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ABSTRACT Classification of cancer subtypes is of paramount importance for diagnosis and prognosis
of cancer. In recent years, deep learning methods have gained considerable popularity for cancer subtype
classification, however, the structure of the neural network is difficult to determine and the performance
of the deep network depends largely on its structure. To address this problem, a flexible neural tree (FNT)
may be used. FNT is a special neural network with the advantage of automatic optimization of structure and
parameters which cannot be used for multi-class classification. In this paper, a deep flexible neural forest
(DFNForest) model is proposed, a novel ensemble of FNT model to aid with the classification of cancer
subtypes. The proposed DFNForest model differs from the conventional FNT model because it transforms
a multi-classification problem into many binary classification problems for each forest. We explore the
cascade structure of DFNForest to deepen the flexible neural tree model so that the depth of the model
is increased without introducing additional parameters. In addition to the DFNForest model, this paper
proposes a combination of fisher ratio and neighborhood rough set for dimensionality reduction of gene
expression data to obtain higher classification performance. The experiments on RNA-seq gene expression
data show that our gene selection method has higher accuracy with fewer genes and the proposed DFNForest
model has better performance for classification of cancer subtypes as compared to the conventional

methods.

INDEX TERMS Cancer subtypes, cascade forest, classification, gene selection, machine learning.

I. INTRODUCTION

It is well known that cancer is a heterogeneous disease
with different pathogenesis [1], [2]. Therefore, cancer has
multiple molecular subtypes and its genesis and targeted
treatments are different [3]-[5]. Recently, with the advent
of high-throughput profiling technology, a large amount of
genomic and transcriptomic data has been generated. This
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has provided an unprecedented opportunity to study can-
cer subtypes at the molecular level. Gene expression data
usually consists of thousands of genes, however, the num-
ber of available samples is small. Among the thousands
of features in gene expression data, only a small fraction
of genes are associated with cancer subtypes, and the rest
are redundant or noisy features. This converts the use of
gene expression data for cancer subtype classification into
a dimensionality reduction problem. The goal is to make
the classification process efficient by using fewer features
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while attempting not to compromise on efficiency. Learning
knowledge from gene expression data is a hot research topic
and has inspired many applications in medicine [6], [7].

Gene selection methods may be separated into three cat-
egories: filter, wrapper and embedded methods [8]. Filter
methods focus on using a certain indicator to measure the
close relationship between each attribute and sample category
and sorting them according to the degree of association from
large to small. Finally according to a preset threshold or the
top k attributes to form a feature subset. Golub [9] proposed
the use of signal-to-noise ratio (SNR) for gene selection and
selected 50 genes for the diagnosis of acute lymphoblastic
leukemia based on gene expression profiling. Zhu et al. [10]
proposed to use t-test for overcoming the sparsity problem
for feature selection for gene expression-based classification.
Goh et al. [11] combined the Pearson correlation coefficient
and signal-to-noise ratio with an evolving classification func-
tion to select minimum number of genes for gene expression-
based classification. Muharram and Smith [12] proposed
an effective Gini Index based approach for gene filtering.
Liao et al. [13] proposed the use of Wilcoxon rank sum test
along with support vector machine for assessing the impor-
tance of each gene. Kononenko [14] proposed the Relief
method for gene selection, which is widely used for its excel-
lent performance. The wrapper methods generally use a clas-
sifier to measure the performance of a feature subset, and then
adjust the feature subset according to the result. The process
is repeated until the optimal feature subset is obtained. In this
regard, Li [15] combined genetic algorithm with K-nearest
neighbor method to select feature genes. Khan ef al. [16]
proposed a hybrid selection method that comprised of a
neural network and random feature extraction. The embed-
ding method refers to embedding the selection of feature
subsets into the training process of the classifier, which can
be regarded as a combination of classifier training and gene
selection process. Guyon et al. [17] proposed a recursive
feature elimination (SVM-RFE) algorithm for gene selection,
which is successfully applied to gene selection [18]-[20].

The rough set theory pioneered by Pawlak [21] has been
successfully applied in bioinformatics to select informative
genes [22], [23]. However, it has an obvious disadvantage that
makes it unsuitable for processing continuous gene expres-
sion data. To address this shortcoming, Hu et al. [24], [25]
proposed a neighborhood rough set model to process both
discrete and continuous data sets. Directly using the neigh-
borhood rough set model to eliminate redundant genes results
in high calculation cost. To remedy this problem, we propose
to use fisher ratio along with the neighborhood rough set
model. This helps in removing a large number of unrelated
genes, reduce the space-time consumption of the neighbor-
hood rough set reduction process and reduce the training time
of the classifier.

Neural networks have recently gained prominence in clas-
sification problems including cancer subtype classification
[26], [27]. Neural networks generally result in high classi-
fication accuracy, which is purely dependent on the network
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structure. Unfortunately, there is no laid down procedure for
selection of network structure. It depends upon the experi-
ence of the researcher and requires multiple tests for finding
appropriate settings for their parameters. Chen [28], [29] pro-
posed the flexible neural tree (FNT) which is a special neural
network with automatic optimization of structure and param-
eters. FNT also has a few shortcomings related to multi-class
classification. Firstly, there is a single root as output node
making it unsuitable for multi-class classification. Secondly,
to improve classification accuracy performance, it is neces-
sary to deepen the model. Also, the cost of the parameter
optimization algorithm increases significantly with increas-
ing depth of the model.

Inspired by Deep Forest [30], this paper proposes to use
deep flexible neural forest (DFNForest) for classification
of cancer subtypes. DFNForest can directly handle multi-
classification problems and deepen the model. The main
idea of DFNForest is to transform a multi-classification into
many binary classification problems in each forest. Mean-
while, through the cascade structure, the depth of the model
is increased without introducing additional parameters. The
main contributions can be summarized as follows. 1) propos-
ing the use of fisher ratio in combination with neighbor-
hood rough set to select most informative genes among a
given gene expression. The fisher ratio is used to eliminate
invalid genes and then neighborhood rough set is applied to
reduce redundant genes. 2) proposing a model called DFN-
Forest, which successfully solved the problem of FNT han-
dling multi-classification problems and increased the depth
of model. DFNForest transforms a multi-classification into
many binary classification problems in each forest. Mean-
while, through the cascade structure, the depth of the model is
increased without introducing additional parameters. 3) con-
sidering a small amount of gene expression data, so the
number of cascading levels of DFNForest can be adaptively
determined. When the accuracy of the next level no longer
increases, it will stop increasing the number of levels.

The paper is organized as follows. The proposed gene
selection method is introduced in Section 2. The classification
with deep flexible neural forest is presented in Section 3.
Section 4 presents the results of the proposed algorithm in
comparison to state of the art methods and Section 5 pro-
vides a detailed discussion. Finally, the paper is concluded
in section 6.

Il. GENE SELECTION METHODS

Gene expression data generally comprises of thousands of
genes, however, the number of available samples is usually
small. Among thousands of features in gene expression data,
only a few genes are actually associated with cancer subtypes
whereas the rest may be considered as redundant or noisy
features. Therefore, gene selection can be considered as
dimensionality reduction problem that attempts to select
important genes while maintaining the classification accuracy
of original genes [31]. In the subsections below, we outline
the proposed methodology, comprising of a combination of
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fisher ratio and neighborhood rough set for the purpose of
gene selection.

A. FISHER RATIO

Fisher ratio [32] is a ratio between-class distances to with-
in class distances. If there are two classes in a dataset, each
sample can be labeled as ¥ € {41, —1} and gene express
vector i can be defined as x; = {x{, ...,x,il}. For each
gene i, the standard deviation ai+ (resp.,0; ) and the mean
,uf(resp.,ulf ) are calculated and the fisher ratio F; is calcu-
lated as:

=)
iz T T5 o -5
(Gi+)2 + (Ui )?
Gene with highest F; value is the most informative and the
expression levels differ most on average in the two classes
while also favoring those with small deviation in the respec-

tive classes [33]. Then the genes with high F; values are
selected as the top features.

ey

B. NEIGHBORHOOD ROUGH SET

A neighborhood rough set (NRS) model [24], [25] can be
used for processing of both discrete and continuous data
sets while retaining information necessary to classify data
accurately. Given a set of samples U = {x1, x2, ...xy}, with
A being a set of real-type features describing U, and D a
decision attribute. If A generates a family of neighborhoods
on the domain, it is called NDT = {U, A, D} a neighborhood
decision system. If D divides U into N equivalence classes:
X1,Xo,...,Xn, VB C A, then the lower and upper approxi-
mations of decision D with respect to B can be represented as:

N

NgD = | JNpX; )
i=1
N

NgD = | JNpX; 3)

i=1
where NpX = {x;|8p(x;) € X, x; € U}, NgX = {x;|8p(x;)) N
X # ¢,x; € U}, ép(x;) is a neighborhood information
particle generated by attribute B and measure A.

The lower approximation of decision D is also called the
decision positive domain, which is denoted as POSp (D) [34].
The size of the positive domain reflects the degree of separa-
bility of the classification problem in a given attribute space.
The larger the positive domain, the fewer the overlapping
of class boundaries. This ensures a better description of a
classification problem using the selected set of attributes.
Therefore, the dependency of the decision attribute D on the
condition attribute B is defined as

yB(D) = Card(N gD)/Card(U) “

Given a neighborhood decision system NDT = {U, A, D},
B C A, Va € A — B, the importance of a relative to B can be
defined as

SIG(a, B, D) = ypua(D) — yp(D) &)
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Based upon the attribute importance index, a greedy
attribute reduction algorithm is utilized. The algorithm takes
the empty set as the starting point, calculates the attribute
importance of all the remaining attributes each time, and
selects the attribute with the largest attribute importance value
to join the reduction set. This process is repeated until all
remaining attributes have an importance of 0. This means that
if new attributes are added, the system’s dependency func-
tion values no longer change. The forward search algorithm
ensures that important attributes are added to the reduction
set first, so that important features are not omitted.

C. THE PROPOSED GENE SELECTION METHOD
COMBINING FISHER RATIO AND NEIGHBORHOOD
ROUGH SET

The fisher ratio method can effectively deal with noise in the
gene expression data. It filters the noisy genes according to
its contribution to classification, and thus effectively helps to
identify the cancer subtype genes. The neighborhood rough
set has the characteristics of not requiring discretization of
continuous data and avoids information loss caused by data
discretization, which can eliminate redundant genes.

If only fisher ratio is used as gene selection method, then
the top k features are selected. Fisher ratio does not consider
the relationship between genes and may select high correlated
redundant genes, which not only increase the amount of
calculation but also leads to incorrect classification results.
When the neighborhood rough set is directly used to eliminate
redundant genes, as the number of genes increases, the com-
putational cost of the algorithm can be higher. In this paper,
a feature gene selection algorithm based on fisher ratio and
neighborhood rough set is proposed. The proposed algorithm
effectively removes a large number of unrelated genes, reduce
the space-time consumption of neighborhood rough set and
training time of classifiers. The specific description can be
seen in Algorithm 1.

Algorithm 1 Gene selection Using Fisher Ratio and Neigh-
borhood Rough Set
Input: NDT = (U, A, D)
Output: Reduction of red.
Step 1: Using fisher ratio to select the top k features as A;
Step 2: Va € A: calculate neighborhood relationships N,;
Step 3: § — red;
Step 4: For any a; € A — red
Calculate SIG (a;, red, D) = Vyequa (D) — Yrea (D)
Step 5: Select ay to satisfy:
SIG (a;, red, D) = max(SIG (a;, red, D))
Step 6: If SIG (a;, red, D) > 0,
red U ay — red
go to Step 3
else
return red, end
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IIl. CLASSIFICATION WITH THE PROPOSED DEEP
FLEXIBLE NEURAL FOREST MIODEL

In this section, a brief description of flexible neural tree
followed by proposed flexible neural tree architecture into a
deep flexible neural forest is presented.

A. FLEXIBLE NEURAL TREE
The function set F and terminal instruction set T are used to
generate FNT model, which is defined as follows:

SANULxL ) (6)

where +;(i = 2,3,4,...,N) represents instructions of
non-leaf nodes with i parameters. x1,x; ..., X, are instruc-
tions of leaf nodes without parameters. To generate a flex-
ible neural tree consider a nonterminal instruction +;(i =
2,3,4,...,N), in which i values are randomly generated
for non-leaf node and connecting weights between children
[28], [29]. The following flexible activation function may be
considered for the flexible neural tree:

f@=0+e™™! 7

The output of a flexible neuron 4, can be produced as
follows.

S=FUT = {42, +3, ..

Z = Z Wi * Xj ®)
j=1

n

where x;(j = 1,2,...,n) are the inputs. The output of the
node 4+, is computed as
outy, = f(sumy) = (1 + e~ 5mm)~1 9)

Output layer

Second hidden layer

First hidden layer

Input layer X X X1 X X3

FIGURE 1. A typical representation of the FNT with function instruction
set F ={+,, +3, +34, +5), and terminal instruction set T ={x;, x5, x3}.

A typical representation of the FNT is shown in Figure 1.
The total output of the flexible neural tree can be recursively
calculated from left to right by the depth-first method [35].
This flexible neural tree model allows over-layer connections
and automatically select the structure, which is a sparse model
and can get good generalization performance. The process of
FNT optimization is mainly divided into two major steps: the
optimization of the tree structure, followed by the parameter
optimization. In this paper, the tree structure optimization
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algorithm is based on grammar guided genetic programming,
and parameter optimization algorithm using particle swarm
optimization.

B. TREE STRUCTURE OPTIMIZATION BY GRAMMAR
GUIDED GENETIC PROGRAMMING

This paper uses grammar guided genetic programming
(GGGP) to evolve the structure of FNT. An advantage of
using GGGP is that it is not hindered by the disadvantage
of having the function set and terminal instruction of the
same type [36]. This helps avoid the problem of generating
an invalid tree during crossover or mutation. A context-free
grammar G is defined by the 4-tuple: G = {N,T,P, X},
where N is called nonterminal characters, and 7T is a set of
terminals characters. The members of P are called rules of the
grammar. ¥ is the start symbol and an element of N. The rules
of the grammar are expressed as x—y, where x belongs to N
and y belongs to NUT. There are four basic steps to generate
grammar guided genetic programming:

(1) Initial population generation. In this step individ-
ual trees are generated randomly based on the grammar
model.

(2) Evaluate each tree in the current generation. The tree
has fitness values for each individual and hence they may be
evaluated.

(3) Use either reproduction, mutation or crossover to pro-
duce the next generation. Follow this up be evaluating all trees
in the next generation.

(4) Repeat until the best tree is found or termination criteria
is met.

C. PARAMETER OPTIMIZATION WITH PSO

To optimize the parameters values we have used particle
swarm optimization (PSO) algorithm [37]. Initially, the par-
ticles are generated randomly, and each particle represents a
potential solution. Each particle has a position vector b; asso-
ciated with it. The complete population of particles moves
through the problem space with a velocity a;. At each step,
a function f; representing the fitness value of the solution
is calculated to assess the suitability of the solution. Each
particle keeps track of its own best position, and the best
fitness of particle is stored in a vector p;. Moreover, the best
position among all the particles is stored as p,. At each time
step ¢, a new velocity for particle i is calculated by

ai(t + D)=a;i(t) + c1o1(pi(t) — bi(t))+c202(pg(t) — bi(1))
(10)

where ¢ and ¢, are random numbers in [0,1], ¢y and ¢; are
limited factors of position. Based on the changed velocities,
each particle changes its position according to the following
equation:

bi(t + 1) = bi(t) + ai(r + 1) Y
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FIGURE 2. Illustration of the cascade forest structure. Three forests are generated by different grammar, the first forest (black) use function set F of
{+2, +3, +4), the second forest (green) use {+,, +4, +5), and the last forest (blue) use function set F of {+3, +4, +5).

D. THE PROPOSED DEEP FLEXIBLE NEURAL

FOREST MODEL

Flexible neural tree is a special neural network with automatic
optimization of structure and parameters. However, it also
faces problems. First, there is only one root node as the output
node, which is not suitable for directly dealing with multi-
classification problems. Secondly, in order to obtain better
performance, it is necessary to deepen the model. However,
this will result in an increase in the number of parameters,
thus resulting in the high cost of the parameter optimization
algorithm. To solve the above problems of the flexible neural
tree, we propose a deep flexible neural forest (DFNForest),
a novel flexible neural tree ensemble method to classify
cancer subtypes.

Representation learning and model complexity are the rea-
sons because of which deep neural networks have achieved
such great success in visual and speech recognition tasks [30].
Representation learning refers to the processing of features
layer by layer. In order to make FNT deeper without adding
additional parameters, we adopt the structure of cascade for-
est. As illustrated in Figure 2, by processing the features layer
by layer, new features can be obtained, and new features along
with the original features are passed as input to the next layer.

In proposed model, each level is an ensemble of FNT.
Although decision tree is used in multi-grain cascade forest
(gcForest), the obvious disadvantage of decision tree is that
it cannot be directly applied to continuous data and needs to
discretize the data first. This may result in loss of information.
The gene expression data is continuous data, so FNT is more
suitable as a base classifier. Proposed method maintains the
following advantages of FNT: 1) FNT is a sparse model and
allows cross-layer connections, which avoids overfitting and
achieve better generalization performance. 2) FNT automat-
ically optimizes the structure and parameters. In addition,
the proposed ensemble learning improves overall perfor-
mance through multiple FNTs. To improve the diversity of
ensemble learning, we generate different structures of FNT
through different grammars. For simplicity, suppose that we
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use three forests and two FNTs in each forest. As is illus-
trated in Figure 2, the first forest uses function set F of
{42, +3, +4}, the second forest uses {+7, +4, +5}, and the
last one uses {+3, +4, +5}. In order to solve the problem of
FNT dealing with multi-classification problems, the M-ary
method is used to transform the multi-class problem into
several two-class problems in a forest. For example, if it is a
four-class problem, each forest needs to contain k = log, 4 =
2 FNTs, so the number of trees in the forest is determined by
the classification problem.

Forest [0.8] 10.1]

Concatenate

—> —> [08,..,0.1]

Class Vector
of x

FIGURE 3. lllustration of class vector generation. Each FNT will generate
an estimated value and then concatenate together.

As is demonstrated in Figure 3, given an example, each
FNT will generate an estimated value. The estimated value
forms a class vector concatenated with the original input
feature vector as the input to the next level. For example,
suppose there are four classes, then each forest will produce a
two-dimensional class vector; thus, the next level of cascade
will receive 6 (2 x 3)augmented features. The training set
will be divided into two parts, one for training and one for
validation. When a new level is added, the entire cascade
will be verified by the validation set. When the accuracy no
longer increases, the levels will stop increasing. In this way,
the number of cascade levels is determined automatically.
This allows it to be used on datasets of different sizes, suitable
for small-scale gene expression data.

The DFNForest is a novel deep learning model that pro-
vides an alternative to deep neural networks. Compared with
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deep neural network, one of its significant advantages is the
automatic design of the structure. The structure of FNT in
each forest is automatically selected by the tree structure
optimization algorithm, and the cascade levels are determined
adaptively. DFNForest is an ensemble of FNT, however,
it resolves the shortcoming of FNT to deal with multi-
classification problems by converting it into many binary
classification problems in each forest. Through the cascade
structure, the depth of the model is increased without intro-
ducing additional parameters.

IV. EXPERIMENTAL RESULTS

A. DATASETS AND PARAMETERS

We conducted cancer subtype predictions on RNA-Seq gene
expression datasets of three cancer types (BRCA (breast inva-
sive carcinoma), GBM (glioblastoma multiforme), LUNG
(lung cancer)) downloaded from The Cancer Genome Atlas
(TCGA) [38]. Specifically, in BRCA data, there are four
basic subtypes Basal-like, HER2-enriched, Luminal-A and
Luminal-B in 514 samples. In GBM data, there are Classical,
Mesenchymal, Neural and Proneural subtypes in 164 samples
whereas for the LUNG data, there are Bronchioid, Magnoid
and Squamoid subtypes in 275 samples. The details of three
cancer types are shown in Table 1. The above-mentioned
data were logarithm transformed and we filtered out genes
with an average of less than 5.0 and a variance of less than
1.0 [39]. The remaining genes were used for later analysis.
For each dataset, the corresponding clinical data is down-
loaded from TCGA and used the clinical subtype informa-
tion to label each sample, as this provided the reference
(ground truth) for assessing the performance of the proposed
algorithm. Three different forests were developed for exper-
iments. For these three forests, the function set F was set to
{42, +3, +4}, {42, +4, +5}, {+3, +4, +5} respectively. The
parameters used for FNTs are listed in Table 2.

TABLE 1. The detail of the three cancer types.

Dataset Sample Gene Class
BRCA 514 4247 4
GBM 164 3398 4
LUNG 275 4596 3

TABLE 2. Parameter settings of FNT.

Parameter value
Population size 50
Crossover probability 0.4
Mutation probability 0.01
Cl 2.0
C2 2.0
Vmax 2.0

B. GENE SELECTION AND CANCER SUBTYPE
CLASSIFICATION ON BRCA

The BRCA dataset was used to test both the proposed gene
selection method and classification performance of proposed
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DFNForest model. To test the performance of proposed gene
selection method, k-nearest neighbor (KNN), support vec-
tor machine (SVM), multi-layer perception (MLP), random
forest (RF) and multi-grained cascade forest (gcForest) clas-
sifiers are used. We used raw data as the input as well as
the data obtained from fisher ratio, neighborhood rough set
(NRS), minimal redundancy maximal relevance (MRMR)
and from fisher ratio combined with neighborhood rough set.
Cross-validation results indicated that the best performance in
BRCA subtype classification experiment was obtained when
the parameter £ in fisher ratio is set to 30 and the neighbor-
hood parameter is set to 0.35. Next, the performance of DFN-
Forest is compared with KNN, SVM, MLP, RF and gcForest
classifiers. To be fair, 5-fold cross-validation to assess the
overall accuracy of the different methods and randomly select
4/5 samples for training data and 1/5 samples for testing. The
experimental results of classification accuracies are shown
in Table 3.

TABLE 3. Classification accuracies for the selected BRCA genes.

Method Gene KNN SVM MLP RF  gcForest DFNForest
Original data 4247 0.816 0.888 0.870 0.880 0.880 0.928
Fisher ratio 30 0.880 0.888 0.880 0.896 0.920 0.928
NRS 8 0.816 0.816 0.816 0.870 0.880 0.896
MRMR 28 0.888 0.896 0.888 0.896 0.928 0.930
Fisher + NRS 7 0.880 0.904 0.896 0.904 0.928 0.936

As we can see, fisher ratio selects the top 30 genes from
4247 genes. After selecting the informative genes using the
fisher ratio, classification accuracies increase in most clas-
sifiers as compared to when the original data was used.
This indicates that fisher ratio can remove redundant genes.
NRS selects 8 informative genes and therefore the number
of features is greatly reduced however this results in low
classification accuracy. This may be associated to elimina-
tion of non-redundant genes in the process of dimensionality
reduction. The classification accuracy of MRMR method is
higher, however, the number of genes is more than proposed
gene selection methods. When the 7 selected genes obtained
by the combination of fisher ratio and neighborhood rough set
are used, it achieves the highest classification accuracy with
the fewest number of genes. This may be attributed to removal
of noise or redundant information from the sample dataset.
A detailed description of the selected 7 significant genes
of breast cancer subtypes is shown in Table 4. All of these
selected genes have been identified in other studies [40], [41]
to be biologically relevant to BRCA cancer.

Compared with the conventional methods KNN, SVM
MLP and RF, gcForest and DFNForest have higher accuracy.
DFNForest (93.6%) performs better than gcForest (92.8%),
which may be associated to the fact that DFNForest is
more suitable for processing continuous data. Furthermore,
to evaluate the overall performance of KNN, SVM, MLP, RF,
gcForest and DFNForest on the BRCA dataset, the average
precision, recall and F-1 score of each method were consid-
ered. As shown in Figure 4, DFNForest model has achieved
good performance in the BRCA subtype classification.
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TABLE 4. Descriptions of the BRCA genes selected by fisher ratio and
neighborhood rough set.

TABLE 5. Classification accuracies for the selected GBM genes.

Method Gene KNN SVM MLP RF  gcForest DFNForest

Gene name Gene description
ERBB2 ErbB2 is a 185kDa cell membrane receptor encoded by
the proto-oncogene erbB-2.
TMEM45B Transmembrane protein 45B is a member of TMEMs.
AURKA AURKA acts as an enzyme to directly or indirectly acti-
vate an oncogene or inactivate a tumor suppressor gene.
FOXC1 FOXCI protein activates transcription by a promoter or
other transcription factor acting on target cells.
CEP55 CEPS55 is a mitotic phosphoprotein that plays a key role in
cytokinesis, the final stage of cell division.
ESR1 ESR1 gene mutation is closely related to ER-positive
breast cancer, and ER is a nuclear protein encoded by
ERS1 gene.
SFRP1 The SFRP1 gene is one of the secreted glycoprotein fam-
ilies and is currently recognized as an epigenetic marker.
Its epigenetics involves multiple tumors.
0.8 —
0.6 —
[ K
04 —| N svM
. Ve
0.2 — B RF
- gcForest
0.0 I DFNForest
Precision Recall F-1 score

FIGURE 4. Comparison of overall performance of KNN, SVM, MLP, RF,
gcForest and DFNForest on BRCA datasets. The average precision, recall
and F-1 score were evaluated.

C. GENE SELECTION AND CANCER SUBTYPE
CLASSIFICATION ON GBM

To test the performance of proposed gene selection method,
we compared it with the raw data, fisher ratio, neighborhood
rough set (NRS) and minimal redundancy maximal relevance
(MRMR). Cross-validation has shown that the parameter k
in fisher ratio is set to 28 and the neighborhood parameter
is set to 0.35, which gives better performance in the GBM
subtype classification experiment. The second part was clas-
sification experiments for comparing DFNForest with KNN,
SVM, MLP, RF and gcForest classifiers. We used 5-fold
cross-validation to assess the overall accuracy of the different
methods and randomly selected 4/5 samples for training and
1/5 samples for testing.

The experimental results of classification accuracies on
GBM datasets are shown in Table 5. It can be seen that fisher
ratio selects the top 28 genes from 3398 genes. Only selecting
the discriminant gene using the fisher ratio, the classification
accuracies increase in most classifiers compared with the raw
data. NRS selects 6 informative genes and the number of
features is greatly reduced but the accuracy is the lowest,
which may be that the genes associated with the classification
are also eliminated. The classification accuracy of proposed
gene selection method is just lower than MRMR, but the
number of genes is much smaller than MRMR. A detailed
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Original data 3398 0.684 0.632 0.658 0.684 0.737 0.816
Fisher ratio 28 0.710 0.658 0.684 0.710 0.763  0.816
NRS 6 0.658 0.658 0.632 0.684 0.710 0.737
MRMR 23 0.710 0.710 0.737 0.763 0.816 0.854
Fisher + NRS 6 0.710 0.684 0.710 0.737 0.763  0.842

TABLE 6. Descriptions of the GBM genes selected by fisher ratio and
neighborhood rough set.

Gene name Gene description

PLAUR This gene encodes the receptor for urokinase plasmino-
gen activator, given its role in localizing and promoting
plasmin formation, likely influences many normal and
pathological processes.

B4GALT1 This gene is one of seven beta-1,4-galactosyltransferase
genes. They encode type II membrane-bound glycopro-
teins that appear to have exclusive specificity for the donor
substrate UDP-galactose.

BASP1 This gene encodes a membrane bound protein with several
transient phosphorylation sites and PEST motifs. Alter-
native splicing results in multiple transcript variants that
encode the same protein.

ZDHHC22 Restricted expression toward brain.

SEPP1 This gene encodes a selenoprotein that is predominantly
expressed in the liver and secreted into the plasma. Mice
lacking this gene exhibit neurological dysfunction, sug-
gesting its importance in normal brain function.

CDH4 This gene is a classical cadherin from the cadherin super-
family. This cadherin is thought to play an important role
during brain segmentation and neuronal outgrowth.
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FIGURE 5. Comparison of overall performance of KNN, SVM, MLP, RF,
gcForest and DFNForest on GBM datasets. The average precision, recall
and F-1 score were evaluated.

description of the selected 6 significant genes of glioblastoma
cancer subtypes is demonstrated in Table 6. The location
where glioblastoma cancer occurs is the brain, and it has been
proved in other studies [42], [43] that the expression of the six
selected genes is closely related to the function of the brain.

Compared with the traditional methods KNN, SVM, MLP
and RF, gcForest and DFNForest have higher accuracy. DFN-
Forest (84.2%) performs better than gcForest (76.3%). Fur-
thermore, to evaluate the overall performance of KNN, SVM,
MLP, RF, gcForest and DFNForest on the GBM datasets,
we examined the average precision, recall and F-1 score of
each method. As presented in Figure 5, our proposed clas-
sification model has achieved better results as compared to
KNN, SVM, MLP, RF and gcForest methods.
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TABLE 7. Classification accuracies for the selected LUNG genes.

Method Gene KNN SVM MLP RF  gcForest DFNForest
Original data 4596 0.710 0.776 0.746 0.791 0.830 0.865
Fisher ratio 29 0.716 0.791 0.780 0.791 0.830  0.865
NRS 6 0.710 0.716 0.746 0.746 0.776  0.791
MRMR 26 0.780 0.791 0.780 0.806 0.830 0.880
Fisher + NRS 8 0.746 0.806 0.780 0.806 0.865 0.880

D. GENE SELECTION AND CANCER SUBTYPE
CLASSIFICATION ON LUNG

The proposed gene selection method is also tested on third
dataset along with existing and DFNForest classification
methods. It was observed that if parameter k in fisher ratio
is set to 29 and the neighborhood parameter is set to 0.35,
the best performance is obtained for LUNG subtype clas-
sification. For assessing the performance of the proposed
DFNForest classifier, 5-fold cross-validation was performed.
In each data set, 4/5 samples were randomly selected for
training and 1/5 samples for testing. The experimental results
of classification accuracy are shown in Table 7.

From Table 7, it is clear that classification accuracies
increase for most classifiers after dimensionality reduction
using fisher ratio. This is because of removal of noise in the
raw data, which affects the classification results. NRS selects
6 informative genes and the number of features is greatly
reduced but the accuracy is the lowest. Although classifica-
tion accuracy of MRMR method is higher, the number of
genes is more than proposed gene selection methods. In addi-
tion, the classification accuracy of proposed gene selection
method is higher with fewer number of genes. A detailed
description of the selected 8 significant genes of lung cancer
subtypes is shown in Table 8. The selected 8 genes have been
shown to be closely related to the occurrence and develop-
ment of cancer in other studies [44].

Compared with the conventional methods KNN, SVM,
MLP, RF and gcForest, the proposed DFNForest method has
higher classification accuracy. DFNForest with a classifi-
cation accuracy of 88.0% outperforms gcForest which has
a classification accuracy of 86.5%. Moreover, to compare
the overall performance of the proposed method, the results
are compared with KNN, SVM, MLP, RF, gcForest and
DFNForest on the LUNG datasets. Average precision, recall
and F-1 score for each method were ananlyzed. As shown
in Figure 6, proposed classification model has achieved good
performance in the LUNG subtype classification as it outper-
forms the state-of-the-art methods.

V. DISCUSSION

The DFNForest is a novel deep learning model that provides
an alternative to deep neural networks. Compared with the
deep neural network, one of its significant advantages is the
automatic design of its structure. The structure of FNT in
each forest is automatically selected by the tree structure
optimization algorithm, and the cascade levels are determined
adaptively. DFNForest is an ensemble of FNT, but it solves
the shortcomings of FNT. It is capable of dealing with multi-
classification problems by transforming a multi-classification
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TABLE 8. Descriptions of the LUNG genes selected by fisher ratio and
neighborhood rough set.

Gene name
HLA-DPA1

Gene description

HLA-DPAI belongs to the HLA class II alpha chain
paralogues. It plays a central role in the immune system
by presenting peptides derived from extracellular proteins.
RAC2 The encoded protein localizes to the plasma membrane,
where it regulates diverse processes, such as secretion,
phagocytosis, and cell polarization.

ARHGAP20  The protein encoded by this gene is an activator of RHO-
type GTPases, transducing a signal from RAP1 to RHO
and impacting neurite outgrowth.

FAM72B Broad expression in lymph node.

NAMPT The protein belongs to the nicotinic acid phosphoribosyl-

transferase family and is thought to be involved in many
important biological processes, including metabolism,
stress response and aging.

FGA This gene encodes the alpha subunit of the coagulation
factor fibrinogen, which is a component of the blood
clot.ITGB2 The encoded protein plays an important role in
immune response and defects in this gene cause leukocyte
adhesion deficiency.

DIAPH3 This gene encodes a member of the diaphanous subfamily
of the formin family. Members of this family are involved
in actin remodeling and regulate cell movement and adhe-
sion

ITGB2 The encoded protein plays an important role in immune
response and defects in this gene cause leukocyte adhesion
deficiency.
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FIGURE 6. Comparison of overall performance of KNN, SVM, MLP, RF,
gcForest and DFNForest on LUNG datasets. The average precision, recall
and F-1 score were evaluated.

problem into many binary classification problems in each
forest. Through its cascade structure, the depth of the model
can be increased without introducing additional parameters.
We compared DFNForest with KNN, SVM, MLP, RF and
gcForest classification methods on RNA-Seq gene expression
cancer datasets. We found: 1) the deep forest models (DFN-
Forest and gcForest) are superior to other traditional classi-
fication methods on most of cancer datasets. This may be
through a cascading structure, which can extract more mean-
ingful features layer by layer. 2) DFNForest outperformed
the gcForest on most of cancer datasets. This illustrates that
proposed model which utilizes FNT as the base classifier
is more suitable for processing continuous gene expression
data.

For the proposed combination of the fisher ratio and the
neighborhood rough set gene selection method, we found:
1) our proposed gene selection method performed better than
using fisher ratio and neighborhood rough set separately on
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cancer datasets, perhaps because these two methods comple-
ment each other very well. Their combination considers both
the relationship between genes and class labels and the rela-
tionship within genes. 2) the proposed gene selection method
outperformed than classic MRMR method on most cancer
datasets with fewer number of genes. Although proposed
gene selection method and DFNForest give better predictions
for cancer subtype than other methods, only RNA-seq gene
expression data is used in this paper. It has been demon-
strated that integration of different types of genomic data
contributes to cancer subtype classification [45]-[47]. There-
fore, we can consider using the proposed DFNForest model to
integrate different kinds of genomic data for cancer subtype
classification.

VI. CONCLUSIONS

Classification of cancer subtypes is important for the diag-
nosis and treatment of cancer. However, the RNA-seq gene
expression data used for cancer subtype classification has the
nature of high dimensionality and small sample size. In order
to avoid overfitting, we proposed the combination of the
fisher ratio and the neighborhood rough set to select the infor-
mative genes which can remove both noise and redundancy
from the dataset. Most importantly, a model called DFN-
Forest was proposed, which successfully solved the problem
of FNT handling multi-classification problems and increased
the depth of FNT. The main idea of the proposed DFNForest
is to transform a multi-classification into many binary classi-
fication problems in each forest. Meanwhile, through the cas-
cade structure, the depth of the proposed model is increased
without introducing additional parameters. DFNForest is well
suited for processing small-scale biology data because its
number of levels can be adaptively determined. Experiments
show that proposed gene selection method has higher accu-
racy even after dimensionality reduction and the proposed
DFNForest model has better performance in the classification
of BRCA, GBM, LUNG cancer subtypes as compared to con-
ventional methods. In conclusion, the proposed DFNForest
model provides an option to classify cancer subtypes by using
deep learning on small-scale biology datasets.
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