SPECIAL SECTION ON NEW TRENDS IN BRAIN
SIGNAL PROCESSING AND ANALYSIS

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 29, 2018, accepted January 15, 2019, date of publication February 12, 2019, date of current version March 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2896253

Improving the Response Time of M-Learning and
Cloud Computing Environments Using
a Dominant Firefly Approach

KAUSHIK SEKARAN', MOHAMMAD S. KHAN?, RIZWAN PATAN“3, AMIR H. GANDOMI*4,
PARIMALA VENKATA KRISHNA3, AND SURESH KALLAM3

! Department of Computer Science and Engineering, Vignan Institute of Technology and Science, Hyderabad 508284, India

2Department of Computing, East Tennessee State University, Johnson City, TN 37614, USA

3School of Computing Science and Engineering, Galgotias University, Greater Noida 201310, India

4School of Business, Stevens Institute of Technology, Hoboken, NJ 07030, USA

SDepartment of Computer Science and Engineering, Sri Padmavati Mahila Visvavidyalayam, Govt. State Level University, Tirupati 517502, India

Corresponding author: Rizwan Patan (prizwan5 @ gmail.com)

ABSTRACT Mobile learning (m-learning) is a relatively new technology that helps students learn and gain
knowledge using the Internet and Cloud computing technologies. Cloud computing is one of the recent
advancements in the computing field that makes Internet access easy to end users. Many Cloud services
rely on Cloud users for mapping Cloud software using virtualization techniques. Usually, the Cloud users’
requests from various terminals will cause heavy traffic or unbalanced loads at the Cloud data centers and
associated Cloud servers. Thus, a Cloud load balancer that uses an efficient load balancing technique is
needed in all the cloud servers. We propose a new meta-heuristic algorithm, named the dominant firefly
algorithm, which optimizes load balancing of tasks among the multiple virtual machines in the Cloud server,
thereby improving the response efficiency of Cloud servers that concomitantly enhances the accuracy of m-
learning systems. Our methods and findings used to solve load imbalance issues in Cloud servers, which will
enhance the experiences of m-learning users. Specifically, our findings such as Cloud-Structured Query
Language (SQL), querying mechanism in mobile devices will ensure users receive their m-learning content
without delay; additionally, our method will demonstrate that by applying an effective load balancing
technique would improve the throughput and the response time in mobile and cloud environments.

INDEX TERMS Cloud computing, dominant firefly algorithm, load balancing, mobile learning
(m-learning), virtual machines.

I. INTRODUCTION

Many computing methodologies are available in the com-
puting field for maximizing automation. Among those,
m-learning and Cloud computing are considered to be the
best service oriented computing technologies to automate
tasks in virtual machines as well as to enable users to access
information very efficiently. Also, m-learning offers cost-
effective solutions for a wide range of services.

Mobile learning and Cloud computing are two essen-
tial domains to explain distributed data sharing [23].
In m-learning, mobile devices used by end users are called the
m-learning clients. Through internet connectivity, m-learning
clients store and retrieve data from Cloud data centers. Hence,
m-learning systems integrated with Cloud data centers are

The associate editor coordinating the review of this manuscript and
approving it for publication was Victor Hugo Albuquerque.

quite advantageous for transferring all types of data and
applications to mobile device easily and accurately. How-
ever, load balancing issues in Cloud data centers should be
addressed to improve performance and efficiency. In this
paper, we propose a meta-heuristic algorithm to overcome
this load balancing issue.

M-learning technologies have been deployed in many
m-learning systems and applications to improve the learn-
ing styles of current students. On average, m-learning
technologies enhance the learning capacity of individuals
by 70% [22]. Some of the Cloud computing services that
could be used for m-learning approaches are Software-as-a-
Service (SaaS), Platform-as-a-Service (PaaS), Infrastructure
as-a-Service (IaaS), and Hardware-as-a-Service (HaaS).

Load balancing techniques are used to distribute incom-
ing traffic across multiple servers to minimize the delay of
the Cloud server response to the Cloud users. Cloud load

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission. 30203

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4878-1988
https://orcid.org/0000-0001-8138-5878

IEEE Access

K. Sekaran et al.: Improving the Response Time of M-Learning and Cloud Computing Environments

balancing is considered adequate only if the throughput in the
Cloud server is high, delays are minimal, and jitter is minimal
while addressing Cloud user requests. Sometimes, failure of
load balancing in the Cloud leads to poor image resolution
and poor video streaming for users [24]. Thus, load balancing
in Cloud servers is essential to maximize throughput and
to achieve superior performance in both public and private
Clouds.

II. LITERATURE REVIEW

In literature review, we have discussed in detailed about vari-
ous load balancing methods in Cloud computing and findings
used to provide various methods and procedures for assigning
the client’s requests to available Cloud nodes. Cloud load
balancing scenarios advantages are scalability and agility
to meet rerouted workload demands and to improve overall
availability more details provided as follows:

A. LOAD BALANCING IN CLOUD COMPUTING

The concept of load balancing was first recognized as an
important issue for computing in the year 2001. In [1], they
proposed a few genetic algorithms that are essential to
load balancing techniques. Additionally, the authors investi-
gated dynamicity in load balancing approaches. Also, they
described an algorithm that can optimally balance the loads
in parallel computing systems during process mapping. Also,
they discussed other load balancing issues. In [2], described
the deficit round-robin load balancing technique for schedul-
ing of tasks that was based on an efficient fair queuing load
balancing technique. In publications by [3], it was proposed
that the Cloud scheduler could be based on an ant colony
optimization method. Several studies and reviews are use-
ful in understanding scheduling of tasks in the Cloud load
balancer [4].

In [5], they mentioned configuring Cloud storage services
as an Infrastructure as a Service model, which was the key
point for the most of the researchers who works on Cloud load
balancing issues. Fehling et al. [6] have surveyed many pat-
terns of Cloud computing and also proposed the knowledge
level framework for the development and inclusion in Cloud
computing technologies. Yang [7] have proposed partition-
based techniques for load balancing in Cloud computing
based on the switch mode mechanism. Also, they discussed
a game theory model of Cloud computing. Shen et al. [8]
have suggested a dynamic load balancing technique through
mobile agents for Peer to Peer (P2P) networks. In their paper,
a resource grouping strategy and a dynamic load balancing
methodology among the groups were proposed by identifying
the congestion in network.

Krishna [9] proposed an algorithm for load balancing
of tasks that was inspired by honey bee behavior. In this
paper, load balancing of tasks is created in virtual machines
to achieve maximum throughput. In [10], they proposed a
stochastic hill approach algorithm to balance loads in Cloud
computing. For this, jobs are mapped to the Cloud server and
to virtual machines instances in a shorter span of time.

30204

In [11], they analyzed fast downloading of files in the
Cloud with dynamic load balancing using a dual direction
technique. The authors also introduced an efficient and effec-
tive technique to download large files from different Cloud
data centers in a more efficient way than previous load balanc-
ing methods like [12] suggested in evolutionary algorithms.
An article by [13], addressed challenges in the m-learning
environments such as the security of mobile devices in the
corresponding mobile network. Susila et al. [14] proposed
a firefly load balancing algorithm for balancing Cloud com-
puting loads. The results showed better performance in terms
of computational time, task migration, and load arrival ratio.
Kaur and Luthra [15], discussed the importance of load bal-
ancing in Cloud computing, various types of loads in the
Cloud, and the importance of proper utilization of resources.

Chou et al. [16] discussed genetic algorithms used for
dynamic load balancing in the distributed environment, prob-
lems of load balancing, and compared genetic algorithms
given by [17] with other algorithms. In [18] discussed load
balancing techniques with improvements in many Qualities
of Service (QoS) metrics. Several security issues and schedul-
ing problems were discussed and compared with existing
load balancing algorithms used in Cloud computing. In Xin-
She Yang firefly algorithm [7], the author talked only about
modelling and Multimodal Optimization. But our dominant
firefly algorithm model is for optimizing the response time
for M-Learning environments especially for cloud data cen-
ters issues. Also, the algorithms we have taken for calculat-
ing the Makespan and designed for efficient load balancing.
However, our focus is on to the load balancing and response
time comparison with the previous genetic algorithms.

Dasgupta et al. [19] proposed an algorithm for load bal-
ancing using a genetic algorithmic approach designed for
task minimization in Cloud computing platforms. By com-
paring with traditional algorithms, the authors have proved
that their algorithm requires minimal time to finish load bal-
ancing in the Cloud computing environment. This load bal-
ancing algorithm focused on infrastructure as a service (IaaS)
model. The load balancing scenario of scheduling work in
scientific Clouds was evaluated by creating a number of
virtual machines instances and hosting them in the respective
Cloud [20].

B. CLOUD LOAD BALANCING ALGORITHMS LIMITATIONS
Some of the load balancing algorithms and their performance
have been studied and analyzed. Qualities of Service (QoS)
metrics with the proposed load balancing algorithm were
compared with other load balancing algorithms (Table 1). Out
of all compared algorithms, the proposed algorithm showed
better QoS metric results in terms of service delay, through-
put, service availability, response time, network overhead,
and authentication.

Notes: The compared QoS metrics are represented as
QoSM. They are:

o QoSM1: Throughput
o QoSM2: Service Delay

VOLUME 7, 2019

K. Sekaran et al.: Improving the Response Time of M-Learning and Cloud Computing Environments I E E E ACC@SS

TABLE 1. QoS metrics comparison of the proposed load balancing
algorithm with other related algorithms.

Load Quality of Service Metrics

balancing QoSM QoSM QoSM QoSM QoSM QoS | QoS
algorithms 1 2 3 4 5 Mé M7
LBAI Y N Y N N N N
LBA2 Y Y Y Y N N N
LBA3 Y Y Y Y Y Y N
LBA4 Y N N N Y N N
LBA5 Y Y Y Y N Y N
LBA6 Y Y Y Y Y Y Y

Y: achieved; N: not achieved.

o QoSM3: Response time

e QoSM4: Network Overhead

¢ QoSMS: Service availability

o QoSM6: Authentication mechanisms
o QoSMT7: Servers performance

Notes: The load balancing algorithms are represented
as LBA. They are:

> LBAl: “Round-Robin Load Balancing” by
Shreedhar et al. (1996)

> LBA2: “Honey bee behavior Load Balancing
(HBB-LB)” by Krishna (2013)

> LBA3: Ant Colony Optimization Load Balancing by
Rao, Lei, et al. (2010) and Mishra ez al. (2012)

> LBAA4: Particle Swarm Optimization Load Balancing by
Jin, Xiaoling, et al. (2004)

> LBAS5: Delay-tolerant dynamic load balancing by
Mohamed, Nader et al. (2011)

> LBAG6: Proposed Dominant Firefly Load balancing
algorithm.

lll. SYSTEM MODEL

In propose system the dominant firefly load balancing algo-
rithm to solve load imbalance issues in Cloud servers,
to enhance the experiences of m-learning users. Specifically,
Dominant firefly-based required Cloud server mapping algo-
rithm for different VM methods will help ensure users
receive their m-learning content without delay; addition-
ally, in this technique, that demonstrates the load balancing
improvement on throughput and the response time of mobile
devices.

A. M-LEARNING IN CLOUD COMPUTING

The importance of m-learning technologies has become quite
apparent to many different institutions and individuals in
recent years. The researchers [21] described the m-learning
environment as one that changes the traditional learning sys-
tem and gives freedom to learners. Also, m-learning has no
boundaries for learning through mobile devices. Also [22],
stated that “m-learning is a kind of e-learning which com-
bines mobile technology and Cloud computing wireless tech-
nology for a better learning experience.

VOLUME 7, 2019

Application Servers / Cloud Data centers - Physical Resources for M-learning
ISy e A e ';esnurce Allocation via Internett
(IsPs)
Virtual Machine Resource allocator
5]]
] t 2 0

Load balancing and Scheduling Alganthms

Virtual Machine

{r
0A"m AcA"m -'IDI

Imbalanced incoming tasks ‘Wirtual Machine Res ources

‘Operating System
Application
['
Learners (Students) 1]—I
0’3‘3 Q Learner Requests through

. bile devices e
»» ™
\M—Ieaming contents database - '%h /

Big data analyti cs{

W Mobile Network Services

FIGURE 1. M-learning with Cloud computing architecture.

B. BIOLOGICAL MODEL OF DOMINANT

FIREFLY BEHAVIOR

The firefly and its behavior for finding food sources and
searching for partners are quite interesting. Fireflies that pro-
duce the most intense brightness are called dominant fireflies
and others with less luminescence are called submissive fire-
flies. Also, the glow of the fireflies’ brightness is akin to an
on and off switch. In every four to six seconds, the firefly’s
tail will be on then off, usually visible during the late evening
and night time.

Pt e ——-- ISB

NSB

LAST SEARCH BORDER (LSB)

NEW SEARCH BORDER (NSB) -y

FIGURE 2. Firefly behavior for finding the dominant firefly.

The path selection of the firefly is an another interesting
pattern in which fireflies find the optimal distance to reach
its partner. Maximum brightness depends upon the distance of
the location of the firefly with respect to its partner. A graph-
ical representation of firefly behavior is shown in Figure 2.
In firefly search behavior, the submissive fireflies are search-
ing for the dominant firefly with its brightness value (BV).

Let Fi, Fo, F3...... F, be the submissive fireflies in a
group of fireflies F.

Let DF;, DF,DF, be the dominant fireflies.

30205

IEEE Access

K. Sekaran et al.: Improving the Response Time of M-Learning and Cloud Computing Environments

By luminescence, dominant fireflies can attract other
neighboring fireflies. In a given regions, all fireflies are
attracted to a dominant firefly producing more brightness.
It is assumed that submissive fireflies fly toward the dom-
inant firefly in two flying patterns:
1. Flying away from less brightness; this value is denoted
by last search border (LSB) given in equation 1.

2. By flying towards more brightness; this value is
denoted by new search border (NSB) given in
equation 2 and 3.

Procedure:
If BV(DF,41) < BV(DFE,)
Then
\/ D _Fu € LSB flies to NSB (1)
Else if BV(DF,) < BV(DF,_1))
Then
\7/ ZFH = DF, in NSB 3)

Fireflies searching for partners through an optimal path
and the associated crowd balancing on dominant fireflies
are optimized through shorter flying distance, thus saving
energy from flying over longer distances. The Euclidean
distance calculation for searching A/DF, is applicable for
the fireflies’ flying distance path. As per equation 4, which
is an Euclidean distance formula, if (p,q) are two coor-
dinates, then the distance between the two coordinates is
calculated by,

d(p,q) = d(q, p)
\/(611 —p1)?+(q2 —p2)* + ..+ (gn —)’

> (gi—pi)?)
i=1

In the same way, according to our proposed biological model,
the distance between two fireflies (i.e., \/DF, and \/F,) will
be calculated using equation 5.

d (N Y 10F1, N Yo) = (lZ: [DF,] - Fn>2(5)

Through this, it is clearly understood that a firefly from a
group of fireflies to the nearest border by spending very less
energy in its tail. Based on this scenario, a bio-inspired com-
puting model was created, and a dominant firefly search algo-
rithm was implemented in the Cloud computing environment
for testing improved response times among the Cloud data
centers based on the concept of low-loaded VMs with less
task migration time. The proposed dominant firefly search
can also be mapped with adjacency matrix representation to
understand the load balancing algorithm clearly in a matrix
form (Figure 3).

Figure. 3 depicts an adjacency matrix representation of
dominant firefly behavior. There are four fireflies, Fy, F>, F3,

30206

S

o001 oo 11 L
[[] 0ol] I[] o011 1 [o1]
0001 1100 110l
L1 10 L1 o0 1110

FIGURE 3. Adjacency matrix representation of dominant firefly behavior.

and F4, with F4 as the dominant firefly (i.e., the other fireflies
are moving towards F4). Hence, the adjacency matrix can be
represented as 1->4, 2->4, 3->4.

C. BIO INSPIRED COMPUTING MODEL

Dominant firefly behavior can be applied to Cloud load
balancing strategies, termed the dominant firefly algorithm.
In a group of fireflies, there will be several dominant fireflies
and many submissive fireflies. The method assumes that
dominant fireflies represent Cloud servers and submissive
fireflies represent Cloud users. Whenever the Cloud servers
are occupied with a lot of load (user requests), this needs
to be balanced in such a way that queries or requests are
transferred to some other Cloud server to complete the task.
Based on firefly behavior, it is understood that if dominant
fireflies are already occupied with many other submissive
fireflies during partner searching, then the load is balanced
by passing on excess submissive fireflies to the next dom-
inant firefly. According to this algorithm, when Cloud user
requests are increased to a particular Cloud server, then users
are automatically transferred to the next (dominant) Cloud
server. Also, the flight path of submissive fireflies towards the
dominant firefly represents nearby Cloud servers that provide
the dynamicity of load balancing.

The design of dominant firefly algorithm is based on a
dynamic load balancing strategy among VMs in the Cloud
environment. Regarding larger-scale scenarios such as the
Cloud load balancing strategy, this dominant firefly algo-
rithm would be able to search for and find the optimal and
nearest Cloud server in the pool of Cloud servers, thereby
achieving optimal load balance among multiple Cloud server
VMs. This finding was designed to work simpler and more
efficiently to solve complex load balancing of tasks in Cloud
computing environments. Path finding by Cloud servers can
be optimized by applying this proposed dominant firefly
algorithm.

Cloud service providers provide the best cost reduction
policies to end users for accessing their IaaS services in the
Cloud with a valid Cloud SLA (Service Level Agreement).
Each Cloud user should have an SLA while communicat-
ing with neighboring Cloud servers to ensure flexible and

VOLUME 7, 2019

K. Sekaran et al.: Improving the Response Time of M-Learning and Cloud Computing Environments

IEEE Access

FIGURE 4. Task migration among multiple Cloud server VMs Scenario of
mobile learning with Cloud computing.

trustworthy sharing of files. Figure. 4 represents task migra-
tion among multiple Cloud server VMs.

In this scenario, it is assumed that CS1, CS2, CS3, ...CSn
are Cloud servers and CU1, CU2, CU3...CUI10 are Cloud
users. In Cloud computing, Cloud users continuously send
requests to the available Cloud server resources. Request
mapping to the expected resource is a tedious process. In the
proposed technique, a concept of a Cloud server pool of
VMs is introduced to map every user request to the Cloud
server. Cloud user requests may be given to any Cloud server
randomly in the Cloud. Cloud server choice in the method
relies on basic Cloud management policies that are dependent
on the actual load on every Cloud server.

Scheduling policies have been adopted for any non-
preemptive system such as Round Robin and First In First Out
policies. By placing these kinds of strategies into a queue-
based operation, the loads on every Cloud server virtual
machine (CSVM) are found to be different. To make the loads
balanced across every CSVM, a dynamic load balancing
strategy is needed.

Load balancing is also going to be beneficial for the overall
Cloud by reducing response time of the Cloud server as well
as job shop scheduling problems (makespan), which is dis-
cussed in similar meta-heuristic techniques such as honey bee
behavior inspired load balancing issues [9]. Our methods and
equations are similarly derived in such brief. Hence perfor-
mance of every individual Cloud server has been improved.
From equation 6, makespan is the total length of the schedule
of the overall tasks. In the proposed algorithm, the response
time of every Cloud server with respect to number of tasks is
represented as T, on VMy, as RT,y,. Hence, the makespan is
given as the following function:

Makespan = min{RTpla € T,a=1,2,...nand
beVM,b=1,2,...m} (6)

By reducing the response time of CSVMs, efficiency is highly
improved.

Let CSVM = {CS;, CSy, CSp} be the set of CSVMs
which process “n” tasks, represented by the set T = {Ty,

Ty ...Ty}. All Cloud servers in the Cloud are represented

VOLUME 7, 2019

by S. Generally, all Cloud servers are fault tolerant servers.
Non-preemptive tasks are scheduled on these CSVMs. The
non-preemptive tasks are represented as Thp.

To reduce makespan, the proposed model is given as
S| Tnp|RTmin-

The response time of every CSVM is represented as RTy
on CSVMy -> Ryy.

Hence, the response time of all tasks on the CSVMs is
defined in equation 7 and, by further maximizing the RT i,
value, every CSVM response time is calculated by equation 8
and equation 9.

P
RyZiIIny y=12,...q 7
By maximizing RT,, we have,
Zi:l Rxy > RTpin y=1.2,...q 8)
=Ry >RTnn y=12,...q)

During load balancing of multiple VMs, the migration of
tasks occurs between one VM to the next. Equation 10 min-
imizes the overall response time and efficiently balances the
load.

RT i = {[min}{,_, [RT; , [min],_,, ZZZDE b (10)

The response time to the incoming tasks in all the CSVMs
automatically have been minimized, which is denoted in
equation 10.

D. DESIGN OF ALGORITHMS

To validate the dominant firefly search behavior strategy for
balancing loads, we have developed and tested our methods
both in the Cloud and mobile environments. The results
demonstrated were better when compared with existing load
balancing methods.

In the proposed Algorithm-1, each firefly that flies toward
the other firefly represents a VM, which can be mapped to the
Cloud server accordingly. When a VM is formed, a firefly is
initialized. An index provider that contains load information
on each Cloud server is initialized through initialize Load
Table method. Then, if a firefly is mapped to the VM by the
given method, then the firefly is obtained from a group of
fireflies through the Firefly VM method. If the VM does not
exist in the Firefly Group, then a new Firefly is created along
with the VM.

A Cloud server with larger QoS metrics such as higher
throughput and large bandwidth is required, as compared to
the requirements of a Loaded VM. The firefly which is flying
toward the dominant firefly is mapped with the adding Firefly
Group into VM method.

Figure 5 and Figure 6 represents flow-charts for better
understanding of the above algorithms.

IV. EXPERIMENTAL SETUP

Based on the number of tasks coming into the Cloud server,
the load is analyzed in all Cloud servers and its response time
is calculated using CloudSim simulation. For evaluation of
receiving results from the Cloud server, m-learning systems

30207

IEEE Access

K. Sekaran et al.: Improving the Response Time of M-Learning and Cloud Computing Environments

Algorithm 1 Dominant Firefly-Based Required Cloud Server
Mapping Algorithm for Different VM
Procedure Dominant Firefly Search and Make Strategy
for VM, Cloud Server Index
Start
Initialize Load Table
Firefly is equals to Firefly method mapping in VM
if Firefly is equal to null then
required Cloud Server is equals to Required
Cloud Server for VM in Cloud Server Index
Firefly is equals to new Firefly in VM for
required Cloud Server
Add VM group in the Firefly method
End if condition
repeat

Call the Firefly and dominant Firefly Algorithm
until Firefly is Completed
Required Cloud Server is equals to Cloud Server Index for
mapping Firefly method in Cloud server
if required is not Cloud Server Make VM map to get Firefly
method
repeat

Firefly Search and Make Strategy for getting
Firefly VM method in Cloud Server Index

Number of Repeated Fly Over Group
until Success or Number of Repeated Fly Over Group is
equals to NULL
End

were tested using the mobile test bed in java based mobile
phones. We used Cloud SQL querying mechanism to improve
analysis of the result and evaluation. As shown in Table 2,
the average response time increased whenever the number of
queries generated by m-learning users also increased.

The response time 1is calculated using CloudSim
simulation.

Steps in Cloudsim Simulation environment:

Step-1:

Firstly, Eclipse IDE can be downloaded from the website
www.eclipse.org/downloads

Step-2:

We have extracted the eclipse software package to a spe-
cific directory. eg: C:\Program files\eclipse

Step-3:

Then we have extracted the Cloudsim package to a
specific directory.eg: C:\Program files\Cloudsim and we
have included the jar files in the cloudsim in the location
C:\Program files\cloudsim-3.0.2\jars\

Step-4:

We have created java project in eclipse and coded for
the cross region based load balancing from algorithm 1 and
algorithm 2 in the eclipse workspace.

Step-5:

We have extracted the Cloudsim-3.0.2 folder in it and ran
the DFA search load balancing code.

30208

Algorithm 2 Dominant Firefly Algorithm
Procedure dominant Firefly Algorithm
Start Process
Brightness value is 1
Cloud user requests are 0
Initialize
While the brightness is extreme brightness then do
Current Load is equal to Cloud Server Load
Information
Add Firefly Group Total in the current Load
Update the local Load Table
if the current Load is equal to 0 break
else if random less than dominant Firefly

then
Next Cloud Server is equal to Randomly
select Dominant Cloud Server
Else next Cloud Server is equal to select
Dominant Cloud Server
end if
Dominant Cloud Server is equal to Decreasing
task eventually in the Over Loaded
Cloud Servers from Dominant Cloud Server
Cloud user requests are equal to Cloud
user requests increment by 1
Brightness is equal to Brightness increment by 1
Fly or map VM to next Cloud Server
end while condition
send VM to Cloud Server
End

Step-6:

Then we have created the required number of Datacenters,
Brokers, virtual machines and cloudlets.

Step-7:

Then by starting the simulation by testing it with the
number of datacenters applicable to the respective dominant
firefly search scenario and ran the simulation for multiple
times with different MIPS requirements for the cloudlets
execution time.

Step-8:

Finally we have analyzed the VMs performance by cal-
culating the output and drawing the graph according to the
statistical data we have during the execution.

Sample, Simple Queries (SQ) generated by m-learning
users:

SQ-Query 1: Confirmation SMS sent to the server by the
mobile device. [Approx ~ 20 KB]

SQ-Query 2: Generating the request_id for the m-learner
from the Cloud server. [Approx ~ 20 KB]

SQ-Query 3: Testing the Interactivity parameters such
as m-learning application GUI (Graphical User Interface).
[Approx ~ 30 KB]

SQ-Query 4: M-learner (students) online feedback to the
server by the mobile device. [Approx ~ 30 KB].

VOLUME 7, 2019

K. Sekaran et al.: Improving the Response Time of M-Learning and Cloud Computing Environments

IEEE Access

Procedure

(+DominantFireflySearchandVakeStratogy (vm, CloudServerIndes)

|

Begin
InitializeLoad Table()

if (Firefly!=null)

if (Firefly==null)

requiredeloudServer = getRequired-
CloudServerForVm(CloudServerindex.vm)

vy

-

FireflyGroup.add(vm, Firelly)

S S

until

Firelly.isCompleied()

P

LF‘ireﬂy. FirvellySearchAlgorithm()

./

-
RequiredCloudServer = CloudServerIndex.get
(Fireflly.getCloudserver())

until

Success or NumberafRepeat-
cllFly Ovorironp ==

’ if (‘requiredCloudserver. Make VM
NULL

i (Firelly get VM)
FireflySearchandMakeStrategy |
(Firefly.get VM(), CloudServerindex)

4| NumberofRepeatedFlyOverGroup]

FIGURE 5. Flow chart for DFA (Dominant Firefly) search method.

TABLE 2. Before Load balancing in Cloud data center: M-learning users
vs Average Response time (ms) by generating simple queries(SQ) in the
Cloud data center.

: Avg.
m.leg-:::lg)e:s';; ® No. of (SQ)(%:::])QS generated R.esp:)gnse
time(ms)

30 120 2400

40 160 3200

50 200 6000

60 240 7200

From Table 2, SQ (queries with simple workloads in Cloud
data center) from queryl, query2, query3, and query4 used
in m-learning systems such as SMS (file size approxi-
mately 20KB) and generation of request_id require only

VOLUME 7, 2019

Procedure

FireflyBearchAlgorithm{)

|

Beyin

brightness =1
cleuduserrequests =0

initialize(}

|du
)

-
currentload = getCloud ServerLoad-
Information{)

)
{Fireﬂy(}roup Total.add(currentLoad) 1

localLoadTable update()

il (currentLoad = 0
Break

il (random() < DominantFirefly)

if (random() >=

DominantFiretly)

A

nextCloudServer = randomlyselect-

DominantCloudServer()

I

nextCloudServer = select DominantCloud-
Server()

-

N
DiominantCloud3erver = Dominant CloudServer —
OuverLoadedCloud Servers
clouduserrequests = cloudusorrequests + 1

Brightness = Brightuess + 1

L [y Totnext Cloud Server) While
l (brightness< Extremsbrizhtness
[sendVMtoCloudServer }
End

FIGURE 6. Flow chart for BV (Brightness Value) and VM mapping method
for selecting cloud servers.

minimal time for analyzing inside the server, although time
is needed for the information to return to the m-learning
clients. This total time is calculated as the average response
time. Queries sent to the Cloud data center prior to imple-
mentation of the load balancing algorithm in and after
load balancing were analyzed. Our m-learning evaluation
through Cloud simulation clearly revealed better performance
of m-learning systems after applying our load balancing
algorithms. Also, in Table 3, heavy queries represented
as (HQ), such as LOAD csv file (file size approximately
36KB), typically require more response time to get back to
m-learning clients. However, after applying our load balanc-
ing algorithm, response time was drastically decreased, which
improved the m-learning system’s overall performance.

Sample Heavy Queries (HQ) generated by m-learning
users after load balancing:

30209

IEEE Access

K. Sekaran et al.: Improving the Response Time of M-Learning and Cloud Computing Environments

TABLE 3. After load balancing in Cloud data center: m-learning users vs.
average response time (ms) by generating heavy queries (HQ) in the
Cloud data center.

Number of No. of (HQ)Queries generated Avg. Response

m-learning users (n) (n*4) time(ms)

30 120 4320

40 160 8000

50 200 8000

60 240 9600
(HQ)-Query 1: LOAD SMS_DATA INPATH’/user/

sandbox/student.csv’ OVERWRITE INTO TABLE temp_
student;

[Approx ~ 36 KB]

(HQ)-Query 2: insert overwrite table student

SELECT

regexp_extract(col_value,”, 1) student_id,

regexp_extract(col_value,”,1) student_name,

regexp_extract(col_value, ”, 1) content

from temp_student;

[Approx ~ 50 KB]

(HQ)-Query 3: SELECT a.student_name, a.student_id,
a.content from student a

JOIN (SELECT name, max(content) content FROM
student GROUP BY name) b

ON (a.name = b.name AND a.content = b.content);

[Approx ~ 40 KB]

(HQ)-Query 4: DELETE from student where id=1;

ROLLBACK to student; Commit; [Approx ~ 40 KB]

VMs Task Migration Time
600
[e]
[
[
500 |
» I
B |
=
Q [
@ 400 ;
)
® F O
£ [
=300 4 | —o— LL-VMs-TMT
§ —0~ HL-VMs-TMT
5
S 2001
X
®
BTV O
PR
50 100 150 200 250 300 350 400 450

No. of Tasks

FIGURE 7. VMs task migration time Vs No. of tasks.

Figure 7 illustrates the response time of VMs in seconds
for the dominant firefly algorithm, HBB-LB, ant colony opti-
mization load balancing algorithm, and WRR algorithms.
The X-axis represents the number of tasks and the Y-axis
represents response time in seconds. Our proposed algorithm
showed the optimal response time.

Notes for Figure 8:

FSALB: Firefly Search Algorithm Load Balancing

30210

50

404

—e— FSAB
07 -—-0-—- HBBB
v ACOLB

—-A— WRRB

~
S

Response time (Seconds)

=

0 T T T T T T T
50 100 150 200 250 300 350 400 450

No. of Tasks
FIGURE 8. Comparison of the number of tasks with response time

in seconds using the dominant firefly algorithm, HBB-LB, Ant colony
optimization load balancing algorithm, WRR algorithms.

HBB-LB: Honey Bee Behavior Load Balancing algorithm

ACOLB: Ant Colony Optimization Load Balancing
algorithm

WRR-LB: Weighted Round Robin
algorithm

According to the task migration in the Cloud servers VMs,
performance various QoS metrics is analyzed. Figure. 8 rep-
resents the comparison of number of tasks with the high
loaded VMs task migration time and low loaded VMs task
migration time. The X-axis represents the number of tasks
and the Y-axis represents the migration time in seconds from
the proposed dominant firefly algorithm for load balanc-
ing. Also, by comparing different load balancing algorithms,
we were able to find the response time of each task in the
Cloud server VMs.

load balancing

V. CONCLUSION AND FUTURE WORK

In this work, the proposed dominant firefly behavior search
model was applied and simulated in CSVM instances to
improve load balancing of tasks in the Cloud computing envi-
ronment. This approach helps to balance the load in multiple
CSVMs by increasing QoS metrics such as throughput and
response time. Also, in our methods, the load of job requests
from Cloud end-users submitted to CSVMs is optimally bal-
anced to increase the efficiency of the Cloud server.

The proposed algorithm was compared with other load
balancing algorithms. The results demonstrated an improve-
ment in energy consumption among Cloud servers. These
findings could be extended to cost computational methods to
utilize maximum CPU that would increase server efficiency.
The main objective of the proposed model is to enhance
m-learning environments by finding many relational models
to avoid the highest energy consuming server throughout the
world. In the current real-time Cloud environment scenario,
the throughput efficiency at the Cloud data center is an essen-
tial factor and many researchers are showing keen interest

VOLUME 7, 2019

K. Sekaran et al.: Improving the Response Time of M-Learning and Cloud Computing Environments

IEEE Access

in developing various algorithms for it. Also, there are many
opportunities in the field of m-learning, green computing, and
in Cloud-based organizations. Our work reveals many chal-
lenges in m-learning using Cloud computing technologies.

REFERENCES

[11 A.Y. Zomaya and Y.-H. Teh, “Observations on using genetic algorithms
for dynamic load-balancing,” IEEE Trans. Parallel Distrib. Syst., vol. 12,
no. 9, pp. 899-911, Sep. 2001.

[2] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round-
robin,” IEEE/ACM Trans. Netw., vol. 4, no. 3, pp. 375-385, Jun. 1996.

[3] E. Pacinia, C. Mateos, and C. G. Garino, “Balancing throughput and
response time in online scientific clouds via ant colony optimization,” Adv.
Eng. Softw., vol. 84, pp. 31-47, Jun. 2015.

[4] K. Sekaran and P. V. Krishna, ““Cross region load balancing of tasks using
region-based rerouting of loads in cloud computing environment,” Int. J.
Adv. Intell. Paradigms, vol. 9, nos. 5-6, pp. 589-603, 2017.

[5] D. Eyers, R. Routray, R. Zhang, D. Willcocks, and P. Pietzuch, ‘“Towards
a middleware for configuring large-scale storage infrastructures,” in Proc.
7th Int. Workshop Middleware Grids, Clouds e-Sci., 2009, p. 3.

[6] C.Fehling, T. Ewald, F. Leymann, M. Pauly, J. Riitschlin, and D. Schumm,
“Capturing cloud computing knowledge and experience in patterns,”
in Proc. IEEE 5th Int. Conf. Cloud Comput. (CLOUD), Jun. 2012,
pp. 726-733.

[7]1 X.-S. Yang, “Firefly algorithms for multimodal optimization,” in Proc.
Int. Symp. Stochastic Algorithms. Berlin, Germany: Springer, 2009,
pp. 169-178.

[8] X.-J. Shen et al., “Achieving dynamic load balancing through mobile
agents in small world P2P networks,” Comput. Netw., vol. 75,
pp. 134-148, Dec. 2014.

[9] L. D. D. Babu and P. V. Krishna, “Honey bee behavior inspired load
balancing of tasks in cloud computing environments,” Appl. Soft Comput.,
vol. 13, no. 5, pp. 2292-2303, May 2013.

[10] B. Mondal, K. Dasgupta, and P. Dutta, “Load balancing in Cloud comput-
ing using stochastic hill climbing-a soft computing approach,” Procedia
Technol., vol. 4, pp. 783-789, Jun. 2012.

[11] N. Mohamed, J. Al-Jaroodi, and A. Eid, “A dual-direction technique for
fast file downloads with dynamic load balancing in the Cloud,” J. Netw.
Comput. Appl., vol. 36, no. 4, pp. 1116-1130, 2013.

[12] P. Civicioglu and E. Besdok, A+ evolutionary search algorithm and QR
decomposition based rotation invariant crossover operator,” Expert Syst.
Appl., vol. 103, pp. 49-62, Aug. 2018.

[13] A.Holzinger, A. Nischelwitzer, and M. Meisenberger, ‘““Mobile phones as a
challenge for m-learning: Examples for mobile interactive learning objects
(MILOs),” in Proc. 3rd IEEE Int. Conf. Pervasive Comput. Commun.
Workshops, Mar. 2005, pp. 307-311.

[14] N. Susila, S. Chandramathi, and R. Kishore, “A fuzzy-based firefly
algorithm for dynamic load balancing in cloud computing environment,”
J. Emerg. Technol. Web Intell., vol. 6, no. 4, pp. 435-440, Nov. 2014.

[15] R. Kaur and P. Luthra, “Load balancing in cloud computing,” in Proc.
Int. Conf. Recent Trends Inf., Telecommun. Comput. (ITC), Dec. 2012,
pp. 14-20.

[16] Y.-L. Chou, S. Liu, E.-Y. Chung, and J.-L. Gaudiot, “An energy and per-
formance efficient DVFS scheme for irregular parallel divide-and-conquer
algorithms on the intel SCC,” IEEE Comput. Archit. Lett., vol. 13, no. 1,
pp. 13-16, Jan./Jun. 2014.

[17] X.-S. Yang, S. S. S. Hosseini, and A. H. Gandomi, “Firefly algorithm
for solving non-convex economic dispatch problems with valve loading
effect,” Appl. Soft Comput., vol. 12, no. 3, pp. 1180-1186, 2012.

[18] K. Li, G. Xu, G. Zhao, Y. Dong, and D. Wang, “Cloud task scheduling
based on load balancing ant colony optimization,” in Proc. 6th Annu.
Chinagrid Conf. (ChinaGrid), Aug. 2011, pp. 3-9.

[19] K. Dasgupta, B. Mandal, P. Dutta, J. K. Mondal, and S. Dam, “A genetic
algorithm (GA) based load balancing strategy for cloud computing,”
Procedia Technol., vol. 10, pp. 340-347, Dec. 2013.

[20] K. Sekaran and P. V. Krishna, “Big cloud: A hybrid Cloud model for secure
data storage through Cloud space,” Int. J. Adv. Intell. Paradigms, vol. 8,
no. 2, pp. 229-241, 2016.

[21] T. Georgiev, E. Georgieva, and A. Smrikarov, ‘“M-learning-a new stage
of E-learning,” in Proc. Int. Conf. Comput. Syst. Technol. (CompSysTech),
2004, pp. 1-5.

VOLUME 7, 2019

[22] M. Keith, J. Nicholas, P. Race, D. McCaffery, M. Bryson, and Z. Cai,
“Unified and personalized messaging to support E-learning,” in Proc. 4th
IEEE Int. Workshop Wireless Mobile Ubiquitous Technol. Educ. (ICHIT),
Nov. 2006, pp. 164-168.

[23] P.Lietal, “Multi-key privacy-preserving deep learning in cloud comput-
ing,” Future Generat. Comput. Syst., vol. 74, pp. 76-85, Sep. 2017.

[24] Q.Zhang, L. T. Yang, Z. Chen, P. Li, and M. J. Deen, “Privacy-preserving
double-projection deep computation model with crowdsourcing on cloud
for big data feature learning,” IEEE Internet Things J., vol. 5, no. 4,
pp. 2896-2903, Aug. 2018.

KAUSHIK SEKARAN received the B.Tech.
degree in computer science and engineering from
SASTRA University, Thanjavur, in 2005, the M.E.
degree in computer science and engineering from
the Mepco Schlenk Engineering College (Affili-
ated to Anna Univesity), Chennai, in 2008, and
the Ph.D. degree in cloud computing from VIT
’ University, Vellore, India, in 2015, where he was
1. an Associate Professor with the School of Comput-
ing Science and Engineering, from 2009 to 2017.
He is currently an Associate Professor with the Department of Computer
Science and Engineering, Vignan Institute of Technology and Science,
Hyderabad, India. He has published 12 papers in reputed SCI and Scopus
indexed journals, conferences, book chapters, and books. His main research
interests include cloud computing, IoT, fog computing, cloud computing,
distributed and Internet systems, overlay systems and applications, and
security issues in peer-to-peer networks. He is a Guest Editor/Reviewer of
various International journals.

MOHAMMAD S. KHAN received the M.Sc.
degree in computer science and the Ph.D. degree
in computer engineering from the University of
Louisville, Kentucky, USA, in 2011 and 2013,
respectively. He is currently an Assistant Professor
of computing with East Tennessee State Univer-
sity, where he is currently the Director of Network
Science and Analysis Lab. His primary research
interests include ad-hoc networks, network tomog-
raphy, and connected vehicles. He was a Technical
Reviewer of various international journals in his research field. He currently
serves as the Co-Editor-in-Chief of the International Journal of Grid and
High-Performance Computing. He has been on the technical program com-
mittee of various international conferences.

RIZWAN PATAN received the B.Tech. and
M.Tech. degrees from Jawaharlal Nehru Techno-
logical University Anantapur, India, in 2012 and
2014, respectively, and the Ph.D. degree in com-
- puter science and engineering from the School of
Computer Science and Engineering, VIT Univer-
sity, Vellore, India, in 2017. He is currently an
Assistant Professor with the School of Comput-
\ ing Science and Engineering, Galgotias Univer-
sity, Greater Noida, India. He has published eight
reputed SCI journals and 20 free Scopus indexed journals. He has also
presented papers in National/International Conferences. He has published
book chapters in CRC Press, IGI global, and Elsevier. He has also edited
books. He holds two Indian patents. He is a Guest Editor of the International
Journal of Grid and Utility Computing, Recent Patents on Computer Science,
and Information in Medicine Unlocked (Elsevier).

30211

IEEE Access

K. Sekaran et al.: Improving the Response Time of M-Learning and Cloud Computing Environments

AMIR H. GANDOMI received the Ph.D. degree in
engineering. He used to be a lecturer in several uni-
versities. He is currenlty an Assistant Professor of
analytics and information systems with the School
of Business, Stevens Institute of Technology. Prior
to joining the Stevens Institute of Technology,
he was a Distinguished Research Fellow of the
BEACON NSF Center, Michigan State University.
He has published over 130 papers and four books.
Some of those publications are now among the
hottest papers in the field and collectively have been cited more than 11 000
times (h-index = 53). He has been named as a Highly Cited Researcher
(top 1%) for two consecutive years, in 2017 and 2018, and one of the world’s
most influential scientific minds. His research interests include global opti-
mization and (big) data mining using machine learning and evolutionary
computations in particular. He is currently ranked 19th in the GP bibliogra-
phy among more than 11 000 researchers. He has also served as an Associate
Editor, Editor, and a Guest Editor in several prestigious journals, and he has
delivered several keynote/invited talks. He is part of a NASA technology
cluster on big data, artificial intelligence, and machine learning.

PARIMALA VENKATA KRISHNA is currently
with the Department of Computer Science, Sri
Padmavati Mahila Visvavidyalayam. His cur-
rent project is the Power Modeling of Sensors
for Internet of Things. He has 150 published
papers in reputed SCI and Scopus indexed jour-
nals, conferences, book chapters, and books. His
research interests include operating systems, com-
puter communications (networks), and computer
security and reliability, big Data, 10T, and fog
computing. He is the Editor-in-Chief, a Guest Editor, a Reviewer of various
reputed international journals.

30212

SURESH KALLAM received the bachelor’s and
master’s degrees from Jawaharlal Nehru Tech-
nological University, Hyderabad, and the Ph.D.
degree from VIT University, Vellore, India. He is
currently a Professor, the Division Head, and the
Program Chair of the M.Tech. degree, School of
Computer Science Engineering, Galgotias Univer-
sity, Greater Noida, India. Previously, he was a
Foreign Faculty Member of the East China Uni-
versity of Technology, ECIT Nanchang Campus,
Jiangxi, China, and a Visiting Faculty Member of Jiangxi Normal University,
China. He has published over 35 national and International conference papers
and 15 international journals. He has received the Young Scientist Award, the
Best Faculty Award, the Best Paper Award, in 2005, and the First Prize from
the National Paper Presentation, in 2008. His research interests include the
Internet of Things, big data, and high-performance computing.

VOLUME 7, 2019

	INTRODUCTION
	LITERATURE REVIEW
	LOAD BALANCING IN CLOUD COMPUTING
	CLOUD LOAD BALANCING ALGORITHMS LIMITATIONS

	SYSTEM MODEL
	M-LEARNING IN CLOUD COMPUTING
	BIOLOGICAL MODEL OF DOMINANT FIREFLY BEHAVIOR
	BIO INSPIRED COMPUTING MODEL
	DESIGN OF ALGORITHMS

	EXPERIMENTAL SETUP
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	KAUSHIK SEKARAN
	MOHAMMAD S. KHAN
	RIZWAN PATAN
	AMIR H. GANDOMI
	PARIMALA VENKATA KRISHNA
	SURESH KALLAM

