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ABSTRACT Grid-based location prediction algorithms are widely researched and evaluated. These algo-
rithms usually integrate the speed and the direction during the learning process as regular contextual features,
for example, like the time of the day or the day of the week. Unfortunately, the way speed and direction
are currently used does not fulfill their potential. In this paper, we propose an alternative approach for
integrating the user’s current speed and direction in a post-processing mechanism that highly improves the
algorithms’ accuracy. We dynamically update the probabilities of the predictions provided by the existing
(base) algorithms by dividing the surface into four areas while boosting the probabilities in some areas
and reducing the probabilities in others. We evaluated our method on three well-known grid-based location
prediction algorithms and two different datasets and were able to show that our method improves the
predictions made solely by the algorithms. Our improvement was stable during the entire experiment for
long-term predictions and for greater prediction distances, particularly in the cold start phase which is
considered more difficult to improve.

INDEX TERMS Location prediction, grid-based, mobile, speed, direction.

I. INTRODUCTION
Akey component of many of the personalized, context-based,
mobile device services and applications (e.g., Yelp, Uber,
Google Maps, and Google Now) is the ability to predict the
future location of users based on location sensors embedded
in these devices. Such capability enables service providers to
present relevant and timely offers to their users or manage
better traffic congestion control, and more, thus increasing
customer satisfaction and engagement.

There are two main types of geographical area spatial
representation used by location prediction algorithms:
grid-based [1]–[4] and point of interest (POI)-based [5]–[7].

In the POI approach significant locations are either indi-
cated (i.e., specific points of interest such as a shopping
center) or automatically deduced, and the algorithm attempts
to predict the next POI the user is expected to visit. POIs can
automatically be deduced through clustering algorithms (e.g.,
the user’s location cluster at night is marked as ‘home’) [8]
or by using predefined rules and constraints such as the
distance from the closest antenna in GSM networks [9], [10].
However, inferring types of location using the POI approach

is a challenging task [6], which usually requires human assis-
tance to continuously label POIs.

In grid-based prediction the map of a certain geographical
area is split into cells according to a predefined grid, and the
prediction for the location the user is expected to visit (the
next cell on the map) is made using a probability function
that, given the user’s current location and context, assigns a
probability to each cell of the grid. The vector of cells and
their probabilities produced by the algorithm is referred as
the probability vector.
In this paper we focus on the grid-based approach and pro-

pose a method for improving location prediction by dynam-
ically boosting the probability of predictions, leveraging the
recent movement direction of the user to do so.

Location prediction algorithms usually consider the cur-
rent location of the user, previous routes, and other contextual
features such as the time of the day, day of the week [5], [11],
movement pattern (e.g., walking, driving), recent phone
calls [1] and more information that requires a large training
set [12], [13]. While the use of these features can eventu-
ally provide more accurate predictions, it requires a large
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number of observations and consequently a longer learning
period.

Movement direction and speed are important contex-
tual features which have been used by supervised learn-
ing and rule-based location prediction algorithms in prior
research [11], [14]. Other publications proposed spatial
regression functions that predict the user’s location according
to his or her current direction and speed [9]. Thus, previous
studies show that the major benefit of the speed and direction
features is that they are useful from the first prediction and
can also be learned and improved overtime.

These methods, however, require a sufficient amount of
observations for each context which results in a longer learn-
ing period, or alternatively, they are limited to small areas and
are only effective for short-term predictions; i.e., predicting
the nearest cells within the next few minutes. Another limi-
tation is that these approaches cannot produce predictions in
stationary cases.

In this paper we propose a method that integrates the
observed speed and direction of the user differently, in order
to improve grid-based location prediction algorithms. The
proposed method does not consider the speed and direction
of the user as features that have to be learned over time, but
rather applies a heuristic approach that utilizes the speed and
direction. Specifically, we propose a ‘‘wrapper’’ algorithm
that can be applied on the predictions (i.e., output) of any grid-
based location prediction algorithm without requiring learn-
ing over time. Thus, our method does not produce predictions
but only changes their probabilities and adapts the probabili-
ties of the base location prediction algorithm according to the
current context of the user defined by the user’s speed and
direction.

We applied the proposed method on three grid-based algo-
rithms (frequent cells, Markov chain, and matrix factoriza-
tion) using two different datasets collected during 2015 in
different cities (Jerusalem and Beer-Sheva, Israel) and were
able to improve the prediction accuracy on all of the datasets,
even in the cold start training period.

Therefore, the main contributions of the paper are as
follows:
• we propose a method that can dynamically improve the
predications made by any grid-based location prediction
algorithm by utilizing the user’s current context, repre-
sented by the current speed and direction;

• the proposed method does not require that any changes
be made to the location prediction algorithm;

• the proposed method can improve both long-term and
short-term predictions during the cold start phase of the
location prediction algorithms (where there isn’t enough
training data) and during normal operation of the models
over time.

The remainder of this paper is organized as follows:
Section II presents related work. Section III provides a
description of the proposed method. Section IV presents the
evaluations and results, and finally, Section V discusses the
conclusions and future work.

II. RELATED WORKS
A. LOCATION PREDICTION
Predicting people’s whereabouts at a specific time in the
future is a challenging and extensively researched problem.
There are two main types of geographical area spatial rep-
resentation in location prediction algorithms. The first type
deals with defining points of interest (POI) according to
their type (e.g., ‘‘home,’’ ‘‘work,’’ or ‘‘shopping center’’) and
its prediction algorithm attempts to predict the user’s next
POI [5]–[7], [15]. In the second approach, referred to as
grid-based location prediction, a specific geographical area is
represented as grid of cells, and then, within a given context
(e.g., current location, day, hour, previous locations) [16],
the location prediction algorithm attempts to predict the cell
of a user at a specific time in the future using the user’s
previously observed transitions between cells [1]–[4]. This
is usually performed by assigning a probability to each cell
which indicates the likelihood of the user being in the cell at
a future time. In our research, we opt to use the grid-based
approach because it is usually simpler and easier to imple-
ment and does not require inference by location semantics
(i.e., POI).

Location prediction algorithms can also be categorized
based on the algorithm used to model previous transitions of
the user in order to predict the user’s future location. Prior
studies suggested various classes of algorithms. The simplest
class of algorithm is the frequent cells model that simply
predicts the most frequent cell(s) for each context (e.g., day
and part of day). This basic model was used as a baseline
in previous studies to evaluate the performance of proposed
location prediction algorithms [1], [17]. This model can also
provide an indication of users’ predictability. The second
class of algorithms are based on different variations of neural
networks such as back propagation and radial basis function
networks [18] and recurrent neural networks [19]. Another
prominent class of algorithms is based on the Markov chain
model which was used for predicting the next POI [8], [20]
or the next cell in the grid-based approach [1]. This class of
predictors represents the mobility of an individual using a
Markov chain model, and predicts the next location based on
the previously visited location(s) that are part of a trajectory
that ends with the current user location [20]. Another state-of-
the-art class of algorithms is matrix factorization [21] which
was adapted from the recommender systems domain and
are able to represent contextual information [22] as well as
utilizing data from other users [23].

All the presented categories of algorithm, when applied
on grid-based representation, can be used with our proposed
speed and direction methods presented in this paper. In order
to evaluate our methods, we showed its results on top of
three different grid-based location algorithms: frequent cells,
Markov model, and matrix factorization.

Previous studies can also be grouped according to whether
the prediction is based on the user’s own data (personal)
or on cumulative data gathered from multiple users
(collaborative) [24]–[29]. In this study we combine personal
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and collaborative data in order to produce better predictions
and to enhance the learning phase.

B. SPEED AND DIRECTION
Previous publications considered different contextual param-
eters, such as day, time of day, movement patterns, speed,
direction, and previous locations, as part of the learning
process. For example, Fukano et al. [30] trained a model
for predicting the destination of the user by using features
extracted from the smartphone’s GPS readings including the
day, time, current location, and speed. Ying et al. [14] pre-
sented a location prediction method based on collaborative
filtering, which utilizes the speed and direction and is aimed
at identifying users’ stay locations. Nizetic et al. [4] used the
speed to dynamically set the size of cells in grid-based parti-
tioning when using Markov chains. Once the user exceeds a
speed threshold the model is rebuilt on a different grid space.

These methods, however, require a sufficient amount of
observations for each context, which results in a longer learn-
ing period. In our proposed method, the speed and direction
are integrated differently - not as regular features, but as a
‘‘wrapper’’ that can be applied (as a black-box) on the pre-
dictions of any grid-based algorithm without requiring learn-
ing over time. We suggest a method that does not produce
predictions but rather updates their probabilities according to
the current user behavior. Therefore, it can improve predic-
tions during the cold start phase of the location prediction
algorithms (as we show in the evaluation section), as well as
when using the location prediction models over time.

Fülöp et al. [31] introduced extensions to widely used
mobility models in order to improve their accuracy; in par-
ticular, they focused on Markov chain models. In their pro-
posed method, the probabilities of moving to the nearest cells
are updated according to the user’s current direction. In our
proposed method, we also update and boost the probabilities
provided by the location prediction algorithm, however in
addition to focusing on the nearest locations, we update all
possible locations on the grid by also considering the speed.
In addition, ourmethod is not specific to one predictionmodel
(e.g., Markov chain).

The speed and direction parameters were also used for
deriving location prediction spatial regression models in
order to improve SMS delivery [32] and the performance of
wireless applications [9]. Such an approach tends to be lim-
ited to small areas and, as the authors concluded, is only effec-
tive for short-term predictions; i.e., predicting the nearest
cells within the next fewminutes. Anagnostopoulos et al. [33]
also proposed a spatial, context-based classifier to predict
users’ future locations with the limitations of short-term pre-
dictions and low computational cost. In this paper we show
that the combined speed and direction information can also
be used to improve long-term location prediction algorithms.

Several other papers used direction for sequence models.
These models predict the next location of the user by
using the sequence of previous locations and the user
current direction; only adjacent locations in the sequence

are considered as possible predictions for the next location.
Anisetti et al. [34] developed a technique for mobility pre-
diction in GSM networks. After extracting the most likely
places for the users to attend, they use Kalman filtering to
smooth out the multiple position estimates to form a coherent
path. Krumm and Horvitz [2] use the user’s speed to estimate
the driving duration in order to predict the user’s departure
at the predicted location. Liu et al. [35] develop a hierarchi-
cal location prediction algorithm based on two hierarchies,
where the lower one applies a dynamic linear model based
on the user location, speed, and direction, and the higher
one is based on pattern matching techniques for user paths.
Anagnostopoulos et al. [36] use trajectory distance classifi-
cation to match the user’s current route with previous routes,
while proposing a new trajectory distance metric that is delay
tolerant. Haitao and Xiangwu [37] use the speed as a contex-
tual nominal feature (high, normal, low) among other features
such as weather and time of the day. They apply pattern
matching of user’s routes and predict the next location for
long-term prediction. Jeung et al. [38] transformed the loca-
tion prediction problem into finding paths in graphs. They use
the speed and direction in order to select the next edge in the
greedy path algorithm. Anagnostopoulos et al. [39] built an
online updating location prediction model using spatial and
velocity context. The authors developed a novel distance met-
ric combining both the sequence of velocities and locations;
however, they did not utilize the direction of the user to select
the best route.

Our method cannot be applied on, or improve location
prediction methods that are based upon route/path matching.
These methods consider the user’s recent sequence of loca-
tions andmatch it with previously seen sequences of locations
in order to find the next location. These methods cannot be
improved by boosting areas with direction or speed because
in each case only the most matching route is counted and only
one predicted location is offered. Our method, however, takes
into account an aggregated direction of the user, while using
the gradient of several locations within a certain time interval
we assume that there are several offered cells for the user next
location and not just one.

III. PROPOSED SPEED AND DIRECTION METHOD
In this section we present the proposed method for dynami-
cally updating the probabilities of the cells based on the user’s
movement direction. Assume current time is t, andwe attempt
to predict the location of user at time t + 1.
The input to the proposed method includes the following:

• probVector : The vector of cells and probabilities
{<cell1, p1>,<cell2, p2>, . . . , <cellm, pm>} provided
by the grid-based location prediction algorithm for a
specific prediction request, where the probability pi ≥ 0
for each celli.

• timeWindow: A predefined parameter of the proposed
methodwhich determines the time frame of the sequence
of previous locations to be considered by the algorithm.
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• prevSeq : The sequence of previous locations (i.e., cells)
lt−n, . . . , lt−1, lt which the user visited within a prede-
fined timeWindow. Note that lt , the last in the sequence,
denotes the current location (cell) of the user (i.e., at the
time of prediction).

• minimalDistance: Determines the minimal distance that
the user is required to travel within the predefined
timeWindow in order to apply the proposed method on
probVector .

The output of the algorithm is as follows:

• newProbVector : The vector is similar to the input in
its cell and structure, but the probabilities are changed,
and thus the order of the cells and even the high-
est probability cell are also changed. The output of
the proposed method is the updated probability vector:{
<cell1, p′1>,<cell2, p

′
2>, . . . , <cellm, p

′

m>
}
.

The proposed algorithm includes the following main steps
which are presented in pseudocode below (Figure 1).

FIGURE 1. Pseudocode presenting the boosting probabilities method.

Step I (Calculating the Movement Trend Based on Pre-
vious Location Sequence): In the first step we apply linear
regression on the previous cells in the prevSeq vector in
order to derive the trend line that minimizes the mean square
error measure. We denote the gradient of the trend line by
∇prevSeq. This phase is illustrated in Figure 1. Given the
sequence of previous locations (indicated by the labeled black

dots - l1, l2, . . . , ln), the trend line of the previous location
sequence indicated by PLSLine is derived. The gradient of
the trend line indicates the expected movement direction of
the user.
Step II (Partitioning of the Grid Map): Based on the cur-

rent location (lt ), the trend line PLSLine and a dynamically
determined angle β, the map is divided into three area types
(Area1,Area2 and Area3) as illustrated in Figure 2. Notice
that there are two places on the map that represents together
Area2. The four areas are defined by four vectors denoted by
innerVector1, innerVector2, outerVector1, and outerVector2.

FIGURE 2. Illustrating step I and step II of the proposed method
(i.e., dividing the surface into four areas).

The β angle is a main component of the method as it
determines the surface division and consequently how the
cells’ probabilities will be updated. As shown in our eval-
uations, β can be predetermined for a specific dataset to
obtain improvement in prediction accuracy (for the tested
datasets the best results obtained for β = 60◦). In addi-
tion, we propose adjusting β dynamically by maintaining
a regression tree [40] model that is updated over time and
aim to predict the optimal β. The features for predicting β
were extracted from the prevSeq vector and the probVector
vector as presented in Table 1. The prediction model is
continuously updated with the observed optimal β value of
previous locations.
Step III (Calculating the Probability Update Coefficients):

We define two probability update coefficients (i.e., boost-
ing coefficients). Based on the assumption that there is a
higher chance that the user will continue his or her movement
according to the calculated trendPrevSeq, we update the prob-
abilities of the cells in Area1 and Area2 accordingly (i.e., cells
in Area1 are updated with the highest coefficient).
In addition to the fact that we aimed to boost the probabili-

ties of the cells in the direction of the user, we wanted it to fit
the current scenario and existing probability distribution. The
guiding thought was that if a prediction is in Area1 and higher
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TABLE 1. Extracted features for predicting beta.

than the average probability of the prediction in probVector,
it will be able to bypass the max probability (i.e., maxProb)
in the probVector. We defined the average as the geomet-
rical average of the highest and the lowest (=

√
maxProb ·

√
minProb). In Area2, though, the situation is a bit different,

because we want it to have priority over Area3 but remain
under Area1. Thus, the cells in Area2 are able to bypass the
maxProb only if it is above the average of the highest priority
and the median (=

√
maxProb ·

√
medianProb).

If a certain probability cell X is equals to the geometrical
average of the probVector it will be able to be equal to the
maxProb. Thus:

X =
√
maxProb ·

√
minProb;X

·BoostingCoefficient1 = maxProb

⇓

BoostingCoefficient1 ·
√
maxProb ·

√
minProb

= maxProb

⇓

BoostingCoefficient1 =

√
maxProb
minProb

the same idea work for Area2 except that X should be at
least

√
maxProb ·

√
medianProb which is the geometrical

mean of the upper half of the probability vector therefore
BoostingCoefficient2 will be:

BoostingCoefficient2 =

√
maxProb

medianProb
Step VI (Updating the Probability Vector): In the last

step, the probabilities of the cells in the probability vec-
tor probVector are updated according to the area (Area1,
Area2, or Area3) and the calculated boosting coefficients.
After applying the boosting coefficients, we normalize the
probabilities for them to sum up to 1 again.

IV. EVALUATION OF SPEED AND DIRECTION
A. EXPERIMENTAL SETUP
In the experiments conductedwe set the algorithm parameters
as follows:

1) The time window was set to 15 minutes which was
assumed to be sufficient for our datasets.

2) The cellSizewas chosen to be 100×100meters which is
considered in many use-cases to be an accurate predic-
tion but still takes into account the inherent GPS sensor
error.

3) In order to reduce the impact of inaccurate location
reading by the sensors [41], we consider movements
to be transitions with a distance of two cells or more
(i.e., minDistance =

√
2 · cellSize; the cell’s diagonal).

4) Do et al. [3] discussed the difficulty of predicting user
location for a specific time period in the future, i.e., pre-
dicting not only where a user will be next, but also
predicting exactly when the user will be there. In our
evaluation we attempt to predict the location of a user
one hour ahead.

5) Based on previous work we set the trajectory size of the
N -Markov model to 2 (N = 2). In addition, in order to
predict one hour ahead we considered user transitions
every 30minutes. Bymultiplying theMarkov transition
matrix, we were able to obtain one hour trip predictions
as discussed in [3].

Because users tend to spend most of the time in the same
locations (e.g., home, work), predicting cases in which the
user did not move from the current location can provide
us with an overall accuracy rate approaching 80% [42].
Therefore, our evaluation focuses on improving the cases
where the user moved to other locations (cells) which are
more difficult to predict. We assume that when predicting the
stay cases the radius is fixed (and equal to one) around the
current cell of the user and therefore the accuracy rate is not
affected by the radius prediction methods.

The evaluation was conducted chronologically, such that
at the end of each week the location prediction model was
updated with the observations from the last week, and the
updated model was used for predicting the location during the
next week. for evaluation purposes we took 30 weeks from
each dataset (BGU and Sherlock). The dynamic boosting
model (β and the boosting coefficient) was updated with each
prediction.

Grid-based methods, in particular, tend to split places into
several different cells in cases in which the point of interest
encompasses two or more cells. Previous methods of grid-
based algorithms try to overcome this problem by giving a
predefined fixed radius surrounding the predicted cell that
will cover cases in which a POI is split. Krumm et al. [2]
showed that radiuses of different sizes produce different
levels of prediction accuracy, and therefore the size of the
radius needs to be determined based on the accuracy and error
required; thus, the evaluation has to conclude several possible
radiuses.We refer to this approach as the fixed-radiusmethod,
which means that if the current fixed radius is 200 meters and
the actual location of the user is anywhere within 200 meters
from the center of the predicted location cell it will be counted
as a correct prediction. For example, if the radius is set to 0,
the actual location has to be the exact predicted location cell in
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order to be counted as a correct prediction. The fixed radiuses
we evaluated are fixedRadius ∈ 0, 100, 200, 300, 400, 500.

In our evaluation, we divided the day into six parts (i.e.
POD) four hours each, and used them as contextual features
for each algorithm. This was done by creating different pre-
diction sub-models of the same type (i.e., algorithm) for each
combination of day and part of day (POD). Smaller PODs
will result in a larger amount of sub-models and take a longer
time to converge, but on the other hand, smaller PODs result
in a more accurate prediction model.

In order to understand the effectiveness of the proposed
method we implemented three different grid-based location
prediction algorithms. The first is the prediction of fre-
quent cells, presented by Song et al. [17], the second is
a Markov chain predictor widely used in location predic-
tion research [6], and the third is matrix factorization [22].
We applied the proposed method presented in Section 4 on
the predictions made by these location prediction algorithms.

B. DATASETS
We tested the proposed method using two different datasets
collected in our research labs at the department of software
and information systems engineering, Ben-Gurion University
of the Negev. Different attributes of the two datasets are
presented in Table 2.

TABLE 2. Description of the datasets.

1) BGU
The first dataset contains data collected from 20 Android
mobile device owners (students at Ben-Gurion University)
over several months in 2015 in the city of Beer-Sheva, Israel.
The size of the city is approximately 8× 8.5 kilometers, and
the area is divided into 80× 85 cells, each measuring 100×
100 meters. During the experiment the participants were
asked to turn on their GPS, and using a dedicated application,
we tracked their device every five minutes, resulting in an
average number of 2,575 location samples per user permonth.

2) SHERLOCK
The second dataset is a public dataset collected by
Mirsky et al. [43] and contains data from 32 users in the

city of Jerusalem, Israel during 2015. We divided the map
to 250×100 cells of 100×100 meters each. The participants
were given a Galaxy S5 and were asked to use it as their main
phone and leave the GPS on asmuch as possible. The location
samples were taken every minute, resulting in an average
number of 10,568 location samples per user and month.

Table 2 summarizes the characteristics of the two datasets.
The table contains the average number and standard deviation
(in parenthesis) of hours with transmitted data per day, along
with the number of cells, sampling interval, number of users,
and map coordinates.

C. RESULTS
We present the results for the following research questions.

Research Question I: Does comparing the distribution
of ’predicted cells’ over Area1, Area2, and Area3 with the
distribution of ’actual cells’ provide the motivation for
using dynamic updating of the probabilities?

In order to demonstrate the motivation for the proposed
approach, in this initial research question we compare the
distribution of predicted cells (by the grid-based location
prediction algorithms) over Area1, Area2 and Area3 with the
distribution of actual cells (i.e., actual location of the user
after one hour).

The mean probability of predicted cells, calculated over all
of the predictions in the test set, in Area1, Area2, and Area3
(denoted as ’Predicted’) and the distribution actual loca-
tion/cells over Area1, Area,2 and Area3 (denoted by ’Actual’)
for each of the datasets (BGU and Sherlock) and for the
evaluated grid-based algorithms are presented in Table 3.

TABLE 3. Distribution of users’ predicted vs. actual location in Area1,
Area2, and Area3 (β = 60).

Based on the observed mean probability distribution of
the algorithms, the following observations can be made.
Predictions produced by the frequent cells model usually high
in Area3 that is opposite to the user’s trajectory. The mean
probability of predictions by the Markov model in BGU is
highest probability cell is in Area1; however, it can be seen
that the mean probability of predictions in Area3 is the second
highest and very close to Area1. In addition, it can also be
observed that in 51% of the cases the actual location of the
user is in Area1; i.e., within the user’s general direction.
The same observation can also be seen in the BGU matrix
factorization, only 40% of the cases the predicted cell is in
Area1 while in actual it supposed to be 46% thus giving us the
motivation to enhance theArea1 probabilities. In the Sherlock

21216 VOLUME 7, 2019



I. Hazan, A. Shabtai: Improving Grid-Based Location Prediction Algorithms by Speed- and Direction-Based Boosting

dataset with the Matrix Factorization it is the only case in
which the Predicted is higher than the actual in Area1 and the
other way around on Area3. In that case we can assume that
our method would not work well as Area1 is already boosted.
Therefore, these results indicate that the direction of the

user at the time of prediction is not correlated to the proba-
bility distribution, thus we can improve the predictions and
provide the motivation for dynamically updating the predic-
tions based on the user’s direction.
Research Question II: How effective is the pro-

posed dynamic boosting approach at improving location
prediction?

In Table 4 we present the mean accuracy of predicting
the correct cell any boosting, with constant boosting and
with the dynamic boosting approach for each combination of
the datasets (BGU and Sherlock) and grid-based algorithms
(frequent cells, Markov chain and matrix factorization). The
results are averaged over all the fixed radiuses. We define a
prediction as accurate (successful) if the actual location falls
within the predicted area (the cell with the highest probability
after the boosting process is applied).

TABLE 4. Mean accuracy of predicting the correct cell, without any
boosting, with constant and with the dynamic boosting approach
(∗indicates significant difference according to paired t-test).

We conducted a paired t-test comparing the mean accuracy
of each user and week of location prediction with and without
the dynamic boosting method (p-value < 0.01). The results
show that the improvement in the frequent cells method with
both datasets, and the Markov model with dataset BGU, are
significant. For the Markov model with dataset Sherlock,
the change in the mean accuracy was insignificant.

We set the constant boosting to be BoostingCoefficient1 =
3 and BoostingCoefficient2 = 2, based on the idea to give
suitable boosters to the overall average cases and see what is
the performance.

We can also observe that the improvement in the fre-
quent cells method is much higher (16.9% and 11%) than
in the Markov model (6.5% and 8.1%) and the last from
Matrix factorization (4.8% and −2.4%). This observation
can be explained by the fact that the Markov model encap-
sulates information on the transitions of users and there-
fore is able to provide better predictions itself, and has
less place for improvement and the negative results in the
Sherlock with theMatrix factorization we see as we expected.

Moreover, the Dynamic boosting is almost constantly better
than the Constant (7.5% average improve and 3.9% average
improve respectively).

However, on the other hand, since by providing predic-
tion, the Markov model requires previous information on
the user’s transitions on the specific current cell of the user,
the number of predictions that can be made was relatively low
compared to the number of predictions made by the frequent
cells model. The matrix factorization method was able to
complete some of the data thus havemore predictions than the
Markov chain model but still less than frequent cells (a total
of 52,384 in frequent cells and 25,547 for matrix factorization
vs. 15,417 in the Markov model). Note that the differences in
the number of predictions is because each algorithm requires
different data for making predictions.

Thus, we conclude that by combining the two grid-
based location prediction models with the dynamic boosting
approach, we can achieve more accurate predictions, and at
the same time, obtain a large number of predictions. This can
be accomplished by using the Markov model for predicting,
and in cases in which a prediction cannot be made, applying
the matrix factorization model and lastly use frequent cells
model.

Research Question III: Does the dynamic boosting
approach help overcome the cold start problem associated
with prediction algorithms?

As the prediction algorithms evaluated (and other learning
algorithms) rely on sufficient data to provide accurate pre-
dictions, we wanted to understand if the proposed dynamic
boosting method also improves the predictions during the ini-
tial phase of applying the location prediction algorithm when
the training data is limited (i.e., the cold start). Therefore,
we analyzed the performance of the prediction algorithms on
the two datasets during the first ten weeks of the experiment
as presented in Table 5.

TABLE 5. Mean accuracy of predicting the correct cell, without the
dynamic boosting approach and with the dynamic boosting approach,
calculated for only the first ten weeks (∗indicates significant difference
according to paired t-test).

As can be seen in Table 5, the results are consistent with
the previous results, indicating that the proposed dynamic
boosting method can improve location prediction algorithms
even during the initial phase in which the training set is
limited.

VOLUME 7, 2019 21217



I. Hazan, A. Shabtai: Improving Grid-Based Location Prediction Algorithms by Speed- and Direction-Based Boosting

V. CONCLUSION AND FUTURE WORK
In this research we attempt to leverage the current direction
of the user in order to improve location prediction algo-
rithms. The method measures the movement direction of
the user, calculates the boosting coefficients according to
the probability distribution in the vector, uses a regression
tree to predict the β angle that splits the map (dividing
the map into three types of areas), and updates the predic-
tion’s probability accordingly. We show that we can improve
the predictions of the three location prediction algorithms
evaluated by using the proposed method on non-stationary
cases; we observed an accuracy improvement of 7.5% on
average.

In the future we intend to apply this method on additional
grid-based location prediction algorithms (e.g., neural net-
work), POI-based location prediction algorithms, and use it
to improve the next location radius such as done in [44] in
addition to the next location cell.
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