi.org/10.1155/2018/5823439
http://dx.doi.org/10.1109/ACCESS.2018.2846590


J. Qiu et al.: Centralized Fusion Based on IMM and Adaptive Kalman Filter for Target Tracking in UASNs

[20] Q. Tan, Y. Gao, J. Shi, X. Wang, B. Fang, and Z. Tian, ‘‘Towards a
comprehensive insight into the eclipse attacks of Tor hidden services,’’
IEEE Internet Things J., to be published. doi: 10.1109/JIOT.2018.2846624.

[21] J. Chen, Z. Tian, X. Cui, L. Yin, and X. Wang, ‘‘Trust architecture and
reputation evaluation for Internet of Things,’’ in Journal of Ambient Intelli-
gence andHumanizedComputing, vol. 2. Berlin, Germany: Springer, 2018,
pp. 1–9.

[22] C. Zhu, H. Zhou, V. C. M. Leung, K. Wang, Y. Zhang, and L. T. Yang,
‘‘Toward big data in green city,’’ IEEE Commun. Mag., vol. 55, no. 11,
pp. 14–18, Nov. 2017.

[23] X. Xu, Z. Rong, Z.-X. Wu, T. Zhou, and C. K. Tse, ‘‘Extortion provides
alternative routes to the evolution of cooperation in structured popula-
tions,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.,
vol. 95, nos. 1–5, 2017, Art. no. 052302.

[24] Y. Mao, X. Xu, Z. Rong, and Z.-X. Wu, ‘‘The emergence of cooperation-
extortion alliance on scale-free networks with normalized payoff,’’ EPL
(Europhys. Lett.), vol. 122, no. 5, p. 50005, 2018.

[25] I. F. Akyildiz, D. Pompili, and T. Melodia, ‘‘Challenges for efficient
communication in underwater acoustic sensor networks,’’ ACM SIGBED
Rev., vol. 1, no. 2, pp. 3–8, Jul. 2004. doi: 10.1145/1121776.1121779.

[26] I. F. Akyildiz, D. Pompili, and T. Melodia, ‘‘Underwater acoustic sen-
sor networks: Research challenges,’’ Ad Hoc Netw., vol. 3, no. 3,
pp. 257–279, Mar. 2005. doi: 10.1016/j.adhoc.2005.01.004.

[27] M. Sharif-Yazd, M. R. Khosravi, and M. K. Moghimi, ‘‘A survey on
underwater acoustic sensor networks: Perspectives on protocol design
for signaling, MAC and routing,’’ J. Comput. Commun., vol. 5, no. 5,
pp. 12–23, 2017. doi: 10.4236/jcc.2017.55002.

[28] C. Wu, C. Zhao, and H. Gong, ‘‘Energy-efficient target tracking algorithm
for WSNs,’’ 3D Res., vol. 10, p. 1, Mar. 2019. doi: 10.1007/s13319-018-
0210-y.

[29] Y. Xia, J. Shang, J. Chen, and G.-P. Liu, ‘‘Networked data fusion with
packet losses and variable delays,’’ IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 39, no. 5, pp. 1107–1120, Oct. 2009.

[30] X. Yang, W.-A. Zhang, M. Z. Q. Chen, and L. Yu, ‘‘Hybrid sequential
fusion estimation for asynchronous sensor network-based target tracking,’’
IEEE Trans. Control Syst. Technol., vol. 25, no. 2, pp. 669–676, Mar. 2017.

[31] H. A. P. Blom, ‘‘An efficient filter for abruptly changing systems,’’ in
Proc. 23rd IEEE Conf. Decis. Control, Las Vegas, NV, USA, Dec. 1984,
pp. 656–658.

[32] L. Hong and Z. Ding, ‘‘A distributed multirate IMM algorithm for multi-
platform tracking,’’ in Proc. Amer. Control Conf., Albuquerque, NM, USA,
Jun. 1997, pp. 1458–1462.

[33] H. Song, V. Shin, and M. Jeon, ‘‘Mobile node localization using fusion
prediction-based interacting multiple model in cricket sensor network,’’
IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4349–4359, Nov. 2012.

[34] Z. Ding and L. Hong, ‘‘A distributed IMM fusion algorithm for multi-
platform tracking,’’ Signal Process., vol. 64, no. 2, pp. 167–176, Jan. 1998.

[35] W. Li andY. Jia, ‘‘An information theoretic approach to interactingmultiple
model estimation,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 3,
pp. 1811–1825, Jul. 2015.

[36] X. Fu, Y. Shang, and H. Yuan, ‘‘Improved diagonal interacting multiple
model algorithm for manoeuvering target tracking based on H∞ filter,’’
IET Control Theory Appl., vol. 9, no. 12, pp. 1887–1892, Aug. 2015.

[37] I. Hwang, C. E. Seah, and S. Lee, ‘‘A study on stability of the interacting
multiple model algorithm,’’ IEEE Trans. Autom. Control, vol. 62, no. 2,
pp. 901–906, Feb. 2017.

[38] L. Hong, S. Cong, and D.Wicker, ‘‘Distributed multirate interacting multi-
ple model fusion (DMRIMMF) with application to out-of-sequence GMTI
data,’’ IEEE Trans. Autom. Control, vol. 49, no. 1, pp. 102–107, Jan. 2004.

[39] D. Mohammed, K. Mokhtar, O. Abdelaziz, and M. Abdelkrim,
‘‘A new IMM algorithm using fixed coefficients filters (fastIMM),’’
AEU-Int. J. Electron. Commun., vol. 64, no. 12, pp. 1123–1127,
Dec. 2010.

[40] Y. Hu, X. He, L. Zhang, and C. Sun, ‘‘IMM fusion estimation with multiple
asynchronous sensors,’’ Signal Process., vol. 102, pp. 46–57, Sep. 2014.

[41] M. Sun, Z. Ma, and Y. Li, ‘‘Maneuvering target tracking using IMM
Kalman filter aided by Elman neural network,’’ in Proc. 7th Int.
Conf. Intell. Hum.-Mach. Syst. Cybern., Hangzhou, China, Aug. 2015,
pp. 144–148.

[42] B. S. Chen, C. Y. Yang, F. K. Liao, and J. F. Liao, ‘‘Mobile loca-
tion estimator in a rough wireless environment using extended Kalman-
based IMM and data fusion,’’ IEEE Trans. Veh. Technol., vol. 58, no. 3,
pp. 1157–1169, Mar. 2009.

[43] Y. Gao, X. R. Li, and Z. Duan, ‘‘Estimation fusion for Markovian jump
linear system via data transformation,’’ IEEE Trans. Aerosp. Electron.
Syst., vol. 50, no. 1, pp. 240–253, Jan. 2014.

[44] Z. Xing and Y. Xia, ‘‘Comparison of centralised scaled unscented Kalman
filter and extendedKalman filter formultisensor data fusion architectures,’’
IET Signal Process., vol. 10, no. 4, pp. 359–365, 2016.

[45] C. Zhu, Y. Xia, L. Yan, and M. Fu, ‘‘Centralised fusion over unreliable
networks,’’ Int. J. Control, vol. 85, no. 4, pp. 409–418, Apr. 2012.

[46] W. Li, Y. Jia, J. Du, and J. Zhang, ‘‘Distributed multiple-model estimation
for simultaneous localization and tracking with NLOS mitigation,’’ IEEE
Trans. Veh. Technol., vol. 62, no. 6, pp. 2824–2830, Jul. 2013.

[47] Z. Xing, Y. Xia, L. Yan, K. Lu, and Q. Gong, ‘‘Multisensor distributed
weighted Kalman filter fusion with network delays, stochastic uncer-
tainties, autocorrelated, and cross-correlated noises,’’ IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 48, no. 5, pp. 716–726, May 2018.
doi: 10.1109/TSMC.2016.2633283.

[48] Z. Xing and Y. Xia, ‘‘Distributed federated Kalman filter fusion over multi-
sensor unreliable networked systems,’’ IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 63, no. 10, pp. 1714–1725, Oct. 2016.

[49] L. Hong, ‘‘Multiresolutional filtering using wavelet transform,’’ IEEE
Trans. Aerosp. Electron. Syst., vol. 29, no. 4, pp. 1244–1251, Oct. 1993.

[50] D. Jeon and Y. Eun, ‘‘Distributed asynchronous multiple sensor fusion
with nonlinear multiple models,’’ Aerosp. Sci. Technol., vol. 39, no. 12,
pp. 692–704, Dec. 2014.

[51] W. Li and Y. Jia, ‘‘Distributed interacting multiple model H∞ filtering
fusion for multiplatform maneuvering target tracking in clutter,’’ Signal
Process., vol. 90, no. 5, pp. 1655–1668, May 2010.

[52] Y. Hu, Z. Duan, and D. Zhou, ‘‘Estimation fusion with general asyn-
chronous multi-rate sensors,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 46,
no. 4, pp. 2090–2102, Oct. 2010.

[53] Y. Hu, Z. Duan, and C. Han, ‘‘Optimal batch asynchronous fusion algo-
rithm,’’ in Proc. IEEE Int. Conf. Veh. Electron. Saf., Shaan’xi, China,
Oct. 2005, pp. 237–240.

[54] Y. Liang, D. X. An, D. H. Zhou, and Q. Pan, ‘‘A finite-horizon adaptive
Kalman filter for linear systems with unknown disturbances,’’ Signal Pro-
cess., vol. 84, no. 11, pp. 2175–2194, Nov. 2004.

[55] K. H. Kim, J. G. Lee, and C. G. Park, ‘‘Adaptive two-stage extended
Kalman filter for a fault-tolerant INS-GPS loosely coupled system,’’ IEEE
Trans. Aerosp. Electron. Syst., vol. 45, no. 1, pp. 125–137, Jan. 2009.

[56] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1979.

JING QIU received the Ph.D. degree in computer
applications technology from the Beijing Insti-
tute of Technology. She was a Visiting Scholar
with the University of Southern California, Los
Angeles, CA, USA, under the supervision of Prof.
C. A. Knoblock. Her current research interests
include information extraction, network represen-
tation, and big data analysis.

ZIRUI XING received the B.S. and M.S. degrees
from the Hebei University of Science and Tech-
nology, Shijiazhuang, China, in 2010 and 2013,
respectively, and the Ph.D. degree from the School
of Automation, Beijing Institute of Technology,
Beijing, China, in 2017.

He is currently an Engineer with the R&D
and Application Center of Command Automation
Technology, The 4th Institute of CASIC. His main
research interests include multi-sensor informa-

tion fusion, fault diagnosis, nonlinear filters, and signal processing.

VOLUME 7, 2019 25957

http://dx.doi.org/10.1109/JIOT.2018.2846624
http://dx.doi.org/10.1145/1121776.1121779
http://dx.doi.org/10.1016/j.adhoc.2005.01.004
http://dx.doi.org/10.4236/jcc.2017.55002
http://dx.doi.org/10.1007/s13319-018-0210-y
http://dx.doi.org/10.1007/s13319-018-0210-y
http://dx.doi.org/10.1109/TSMC.2016.2633283


J. Qiu et al.: Centralized Fusion Based on IMM and Adaptive Kalman Filter for Target Tracking in UASNs

CHUNSHENG ZHU received the Ph.D. degree in
electrical and computer engineering fromTheUni-
versity of British Columbia, Canada, where he is
currently a Postdoctoral Research Fellow with the
Department of Electrical and Computer Engineer-
ing. He has authored more than 100 publications
published by refereed international journals (e.g.,
the IEEE TRANSACTIONSON INDUSTRIAL ELECTRONICS,
the IEEE TRANSACTIONS ON COMPUTERS, the IEEE
TRANSACTIONS ON INFORMATION FORENSICS AND

SECURITY, the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, the IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY, the IEEE TRANSACTIONS ON

EMERGING TOPICS IN COMPUTING, the IEEE TRANSACTIONS ON CLOUD COMPUTING,
the ACM Transactions on Embedded Computing Systems, and the ACM
Transactions on Cyber-Physical Systems), magazines (e.g., the IEEE Com-
munications Magazine, the IEEE Wireless Communications Magazine, and
the IEEENetworkMagazine), and conferences (e.g., IEEE INFOCOM, IEEE
IECON, IEEE SECON, IEEEDCOSS, IEEE ICC, and IEEEGLOBECOM).
His research interests mainly include the Internet of Things, wireless sensor
networks, cloud computing, big data, social networks, and security.

KUNFENG LU received the B.S. degree in infor-
mation and computer science and the M.S. degree
in applied mathematics from the Hebei University
of Science and Technology, Shijiazhuang, China,
in 2007 and 2010, respectively, and the Ph.D.
degree from the School of Automation, Beijing
Institute of Technology, Beijing, China, in 2014.

He is currently a Senior Engineer with the Bei-
jing Aerospace Automatic Control Institute and
the National Key Laboratory of Science and Tech-

nology on Aerospace Intelligent Control. His main research interests include
guidance and control for vehicle, finite-time control, active disturbance
rejection control, and sliding mode control.

JIALUAN HE received the B.E. degree in mea-
surement and control techniques and instruments
and the M.E. degree in test metrology tech-
niques and instruments from the Harbin Institute
of Technology, Harbin, China, in 2006 and 2009,
respectively. He is currently pursuing the Ph.D.
degree with the School of Mechanical Electronic
and Information Engineering, China University of
Mining and Technology, Beijing, China.

He is also a Senior Engineer with the R&D and
Application Center of Command Automation Technology, The 4th Institute
of CASIC. His main research interests include overall design of wireless
communication, automatic control, and network and command information
systems.

YANBIN SUN received the B.S., M.S., and Ph.D.
degrees in computer science from the Harbin Insti-
tute of Technology, Harbin, China. He is currently
an Assistant Professor with Guangzhou Univer-
sity, China. His research interests include network
security, future networking, and scalable routing.

LIHUA YIN was born in 1973. She received
the Ph.D. degree from Guangzhou University,
where she is currently a Professor and the Ph.D.
Supervisor. Her current research interests include
computer networks and network security. He is a
member of the China Computer Federation.

25958 VOLUME 7, 2019


	INTRODUCTION
	MODEL AND PROBLEM STATEMENTS
	OPTIMAL IMMCFAKF
	OPTIMAL CFKF
	OPTIMAL CFAKF
	OPTIMAL IMMCFAKF ALGORITHM

	NUMERICAL SIMULATION AND EXPERIMENT
	NUMERICAL SIMULATION

	CONCLUSIONS
	REFERENCES
	Biographies
	JING QIU
	ZIRUI XING
	CHUNSHENG ZHU
	KUNFENG LU
	JIALUAN HE
	YANBIN SUN
	LIHUA YIN


