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ABSTRACT The status of the Pantograph and Catenary is the guarantee for the safe operation of the railway.
However, the traditional Pantograph and Catenary status judgment efficiency is not satisfactory, and it is
impossible to timely repair the catenary, which may lead to the greater economic loss. In this paper, a new
GA-ADNN-based (genetic algorithm-Adadelta deep neural network-based) optimization method for the
prediction model for catenary comprehensive pantograph and catenary monitor (CPCM) status is proposed.
According to the status values of the CPCM parameters such as height, stagger, hard point, contact force, and
height difference within span, the status value of the pillars in the catenary has been calculated by the analytic
hierarchy process, and then the prediction model for predicting catenary CPCM status has been established
and then optimized by genetic algorithm to avoid prediction model falling into local optimum. Finally,
the CPCM test parameters of each pillar of the catenary in the actual example are input and the CPCM status
value of the corresponding pillar is predicted. With the smallest prediction error found, the genetic algorithm
is used for optimization, the optimal learning rate of the prediction model is 0.0559, and the optimal number
of the hidden layer of the CPCM status prediction model is determined to be 14. The experimental results
show the feasibility of GA-ADNN-based prediction model for predicting the catenary CPCM status, and
that compared with the support vector machine and traditional artificial neural network prediction methods,
the GA-ADNN-based prediction model has higher prediction precision and better generalization ability.

INDEX TERMS CPCM, analytic hierarchy process, catenary, genetic algorithm, GA-ADNN.

I. INTRODUCTION
As the important traction power equipment for electrified
high-speed railway transportation system, the catenary in
sound status is a guarantee of stable current collection and
on-time running of high-speed EMUs (Electric motor train
Units) [1], [2]. In order to ensure the normal operation of
the catenary, overhaul is necessary. However, the traditional
overhaul is time consuming with very low work efficiency as
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it generally takes half a month or one month and many labor
forces. The 6C system (detection and monitoring system
of the pantograph-catenary in railway) detects the relevant
parameters of the catenary and so provides data basis forthe
maintenance of the catenary status [3]–[5]. The detected data
are mainly divided into two categories: numerical data and
image data. The image data focus on the identification of
abnormalities and faults. At present, limited by the less obvi-
ous image anomaly characteristics and the insufficient train-
ing samples in library, manual work is required for checking
images in the dispatching data center. Further, the CPCM
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(Comprehensive Pantograph and CatenaryMonitor) has large
sample size in numerical data, satisfying the requirement of
data amount for prediction model training, and therefore,
current researches of catenary status prediction focus on
the operating status of the pantograph and catenary. CPCM
detection is an important part of the 6C system, and the
failure of the pantograph and catenary, as one of the most
common faults in railway power supply system, has the char-
acteristics of long power outage, wide range of damage and
great difficulty in repair. For example, onMarch 10-17, 2015,
a number of consecutive pantograph and catenary failures
incurred in the Wuhan-Chengdu section of the Shanghai-
Wuhan-Chengdu high-speed railway, resulted in damage by
striking to the carbon contact strip of 14 CRH trains. There-
fore, how to accurately and efficiently predict the status of
the pantograph and catenary based on the CPCM detecting
parameters is the basis for the decision making for catenary
maintenance and overhaul.

There are two main methods for determining the operating
status of the pantograph and catenary system: the first is to
arrange the staff to determine the CPCM status of all catenary
pillars of the entire line according to each catenary parameter.
This method requires great workload, but is prone to human
error, and so the work efficiency is not satisfying; and the sec-
ond is to conduct the predictive status identification with the
machine learning technology [6]–[9]: firstly, determine the
status values of the pillars numbered with an even number
multiplied with 2 in the catenary, and then establish a training
model to predict CPCM status values of the remaining pillars
numbered with an odd number multiplied with 2. Accord-
ing to the sample sizes they can process, status prediction
models are divided into two main categories: the first one is
the support vector machine-based (SVM) prediction model.
In literature [10], the SVM model is used to predict the
transient stability status after faults. This method is mainly
for small sample size data prediction, and it is difficult to
meet the prediction accuracy requirements of a large number
of pillar samples in the catenary. The second category is the
status prediction model for processing large samples. It is
mainly divided into shallow network model and deep neural
network model. The shallow model mainly includes random
forest [11], Bayesian model, ensemble model [12] and artifi-
cial neural network, etc, literature [13] proposed a driving risk
status prediction method based on Bayesian network predic-
tion model; in literature [14], neural network model is used to
predict the nitrogen status of wheat plants. Comparedwith the
conventional gray-world and scale-by-max approaches, the
performance of neural networkmodel is better. But the hidden
layer of the shallow model is rarely able to dig out more
essential features of the data and the processing effect on
the complex function relationship is not ideal, and sometimes
even produces a large prediction error. Deep neural network
is another direction of machine learning [15]–[16]. Accord-
ing to the type of data processed, deep neural networks are
mainly divided into two categories: image type and numeri-
cal type. The convolutional neural network model is a deep

neural network model for processing image data [17]. For
the processing of numerical models, there are mainly deep
feedforward neural networks, memory neural networks and
recurrent neural networks. In the literature [18], the recurrent
neural network model is used to predict the health status of
the hard disk drive, compared to the simple fault prediction
method, the prediction performance of the recurrent neural
network model is better, but the model mainly deals with
the time series cyclic data; the literature [19] proposes a
method based on the long and short time memory neural
networkmodel to predict the operating state of the equipment.
The experimental results show that the error is small, thus
the method is suitable for analysis of time sequence data.
In the field of catenary, the research on status prediction is
still not reported in the literature. Considering that the data
of the comprehensive detection of the catenary is non-time
series numerical data, a catenary CPCM status prediction
model based on Adadelta deep feedforward neural network
is proposed. Compared with the traditional neural network
model, the catenary CPCM status prediction model has a
hidden layer of nonlinear transformation, which can handle
more complex functional relationships. The global optimiza-
tion ability of genetic algorithms is better than other evolu-
tionary algorithms[20]–[22]. Therefore, in order to avoid the
predictionmodel falling into local optimum, the global search
method of genetic algorithm is used to optimize the catenary
CPCM status prediction model to achieve higher prediction
accuracy.

Aiming at the problem that the traditional Pantograph and
Catenary status judgment efficiency is not satisfactory, which
leads to be unable to perform targeted maintenance in time,
this paper proposes a new GA-ADNN-based prediction opti-
mization method for deep neural network for determining the
CPCM status. Firstly, the status value of the pillars numbered
with an even number multiplied with 2 in the catenary is
worked out by the eigenvalue analysis method, and then
catenary status prediction model built based on the deep
neural network model is trained and optimized, and finally
each parameter of the remaining pillars numbered with an
odd number multiplied with 2 in the catenary is input to
the model to predict the status value of the those pillars,
and the GA-ADNN prediction optimization is verified by the
comparison experiments between various prediction models
based on the actual engineering example data.

II. OPERATING STATUS OF PANTOGRAPH AND
CATENARY SYSTEM
A. LEVEL OF OPERATING STATUS OF PANTOGRAPH AND
CATENARY SYSTEM
The catenary is one of the important facilities of the railway
transportation system and its pantograph and catenary system
is the guarantee for the safe and stable operation of the rail-
way. The schematic diagram of the catenary is shown in Fig.1.

As shown in Fig.1, the status of the catenary includes the
height, the stagger, the hard point, the contact voltage and
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FIGURE 1. Main status parameters of pantograph and catenary system.

the height difference within span. As these parameters are
related to each other and interact with each other, they should
be taken into account in a comprehensive manner for the
calculation of the status value of the pantograph and catenary
system. The operating status of the pantograph and catenary
system is mainly divided into five grades : excellent, good,
average, minor fault and fault, corresponding to values 1, 0.8,
0.6, 0.4 and 0.2. As for other grades : 0.9, 0.7, 0.5, 0.3 and
0.1, the status is between the above main grade. ‘‘Excellent’’
refers to that the status of the pantograph and catenary system
is very good, and so no maintenance is needed; ‘‘Good’’refers
to that the status is good, and so no maintenance but precau-
tion is needed; ‘‘Average’’ refers to that the status is not very
good, so proper maintenance is needed; ‘‘Minor fault’’ refers
to that there is a slight fault in the pantograph and catenary
system, and maintenance and minor overhaul are needed;
‘‘Fault’’ refers to that the pantograph and catenary system is
in fault and overhaul is needed.

B. ANALYSIS AND CALCULATION OF THE STATUS OF THE
PANTOGRAPH AND CATENARY SYSTEM BY ANALYTIC
HIERARCHY PROCESS
AHP (Analytic hierarchy process) is a qualitative and quan-
titative analysis method for determining the weight of each
indicator in decision-making according to the importance and
influence of each indicator on the target[23]–[24]. By com-
paring the indicators in pairs, the judgment matrix A is con-
structed based on the relative order of excellence of each
index.

A =


1 a12 a13 ... a1n
a21 1 a23 ... a2n
a31 a32 1 ... a3n
... ... ... ... ..

an1 an2 an3 ... ann


The above A indicates the judgment matrix, where aij is the

result of importance comparison between Factor i with Factor
j; and aij = 1/aij. The importance comparison between the
factors is shown in Tab. 1.

TABLE 1. Comparison of importance of different factors.

TABLE 2. Random consistency indicator of matrix of each order.

Following the construction of the judgment matrix, it is
to judge whether it satisfies the consistency condition or
indicator [25], and then check the degree of consistency. The
consistency indicator expression is as shown in formula (1).

CI =
λmax − n
n− 1

(1)

where, λmax is the maximum eigenvalue of the judgment
matrix A, n is the order of the judgment matrix A.

In order to measure the size of CI, a random consistency
indicator(RI)is introduced. The random consistency standard
value of each order matrix, as shown in Table2.

When it is checked whether the judgment matrix satisfies
the consistency, the consistency ratio (CR) needs to be cal-
culated. If CR < 0.1, the matrix is judged to be consistent,
otherwise it is not satisfied. The expression of the consistency
ratio (CR) is as shown in formula (2).

CR =
CI
RI

(2)

where, CI is the consistency indicator of the judgment matrix
A, RI is the random consistency indicator of the judgment
matrix A.

The calculation of the status of the pantograph and catenary
system incorporates the parameters such as height, stagger
and hard point of contact line, contact voltage, height dif-
ference within span and contact force, and according to the
Procedures of Overhaul of the Catenary and engineering
empirical value, the level of each parameter status determined
is shown in Tab. 3.

As having different failure probability and failure sig-
nificance, each parameter has different weights. And such
weights of the parameters in the pantograph and catenary sys-
tem are defined by the analytic hierarchy process. Taking the
detection data of the uplink catenary of the Quzhou-Jiujiang
railway as an example and referring to the status values of the
parameters in Table 3, the height is easier to go wrong than
the height difference within span, the height difference within
span is easier to malfunction than the stagger, and the contact
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TABLE 3. Status values of each parameter of the pantograph and
catenary system. (a) Main status values of each parameter. (b) Other
status values of each parameter.

voltage is easier to fail than contact force and hard point, but
the contact force has a slightly greater influence on the CPCM
status than the contact voltage. So from Tab.1 we can obtain
that a11 = 1; a12 = 2; a13 = 2; a14 = 3; a15 = 4; a16 = 5,
so its judgment matrix A is as follows:

A =


1 2 2 3 4 5
1/2 1 1 2/3 1/2 2/5
1/2 1 1 2/3 1/2 2/5
1/3 3/2 3/2 1 3/4 3/5
1/4 2 2 4/3 1 4/5
1/5 5/2 5/2 5/3 5/4 1


According to the calculations, in the matrix A, the max-

imum eigenvalue λmax is 6.4001, the normalized eigenvec-
tor W1 corresponding to the maximum eigenvalue λmax is
W1 = [0.392, 0.093, 0.093, 0.114, 0.140, 0.168], and the
consistency indicator CI is 0.08.

The consistency ratio ( CR) is calculated as:

CR =
CI
RI
= 0.063 < 0.1,

indicating that the consistency meets the requirements. Based
on the normalized eigenvector corresponding to the maxi-
mum eigenvalue of the judgment matrix by analytic hierarchy
process as the weight of each factor, the weight of each
parameter of the catenary is calculated as W= [0.392, 0.093,
0.093, 0.114, 0.140, 0.168]. Therefore, the CPCM status
value of each pillar can be calculated according to the status
value and weight of each parameter.

FIGURE 2. Prediction model for CPCM status.

III. DEEP FEEDFORWARD NEURAL NETWORK MODEL
FOR CPCM STATUS PREDICTION
A. STRUCTURE OF PREDICTION MODEL FOR
PANTOGRAPH AND CATENARY SYSTEM OPERATING
STATUS
The prediction model for pantograph and catenary system
status is mainly divided into three parts: input layer, hid-
den layer and output layer. The training model realizes the
fitting of the predicted value and the actual value of the
catenary CPCM status via the hidden layer and finally pre-
dicts the catenary CPCM status. A large number of hidden
layers in the prediction model perform multiple nonlinear
transformations, feature extraction and learning on the input
data to obtain more essential features of the data. In the
prediction model, the height, stagger, hard point, the con-
tact force,the contact voltage and height difference are the
input data, and the CPCM status value is output data. The
hidden layer in the middle has a large number of neurons.
Taking pillar No. 176 as an example, the schematic dia-
gram of the CPCM status prediction model is as shown
in Fig.2.

The functions corresponding to the CPCM status predic-
tion model are as shown in formula (3):

a(2)1 = f (W (1)
11 x1 +W

(1)
12 x2 + ...+W

(1)
1n xn + b

(1)
1 )

a(2)2 = f (W (1)
21 x1 +W

(1)
22 x2 + ...+W

(1)
2n xn + b

(1)
2 )

...

a(2)n = f (W (1)
n1 x1 +W

(1)
n2 x2 + ...+W

(1)
nn xn + b

(1)
n )

...

y = f (W (n−1)
1n a(n−1)1 + ...+W (n−1)

nn a(n−1)n + b(n−1)n )

(3)

where, y indicates the predicted value of the CPCM status; W
the weight between the neurons of each layer; x1 the height
of the CPCM status; x2 is the stagger of the CPCM status; xn
the height difference within span; f the activation function of
the model; and b the threshold.
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FIGURE 3. Training dataset and Testing dataset of CPCM status prediction
model.

Since the catenary is generally divided into uplink and
downlink, the pillar numbers of the catenary are even
numbers, and the pillar numbers of the catenary are all odd.
This paper takes the monitoring data of the uplink catenary
of the Quzhou-Jiujiang line as an example, and the pillar
numbers of the uplink catenary are 2, 4, 6, 8, 10, 12...,
of which 2, 6, 10... is the odd multiple of 2, and 4, 8,
12... is an even multiple of 2. For example, for the pillars
No. 150-160, the training dataset and testing dataset of data
of each parameter and pillar status in the model are shown
in Fig.3.

As shown in Fig. 3, the parameter data such as the height,
stagger, hard point and contact voltage of the pillars No. 152,
156 and 160 in the catenary are taken as the input data set
for training and optimization, and then the data of pillars No.
150, 154 and 158 are input to predict the status value of the
corresponding pillar.

B. ACTIVATION FUNCTION AND LOSS FUNCTION FOR
CPCM STATUS PREDICTION MODEL
The activation function and the loss function are two impor-
tant parameters of the CPCM status prediction model. Com-
pared with the Sigmoid function, the Tanh function has an
output mean of 0 and fewer iterations, and its convergence
speed is faster than that of the Sigmoid function. The expres-
sion of the Tanh activation function is shown in formulas (4)
and (5).

tanh(x) =
sinh x
cosh x

=
ex − e−x

ex + e−x
(4)

tanh(x) = 2sigmoid(2x)− 1 (5)

By substituting with the activation function tanh(x) in for-
mula (3), a functional expression of the CPCM status predic-
tion model is obtained, as shown in formula (6).

y = tanh(x)(W (n-1)
1n a(n-1)1 + ...+W (n-1)

nn a(n-1)n + b(n-1)n ) (6)

Since the crossing entropy loss function is generally used
for solving classification problems and the quadratic cost
function is suitable for prediction problems, the loss function
of the prediction model is a quadratic cost function, as shown

in formula (7).

=
1
2n

∑
x

∥∥∥y(x)− aL(x)∥∥∥2 (7)

where, n is the number of samples; x is the input sample of
CPCM status parameter; aL(x) is the output value of CPCM
status; and L is the number of layers.

C. TRAINING OF PARAMETERS OF CATENARY CPCM
STATUS PREDICTION MODEL
In order to reduce the prediction error of the predictionmodel,
the training is needed to update the model parameters. While
the traditional gradient descent method first derivates the
training parameters of the loss function of all samples in
the training set and calculates all derivative sums, and then
updates all the training parameters, the stochastic gradient
descent method is to derivate the loss function of each small
batch of samples[26], and then sum up the derivatives and
update the parameters. Each update by the stochastic gradient
method may not proceed in the correct direction, which may
cause fluctuations. However, the fluctuation may jump from
the current local minimum to another better local extremum,
and the error curved surface of the deep neural network is
a non-convex function that eventually converges to a global
extremum point. The stochastic gradient calculation process
is as follows:

J (θ ) =
1
2

m∑
i=1

(Yθ (x(i) − y(i))2 (8)

θt = θt1 − α
∂

∂θ
J (θ ) (9)

∂

∂θ
J (θ ) =

∂

∂θ

1
2
(Yθ (x)− y)2

= (Yθ (x)− y)
∂

∂θ
(Yθ (x)− y)

= (Yθ (x)− y)xi, (m = 1)

(10)

θt = θt1 − α(Yθ (x(j) − y(j))x
(j)
t−1(1 ≤ j ≤ m) (11)

where, θt is the parameter of the catenary CPCM status
prediction model; J (θ ) the loss function; Yθ (x) the predicted
value of the CPCM status; ythe actual value of the CPCM
status; m the number of training samples; and α the learning
rate of CPCM status prediction model.

The stochastic gradient descent method minimizes the
value of J (θ ) by continuously adjusting the parameters of the
CPCM status prediction model. First, the partial derivative
of J (θ ) is worked out so to determine the direction in which
the gradient decreases the fastest, and then the parameters of
the prediction model are updated in this direction. Since the
stochastic gradient descent algorithm updates the parameters
each time, instead of working on all the training sets, and
only a parameter for updating the prediction model in batch
is utilize, the training time of the catenary prediction model
is reduced.

23214 VOLUME 7, 2019



Z. Qu et al.: Genetic Optimization Method of Pantograph and Catenary Comprehensive Monitor Status Prediction Model

IV. REALIZATION OF OPTIMIZING CATENARY CPCM
STATUS PREDICTION MODEL
A. ADADELTA-BASED OPTIMIZATION FOR STOCHASTIC
GRADIENT DESCENT METHOD
Since the stochastic gradient descent algorithm requires man-
ual setting of learning rate, the improper learning rate selected
may lead to low prediction precision. However, The Adadelta
(adaptive learning rate algorithm) is able to automatically
adjust the learning rate as an optimization of the stochastic
gradient descent algorithm, and improves the prediction pre-
cision. The Adadelta is calculated as follows:

gt =
∂J (θ )
∂(θ )

, 1θt = θt − θt−1 (12)

nt = mnt−1 + (1− m)g2t (13)

1θt = −
α

√
nt + ε

gt (14)

E
∣∣∣g2∣∣∣

t
= 0.5E

∣∣∣g2∣∣∣
t−1
+ 0.5g2t (15)

1θt = −
α√

E
∣∣g2∣∣ t + ε gt (16)

where, gt is the gradient of the stochastic gradient descent
algorithm; m the coefficient; θt the updated parameter vari-
ation; α is the learning rate of the prediction model; E|g2|t
the expectation on the absolute squared value of the gra-
dient; ε a constant to prevent the denominator from being
zero.

B. GENETIC OPTIMIZATION OF THE CATENARY CPCM
STATUS PREDICTION MODEL
In order to prevent the local optimum, optimization is per-
formed by genetic algorithm. The learning rate is a key
parameter of the prediction model as it determines the rate
of the update of parameters such as the weight between
neurons in the model. The learning rate α can be obtained
by formula (9), as shown in formula (17).

α=(θt1 − θt)
∂(θ )
∂J (θ )

(17)

where, θt is the parameter of the CPCM status prediction
model at time t; J (θ ) the error function of the prediction
model; and α the learning rate of the model.

The learning rate α determines the speed at which the
parameters of the model move to the optimal value. If the
learning rate is too high, the optimal value may be exceeded;
or if the learning rate is too low, the update parameter works
inefficiently and so the parameters such as weights cannot
be updated to their optimal value in a long time. Therefore,
genetic algorithm, an algorithm of global searching of opti-
mal solution that simulates the natural selection of biological
evolution theory and the genetic mechanism, works to find
the optimal learning rate of the catenary status prediction
model, and the learning rate genetic optimization process of
the prediction model is as shown in Fig. 4.

As shown in Fig. 4, the learning rate genetic optimiza-
tion process is mainly divided as follows: first, encoding

FIGURE 4. Genetic optimization of the learning rate of the catenary CPCM
status prediction model.

the model learning rates α1, α2, α3 and α4; then
calculating the fitness of these learning rates, doing selec-
tion, crossover and mutation operations, and determining
whether the learning rates satisfy the error require-
ment for the catenary status prediction; and finally decod-
ing the new learning rates α1, α2, α3 and α4.

The basic steps of the genetic algorithm to optimize the
learning rate of the prediction model are as follows:

(1) Encoding learning rate
First, the learning rate parameter α of the spatial catenary

prediction model is expressed as genotype string struc-
ture data of the genetic space, and the different combi-
nations of these string structure data constitute different
points.

(2) Initializing the learning rate group
N initialized string structure data such as α1, α2, α3...αn

are randomly generated, each datum indicating a learning rate
and N data constituting a group, and they are used as initial
points for the iteration in the genetic algorithm.

(3) Calculate the fitness value of each learning rate in the
group

The fitness value of the new learning rate of the prediction
model is calculated. The fitness function is the loss function
of the catenary prediction model, and the fitness value is
an indicator for evaluating the merits and demerits of the
individual or solution.

(4) Selecting
It is to select a good learning rate from the current group

of α1, α2, α3...αn, for probably reproduce offspring and gen-
erate new learning rates.

(5) Crossing
Crossing is the most important genetic operation in genetic

algorithm. The new generation learning rate α3 and α9 can

VOLUME 7, 2019 23215



Z. Qu et al.: Genetic Optimization Method of Pantograph and Catenary Comprehensive Monitor Status Prediction Model

FIGURE 5. Main flow of the genetic algorithm for the catenary CPCM
status prediction model.

be obtained by crossing α2 and α4. The new generation
learning rate has combined the learning rate of the previous
generation.

(6) Mutating
It is to randomly select a learning rate α1 from the group

of α1, α2, α3...αn, and randomly changes the value of each
string structure data with a certain probability for the selected
α1, and then it is mutated to the new learning rate α11. The
main flow of the genetic algorithm for the catenary CPCM
status prediction model is shown in Fig. 5.

(7) Judging the learning rate of prediction model
It is to judge whether the learning rate of the prediction

model satisfies the optimization condition, if yes, proceeding
from (3) and otherwise, proceeding from (7).

(8) Outputting the optimal learning rate of prediction
model

After the operations of selecting, crossing and mutating,
the learning rate α with optimal fitness in the prediction
model is output.

C. IMPLEMENTATION PROCESS OF THE CATENARY CPCM
STATUS PREDICTION MODEL OPTIMIZATION
The optimization process of the prediction model mainly
involves the optimization of the stochastic gradient descent
algorithm for model learning and the optimization of the
prediction model parameters. Taking pillars 150, 152, 154...
160 as an example, the implementation flow of the optimiza-
tion of the catenary CPCM status prediction model is shown
in Figure. 6.

The optimization flow of prediction model for catenary
CPCM status is as follows:
Step1: Input the CPCM status parameters such as height,

stagger, height difference within span, hard point, contact
force and contact voltage and corresponding status value of
pillars No. 150, 152, 154... 160 to the model as its training
samples. For example, the values of the parameters of pillar
No. 152 are 6,035mm, 184mm and 2mm, 10mm, 101N and
26.322kV, and the CPCM state value is 0.845.
Step 2:Determine the structure of the CPCM status predic-

tion model.

FIGURE 6. Optimization flow of prediction model for catenary CPCM
status.

Step3: Use stochastic gradient descent algorithm to update
the parameters such as weight W and threshold b between
neurons; finally judge whether the parameter satisfies the
condition of minimum loss function J (θ ): if yes, the training
is ended; otherwise, the training continues.
Step 4:Utilize the adaptive learning rate algorithm to auto-

matically adjust the learning rate and optimize the stochastic
gradient descent algorithm and finally improve the prediction
precision of the prediction model as high as possible.
Step 5: Input the model learning rate α as the parameter to

be optimized.
Step 6: Binary 01 encode the learning rate α of the mode.
Step 7: Initialize the learning rate to generate α1, α2...αn,

calculate the fitness of each learning rate, and carry out
selecting, crossing and mutating operations for α1, α2...αn to
generate a new optimized learning rate.
Step 8: Determine whether the learning rate satisfies the

optimal condition: if yes, output the optimal value; otherwise,
repeat from step 4.
Step 9: Input the CPCM status parameters such as the

height, the stagger, the hard point, height difference within
span, contact force and contact voltage of pillars No. 150,
154 and 158 of the catenary, for example: the value of those
parameters of Pillar No. 158 is 6,036mm, 310mm, 2mm,
11mm, 96N and 26.30kV, to predict the CPCM status values
of the respective pillars, and finally output the CPCM status
value y of the pillars.

V. ANALYSIS OF EXAMPLES
A. ANALYSIS OF EXPERIMENTAL DATA
Taking the measured data of the uplink catenary in a sta-
tion area of the Quzhou-Jiujiang railway as a test example,
the deep neural network is used to establish the CPCM status
prediction model for the catenary.
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FIGURE 7. Route map of Quzhou-Jiujiang railway.

TABLE 4. Detection data of uplink catenary along Quzhou-Jiujiang
railway.

Tab.4 shows examples of the test data of pillar
No. 162-178 of the catenary along Hukou-Duchang, includ-
ing the pillar number, the kilometer mark, the con-
tact line height (/mm), the contact line stagger (/mm),
the height difference with span (/mm), the hard point
(/mm), the contact force (/N) and other key CPCM sta-
tus parameters. The measured test values in the project
are input into the prediction model for learning, train-
ing and optimization, and for experimental analysis and
comparison.

B. EVALUATION INDICTOR FOR THE PREDICTION MODEL
OF THE SUSPENSION STATUS OF THE CATENARY
1) MEAN ABSOLUTE PERCENTAGE ERROR AND ROOT
MEAN SQUARE ERROR OF THE MODEL
In order to evaluate the prediction precision of the predic-
tion model, the mean absolute percentage error (MAPE)
and the root mean square error (RMSE) are selected as two
indicators, and the calculation is as shown in formulas (18)
and (19).

MAPE =
1
N

n∑
i=1

|y− y∗|
y
× 100% (18)

RMSE =

√√√√1
n

n∑
i=1

∣∣∣∣y− y∗y
∣∣∣∣2 (19)

where, N is the number of samples predicted; y∗ the predicted
value of the catenary CPCM status; y the actual value of the
CPCM status.

FIGURE 8. Curve of prediction precision in different hidden layers.

2) GENERALIZATION ABILITY OF PREDICTIVE MODEL
Generalization ability refers to the ability of the learning
model to predict unknown data, and generalization error is
an indicator of generalization ability. The generalization error
indicates the prediction precision of the prediction model for
different data sets. The generalization error formula is shown
in formulas (20) and (21).

R1 =
1
N

N∑
i=1

L(yi, f (xi)) (20)

R =
1
n

n∑
j=1

Rj (21)

where, N is the number of samples; L(yi, f(xi)) the loss
function; yi the actual value; and f (xi) is the predicted value.

C. EXPERIMENTAL ANALYSIS
1) INFLUENCE OF DIFFERENT HIDDEN LAYERS ON MODEL
PREDICTION PRECISION
In order to find the optimal hidden layer number of the CPCM
status prediction model, with other parameters unchanged,
the comparison experiment of the prediction precision is
carried out by changing the hidden layer number. The pre-
diction precision curves of different hidden layers are shown
in Fig. 8.

It can be seen from Fig. 8 that the model has the maximum
prediction precision of 98.5%when the number of hidden lay-
ers is 14, and so 14 hidden layers are optimal configuration.

2) COMPARISON OF PREDICTION PRECISION OF DIFFERENT
MODELS
With the same data amount, the comparison experiment of the
CPCM status prediction model for the catenary was carried
out in different prediction models. The experimental results
are shown in Fig. 9 and Tab. 5.

Both Tab. 5 and Fig. 9 reveal the prediction errors of
the three CPCM status prediction models are small, but the
prediction error of the GA-ADNN model is smaller.
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FIGURE 9. Comparison curves of predicted results by different models.
(a) Comparison curve of results of SVM prediction and GA-ADNN-based
prediction. (b) Comparison curve of result difference between SVM
prediction and GA-ADNN-based prediction. (c) Comparison curve of
predicted results by artificial neural network and GA-ADNN-based model.
(d) Comparison curve of differences of predicted results by artificial
neural network and GA-ADNN-based model.

TABLE 5. Prediction results by different CPCM status prediction models.

TABLE 6. Prediction results of different CPCM status prediction models.

The RMSE and MAPE of the prediction results of the
three CPCM status prediction models are respectively cal-
culated by the formulas (18) and (19). The evaluation indi-
cator results of the different prediction models are shown
in Tab. 6.

Tab. 6 shows that under the same conditions, the mean
absolute percentage error and root mean square error of the
GA-ADNN model are the smallest compared with other pre-
dictionmodels, and the prediction precision is 6% higher than
that of the artificial neural network, 5.3% higher than that of
the support vector machine.

3) GENERALIZATION ABILITY OF DIFFERENT MODELS
In order to study the generalization characteristics of the
prediction algorithm in different model datasets, the five
datasets composed of five different segments of the uplink
Quzhou-Jiujiang railway are predicted and compared, and
the prediction precision of different datasets is obtained,
as shown in Fig. 10.
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FIGURE 10. Prediction precision of different models for datasets of
Quzhou-Jiujiang railway segments.

FIGURE 11. Influence of the Adadelta CPCM status prediction model.
(a) Comparison curve of predicted results of the prediction models with
and without Adadelta. (b) Comparison curve of the difference of
predicted results of the prediction models with and without Adadelta.

It can be seen from Fig.10 that the GA-ADNN model has
higher prediction precision for datasets of Quzhou-Jiujiang
railway segments, compared with the support vector machine
and the artificial neural network models. Based on the

FIGURE 12. Iteration and convergence curve of genetic algorithm.
(a) Iteration and convergence curve of genetic algorithm without
Adadelta. (b) Iteration and convergence curve of genetic algorithm with
Adadelta.

formulas (20) and (21), the generalization error of eachmodel
is obtained as follows:

RANN = 1/5(0.053+0.10+0.037+ 0.049+0.022)=0.052

RSVM = 1/5(0.07+ 0.06+0.017+0.039+0.017)=0.071

RGA−ADNN
= 1/5(0.03+ 0.04+ 0.014+0.035+0.019)=0.028

Therefore, the GA-ADNN model has the smallest gener-
alization error compared with the SVM and the traditional
ANN models, and its value is 0.028.

4) INFLUENCE OF ADAPTIVE LEARNING RATE ALGORITHM
ON THE PREDICTION PRECISION OF CPCM STATUS
PREDICTION MODEL
Under the condition of genetic algorithm optimization,
the comparison curve of prediction precision of the prediction
models for the CPCM status with and without Adadelta is
shown in Fig. 11.
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Fig.11 shows that compared with the CPCM status pre-
diction model without Adadelta, the prediction curve of the
CPCM status prediction model with Adadelta has better fit-
ness with the actual status value.

5) CONVERGENCE EXPERIMENT FOR GENETIC
OPTIMIZATION OF THE CATENARY CPCM STATUS
PREDICTION MODEL
The genetic algorithm optimizes the learning rate of the
prediction model for the catenary CPCM status. By contin-
uously iterating to find the optimal learning rate, the iteration
and convergence curve of the genetic algorithm is as shown
in Fig. 12.

By comparing the convergence graph of the genetic algo-
rithm with or without Adadelta, it is known that the learning
rate of CPCM status predition model is mainly adjusted by
the Adadelta before 70 times, and the learning rate fluctu-
ates between 0.047 and 0.89. The optimal learning rate is
found in the range of 0.05 ∼ 0.08 at about 70 times. Finally,
the genetic algorithm is used to optimize the the learning
rate after 70 times and find the optimal learning rate. It can
be seen from Fig. 12 that the genetic optimization without
Adadelta converges faster than the genetic optimization with
Adadelta, but the accuracy of CPCM status prediction model
with Adadelta is higher than that without Adadelta, which
can be seen from the Tab. 6. However, the main purpose of
this paper is to pursue high precision, so the CPCM status
prediction model with Adadelta is chosen.

VI. CONCLUSIONS
In this paper, a new GA-ADNN-based optimization method
for the prediction model for catenary CPCM status is pro-
posed. The aim is to solve the problem of low efficiency
of traditional periodic maintenance of CPCM of railway
catenary. Firstly, the deep neural network model is applied
to the status prediction of the catenary CPCM status. Sec-
ondly, the Adadelta and stochastic gradient descent algorithm
are used to update the parameters of the model. Finally,
the genetic algorithm is used to optimize the model globally.

The key findings of this paper are the following:
1) Based on the measured data of the catenary project in

a station area of the Quzhou-Jiujiang Railway, a deep neural
network optimization prediction model is established. Under
the condition of the smallest prediction error, an optimal
learning rate of 0.0559 of the prediction model is found by
the genetic algorithm, and it has been experimentally verified
that 14 hidden layers are optimal configuration.

2) The GA-ADNN prediction optimization method involv-
ing the deep neural network for catenary CPCM status predic-
tion helps to improve the prediction precision of the catenary
CPCM status from 92.5% to 98.5%, and reduce the general-
ization error of prediction model from 0.071 to 0.028.
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