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ABSTRACT This paper proposes a modified adaptive neural control algorithm with a funnel function
for nonlinear two-inertia servomechanisms with backlash and external disturbance. A continuous tracking
differentiator is employed to replace the first-order filter in the traditional dynamic surface control design.
A novel funnel function is employed and used in control design to improve the control performance. Then,
an adaptive neural dynamic surface controller based on funnel control is presented to guarantee the tracking
performance of two-inertia servomechanisms. In addition, the unknown dynamics, including backlash,
nonlinear friction, and external disturbance, are approximated by using the echo state neural network and
compensated online. The comparative experimental results validate the effectiveness of the developed control
algorithm based on a two-inertia servo mechanism.

INDEX TERMS Adaptive control, neural network, servo mechanisms, prescribed performance control.

I. INTRODUCTION
High performance servo drive systems have been of great
importance in practical engineering applications [1]–[7], e.g.,
robot-arm drives, wind power generation, and electric vehi-
cle. However, there exist some nonlinearities such as non-
linear friction, backlash and external disturbances that can
reduce the control performance. Among these nonlinear-
ities, the backlash appearing in the transmission device
which degrades the transmission performance. To reduce the
effect of the backlash, some advanced control methods have
been developed, e.g., sliding mode control [8], [9], robust
control [10] and adaptive control [11]. In addition, artificial
intelligence technologies (e.g., neural network [12]–[17] and
fuzzy logic control [18]–[21]) have also been utilized to com-
pensate the nonlinearities owing to their nonlinear approxi-
mation and learning abilities.

Recently, backstepping technique is an effect way to cope
with the nonlinearities of the control systems. In the tradi-
tional backstepping design procedure [22]–[24], there exists
‘‘explosion of complexity’’ in virtual controller designed
at each step needs repeated differentiation. To remedy this
drawback, dynamic surface control (DSC) technique was
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proposed in [25]. The DSC has been successfully applied
to control nonlinear systems. For example, a compos-
ite neural DSC method was developed for nonlinear sys-
tem with uncertainties [26]. In [27]a, the neural network
based adaptive DSC was designed for autonomous sur-
face vehicles with uncertain dynamics. An adaptive robust
DSC was developed for servo mechanisms with electrical
dynamics and unmeasurable states to improve the control
performance [28]. An adaptive fuzzy DSC was proposed for
nonlinear pure-feedback systems [29]. An adaptive neural
DSC for servo mechanisms with unknown dead-zone was
proposed in [30]. A novel adaptive DSC with error constraint
was developed forMIMO nonlinear systems [31]. These con-
trol methods have improved the control performance from
different aspects.

However, the transient and stead-state performance of the
control systems are not be guaranteed in industrial applica-
tions. To overcome this issue, the prescribed performance
control (PPC) was proposed to guarantee the convergence
rate and the maximum overshoot of the tracking error in [32].
The idea is that both the transient and steady-state control
performance can be analytically examined and prescribed
by introducing a prescribed performance function (PPF)
and a coordinate error transform. This method has been
successfully applied in some control systems, such as
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FIGURE 1. System model of two-inertia drive system.

motor drive system [33], spacecraft system [34], manipu-
lators control system [35], surface vessel [36], and vehicle
suspensions [37]. Nevertheless, the transformation error need
to calculate the partial differential that may cause the stability
problem. In addition, funnel control (FC) [38] has also been
used to guarantee prescribed transient response. Until now,
the applications of the FC control has been used in some
fields such that motor control system [39], motion control
system [40], and robotic system [41].

This paper presents an adaptive neural funnel control for
two-inertia servo mechanisms with backlash. A continuous
tracking differentiator (CTD) is employed to replace the
first-order filter in conventional DSC design, a modified DSC
is proposed to achieve the load tracking. A novel funnel
variable is defined and incorporated into control design. The
unknown dynamics are approximated by using echo state
neural network where the weights are all updated online.
By using Lyapunov stability theory, all the signals of the
closed-loop control system are the semiglobally uniformly
ultimately bounded (SGUUB). Comparative experimental
results validate the effectiveness of the developed control
algorithm based on a two-inertia servo mechanism.

The main contributions can be listed as follows.
1) A CTD is adopted to replace the first-order filter in vir-

tual intermediate control signal of conventional DSC design
to improve the filter performance.

2) To improve the convergence rate and overshoot of the
tracking error, a modified funnel function is incorporated into
DSC design for two-inertia servo mechanisms.

3) The unknown dynamics are approximated by using
echo state neural network where the weights are all updated
online.

This paper is organized as follows. Section II presents the
problem statement. The control design is shown in Section III.
Experimental verification based on a servo system is shown
in Section IV. Section V provides some conclusions.

II. PROBLEM STATEMENT AND PRELIMINARIES
A. SYSTEM MODEL
This paper considers two-inertia system, which is comprised
of a servo motor connected a load via a transmission gear
(See Fig. 1). Then, the mechanical model of the two-inertia
system, including the backlash is described as follows:{

Jmθ̈m + bmθ̇m + Ts = Tm
Jl θ̈l + bl θ̇l − Ts = 0

(1)

where Jm and Jl are, respectively, the motor inertia and load
inertia; θm, and θ̇m denote the motor angular position and
angular speed; θl , and θ̇l represent the load angular position
and load speed; bm and bl are the friction coefficients, Ts
represents the transmission torque between the motor and the
load; Tm is the input torque.

In this paper, the transmission torque is described by using
a continuous differentiable function which is defined as

Ts = kf (1θ ) = k
(
1θ − α

( 2
1+ e−r1θ

− 1
))

(2)

where r is a positive constant, 1θ = θm − θl , k denotes
stiffness coefficient, and α is the backlash width.

Select the state variable as x = [x1 x2 x3 x4]T =
[θl θ̇l θm θ̇m]T , then the system model (1) can be written
as

ẋ1 = x2

ẋ2 =
bl
Jl
x4 +

1
Jl
k
(
(x1 − x3)−α

( 2
1+e−r(x1−x3)

− 1
))

ẋ3 = x4

ẋ4 = −
bm
Jm
x2 +

1
Jm
u

−
1
Jm
k
(
(x1 − x3)− α

( 2
1+ e−r(x1−x3)

− 1
))

(3)

Assumption 1: The reference signal xd and its first and sec-
ond time derivative ẋd and ẍd are continuous and bounded.

The aim of this paper is to present an adaptive control
for servo mechanism (1) with backlash to make the output
position x1 to tracking the reference xd , and the unknown
backlash is approximated by using ESN and compensated in
control design.

B. ESN APPROXIMATION
ESN has been successfully utilized to approximate the non-
linearity due to their approximation and learning abilities.
It comprised of three parts, as depicted in Fig.2: 1) K input
neurons, 2) a reservoir layer with N reservoir neurons, and
3) output layer with L output neurons. The continuous-time
state of reservoir neurons is defined as

Ẋ = C(−aX + f (W inu+WX +W backy))

y = G(W T
0 X ) (4)

FIGURE 2. Basic architecture of ESN.
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where X denotes reservoir neuron state, C > 0 is a time
constant, a represents the leaking decay rate. W in

∈ RN×K ,
W ∈ RN×N and W out

∈ RN×L denote the input weight
matrix, the reservoir weight matrix, and the feedback weight
matrix, respectively. The ESN can be used to approximate any
continuous function f (x) over a compact domain � ∈ Rm.
The function f (x) is expressed as

f (x) = W ∗8(x)+ ε∗ ∀x ∈ � ⊂ Rm (5)

where ε∗ is the approximation error, and |ε∗| ≤ εm, W ∗

represents the ideal value of ESN weights. Therefore

W ∗ = arg min
W∈RL

{
sup
x∈�
|f (x)−W ∗TX (x)|

}
(6)

C. FUNNEL CONTROL
Funnel-control (FC), developed by Ilchmann et al. [38],
is new control strategy which is based the high-gain concepts
and adopts an adjustable proportional gain τ (·) to control and
stabilize all systems of class S [38].
The control input can be expressed as

u(t) = τ (Fϕ(t), ψ(t), ‖e(t)‖) · e(t) (7)

where ψ(t) is scaling factor. The distance dv(t) is defined as

dv(t) = Fϕ(t)− ‖e(t)‖ (8)

where e(t) is the tracking error, which is defined as

e(t) = xd − x(t) (9)

where xd and x(t) denote the reference signal and output.
Thus the funnel itself is defined as the set

Fϕ := {(t, e) ∈ R× Rn|ϕ(t) · ‖e(t)‖ < 1} (10)

Based on [38], this boundary (See Fig.3) can be described
by

Fϕ(t) = ϕ0 · exp(−at)+ ϕ∞ (11)

where ϕ0, ϕ∞, a are design parameters.

FIGURE 3. Funnel-control block diagram [38].

The gain τ (·) [38] can be adjusted by

τ (Fϕ(t), ψ(t), ‖e(t)‖) =
ψ(t)

Fϕ(t)− ‖e(t)‖
(12)

to ensure that the error e(t) evolves inside the funnel Fϕ(t).
Therefore, the gain τ (t) increases, the error e(t) draws close
to the boundary Fϕ(t); if the gain τ (t) decreases, the error e(t)
becomes small.

This paper defines a modified funnel function as

z(t) =
e(t)

Fϕ(t)− ‖e(t)‖
(13)

where the boundaryFϕ(t) satisfies the condition given in (10).

III. CONTROLLER DESIGN
In this part, the funnel function is utilized to design DSC for
servo mechanisms. The controller design steps are given in
the follows. The overall control structure of the closed-loop
system is depicted in Fig.4.

FIGURE 4. Structure of the proposed controller for two-inertia servo
system.

A. CONTINUOUS TRACKING DIFFERENTIATOR, (CTD)
The CTD [42] can be designed as{
ϑ̇ = υ − λ1|ϑ − xr |(m+1)/2sgn(ϑ − xr )− λ2(ϑ − xr )
υ̇ = −λ3|ϑ − xr |sgn(ϑ − xr )− λ4(ϑ − xr )

(14)

where λi(i = 1, ..., 4) and m are the positive constants. xr
denotes the input signal of the CTD.
Lemma 1: If the input signal χi is the bounded and differ-

entiable, there exist constants λi > 0 and 0 < m < 1 such
that the following inequalities hold in finite-time (FT).

|ϑ − xr | ≤ `1
|υ − ẋr | ≤ `2 (15)

where `1, and `2 are positive constants which depend on
design parameters λi and m.

B. CONTROLLER DESIGN
Step 1: Define the tracking error as

e1 = x1 − xd (16)
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where xd is the reference signal. Based on (13), the funnel
variable z1 is defined as

z1 =
e1

Fϕ1 − |e1|
(17)

The time derivative of z1 is

ż1 =
1

(Fϕ1 − |e1|)2
[
ż1(Fϕ1 − |e1|)− e1(Ḟϕ1 − |ė1|)

]
= ξ1

[
x2 − (Ḟϕ1 − |ė1|)z1 − ẋd

]
(18)

where ξ1 = 1
Fϕ1−|e1|

.
Let xd through a CTD, one has
ϑ̇1 = υ1 − λ11|ϑ − xr |(m1+1)/2sgn(ϑ1 − xd )
−λ21(ϑ1 − xd )

υ̇1 = −λ31|ϑ1 − xd |sgn(ϑ1 − xd )− λ41(ϑ1 − xd )

(19)

where λi1(i = 1, 2, 3, 4) and m1 are design parameters. ϑ1
represents the filter signal of the xd .
The virtual control signal α1 is designed as

α1 = −k1ξ1z1 + (Ḟϕ1 − |ė1|)z1 + ϑ1 (20)

where k1 is the design parameter.
Step 2:Define the second error surface e2 = x2−α1. Based

on the error transformation function (13), we can obtain that

z2(t) =
e2(t)

Fϕ2 − |e2(t)|
(21)

The time derivative of z2(t) is

ż2 =
1

(Fϕ2 − |e2|)2
[
ż2(Fϕ2 − |e2|)− e1(Ḟϕ2 − |ė2|)

]
= ξ2

[
ẋ2 − (Ḟϕ2 − |ė2|)z2 − α̇1

]
= ξ2

[
−
bl
Jl
x2 +

1
Jl
(x1 − x3)+W18(x)

− (Ḟϕ2 − |ė2|)z2 − α̇1
]

(22)

where ξ2 = 1
Fϕ2−|e2|

.
Let α2 through the TD, we have
ϑ̇2 = υ2 − λ12|ϑ − α1|

(m2+1)/2sgn(ϑ2 − α1)
−λ22(ϑ1 − xd )

υ̇2 = −λ32|ϑ1 − α1|sgn(ϑ2 − α1)− λ42(ϑ2 − xd )

(23)

where λi2(i = 1, 2, 3, 4) and m2 are the design parameters.
ϑ2 is the filter signal of the virtual control signal α1.
A virtual control α2 is given as

α2 = Jl(−k2ξ2z2 + (Ḟϕ2 − |ė2|)z2
+ϑ2)+ bl(x2 − x1)− Ŵ18(x) (24)

and
˙̂W1 = 01[z2ξ28(x)− σ1Ŵ1] (25)

where k2, 0 and σ1 are the design parameters.
Step 3: Define the third tracking error e3 = x3−α2. Then,

the funnel variable z3(t) is defined as

z3 =
e3

Fϕ3 − |e3|
(26)

The time derivative of z3 is

ż3 =
1

(Fϕ3 − |e3|)2
[
ż3(Fϕ3 − |e3|)− e3(Ḟϕ3 − |ė3|)

]
= ξ3

[
x4 − (Ḟϕ3 − |ė3|)z3 − α̇2

]
(27)

where ξ3 = 1
Fϕ3−|e3|

Let α3 through the TD, we have
ϑ̇3 = υ3 − λ13|ϑ3 − α2|

(m3+1)/2sgn(ϑ3 − α2)
−λ23(ϑ3 − α2)

υ̇3 = −λ33|ϑ3 − α2|sgn(ϑ3 − α2)− λ43(ϑ3 − α2)

(28)

where λi3(i = 1, 2, 3, 4) and m3 are the design parameters.
ϑ3 is the filter signal of the virtual control signal α2.
A virtual control α3 is given as

α3 = −k3ξ3z3 + (Ḟϕ3 − |ė3|)z3 + ϑ3 (29)

where k3 is the design parameter.
Step 4: Define the last error surface e4 = x4 − α3, then,

the funnel variable is given as

z4 =
e4

Fϕ4 − |e4|
(30)

The time derivative of z4 is

ż4 =
1

(Fϕ4 − |e4|)2
[
ż4(Fϕ4 − |e4|)− e4(Ḟϕ4 − |ė4|)

]
= ξ4

[
ẋ4 − (Ḟϕ4 − |ė4|)z4 − α̇3

]
= ξ4

[
−
bm
Jm
x2 +

1
Jm
u−

1
Jm
k(x1 − x3)−W28(x)

− (Ḟϕ4 − |ė4|)z4 − α̇3
]

(31)

Let α3 passes through the TD as
ϑ̇4 = υ4 − λ14|ϑ4 − α3|

(m4+1)/2sgn(ϑ4 − α3)
−λ24(ϑ4 − α3)

υ̇4 = −λ34|ϑ4 − α3|sgn(ϑ4 − α3)− λ44(ϑ4 − α3)

(32)

where λi4(i = 1, 2, 3, 4) and m4 are the design parameters.
ϑ4 is the filter signal of the virtual control α3.
The true control action u is designed as

u = −k4ξ4z4 +
bm
Jm
x2 +

1
Jm
k(x1 − x3)+ Ŵ28(x)

+ (Ḟϕ4 − |ė4|)z4 + ϑ4 (33)

and

˙̂W2 = 02[z4ξ48(x)− σ2Ŵ2] (34)

C. STABILITY ANALYSIS
Theorem 1:Consider the two-inertia system (1) with backlash
model (2). If the visual control signals are designed as (20),
(24) and (29), and the actual control action (33), the load
output position x1 can track desired trajectory xd and all the
signals are the semi-globally uniformly ultimately bounded
(SGUUB).
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Proof: Define a Lyapunov function as

V =
1
2

4∑
i=1

z2i +
1
2

2∑
j=1

W̃ T
j 0
−1
j W̃ T

j (35)

The time derivative of V is

V̇ =
4∑
i=1

ziżi +
2∑
j=1

W̃ T
j 0
−1
j
˙̃W T
j

= z1ξ1
[
α1 + e1 − (Ḟϕ1 − |ė1|)z1 − ẋd

]
+ z2ξ2

[
−
bl
Jl
x2 +

1
Jl
(x1 − α2 − e2)+W18(x)− (Ḟϕ2

− |ė2|)z2 − α̇1
]
+ z3ξ3

[
α3 + e3 − (Ḟϕ3 − |ė3|)z3 − α̇2

]
+ z4ξ4

[
−
bm
Jm
x2 +

1
Jm
u−

1
Jm
k(x1 − x3)−W28(x)

− (Ḟϕ4 − |ė4|)z4 − α̇3
]
+ W̃1z2ξ28(x)− σ1W̃1Ŵ1

+ W̃2z4ξ48(x)− σ2W̃2Ŵ2 (36)

Substituting the visual control (20), (24), (29) and actual
control action (33) into (36), we can obtain that

V̇ = −k1ξ1z21 + z1ξ1e1 − k2ξ2z
2
2 + z2ξ2e2 − k3ξ3z

2
3

+ z3ξ3e3 − z2ξ2W̃18(x)− z4ξ4W̃28(x)+ W̃1z2ξ28(x)

− σ1W̃1Ŵ1 + W̃2z4ξ48(x)− σ2W̃2Ŵ2

= −k1ξ21 z
2
1 + z1ξ1e1 − k2ξ

2
2 z

2
2 + z2ξ2e2 − k3ξ

2
3 z

2
3

+ z3ξ3e3 − σ1W̃1Ŵ1 − σ2W̃2Ŵ2 (37)

Using Young’s inequality yields

ziξiei ≤
1
2
z2i ξ

2
i +

1
2
e2i , i = 1, 2, 3

−σjW̃jŴj ≤ −
σj‖W̃ 2

j ‖

2
+
σj‖Wj‖

2
, j = 1, 2 (38)

Substituting (38) into (37), one has

V̇ = −(k1 −
1
2
)ξ21 z

2
1 − (k2 −

1
2
)ξ22 z

2
2 − (k3 −

1
2
)ξ23 z

2
3

− k4ξ24 z
2
4 −

2∑
j=1

σj‖W̃ 2
j ‖

2
+

2∑
j=1

σj‖Wj‖

2

≤ −2ρV + δ (39)

where ρ = min{k1 − 1
2 , k2 −

1
2 , k3 −

1
2 , k4,

σj‖W̃ 2
j ‖

2 } and
δ =

σj‖Wj‖

2 .
By integrating both sides of (39), we have

0 ≤ V (t) ≤
δ

2ρ
+
(
V (0)−

δ

2ρ

)
e−2ρt (40)

From (40), one can conclude that all the signals of the
closed-loop are SGUUB.

In engineering applications, the parameter tuning rules of
the proposed control algorithm is presented. The controller
parameters including two parts: i) the funnel parameters ϕ0,
ϕ∞, and a; ii) the control gains ki, i = 1, ..., 4 and NN
parameters 01, 02, σ1 and σ2, which can be summarized as
follows.

FIGURE 5. Structure of two inertia servo mechanism.

1) Select the funnel parameters ϕ0i, ϕ∞i, and ai, which
should satisfy |zi(0)| < Fϕi(0).
2) The NN weights Ŵi(0), i = 1, 2 should be nonnegative,

i.e. Ŵi(0) = 0. In addition, large σ1 and σ2 will suppress the
parameter adaptive speed.

3) Parameter ki can lead to fast convergence of tracking
error and the control action produces oscillation. The gains i
can improve the estimation performance, but may be lead to
the oscillation.

IV. EXPERIMENT RESULTS
A. EXPERIMENTAL SETUP
To test the effectiveness of the developed control method,
the experiment are carried out based on a two-inertia servo
mechanism (See Fig.5). This control system is composed of a
drivingmotor with the pulsewidthmodulation (PWM) ampli-
fier located in the driving card (Panasonic MCDDT3520),
an electromotor (180ST-M 35105) with 64000 counts per
rotation resolution encoder as the load, a digital signal pro-
cessing (TMS320 2812) unit performing for communication,
and a Pentium 3.0 GHz industrial control computer by run-
ning C++ program in CCS 5.0 developing environment. The
load is driven by the driving motor through the transmis-
sion gear. The industrial computer receives the signals of
the driving motor and load from the encoder, and provides
the corresponding control action for real-time control. The
sampling time is ts = 0.001s.

B. CONTROLLER DESIGN
In order to validate control performance of the developed
control algorithm, three control methods are compared in this
part.
1) ANFC: The adaptive neural control scheme with funnel

control is performed. The funnel parameters are given as
Fϕi = ϕ0 i · exp(−ait)+ ϕ∞i with ϕ0 i = 0.12, ϕ∞i = 0.028
and ai = 1.5(i = 1, 2, 3, 4). The controller parameters are
chosen as k1 = 2, k2 = 4, k3 = 8 and k4 = 3. The
TD parameters are λ1i = 1.5, λ2i = 12, λ3i = 15 and
λ4i = 8 (i = 1, 2, 3, 4). The neural network parameters are
selected as 01 = 02 = 100, and σ1 = σ2 = 0.01. The initial
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FIGURE 6. Experiment results for xd = 7 sin(2πt/4) (a) Position tracking
and tracking errors; (b) Control u for different controllers.

weights are Ŵ1(0) = Ŵ2(0) = 0. The number layers of NN
is L = 6.
2) ANC: This is an adaptive neural control without funnel

control. The difference is the ANC without using the funnel
function in controller design. The other control parameters
and neural network parameters are the same as ANFC.
3) PID: The PID control gains are given as kp = 100,

ki = 2 and kd = 10.

C. EXPERIMENTAL RESULTS
The control performance of the developed ANFC for nonlin-
ear servo system is experimentally evaluated by comparing
their response under different position references. All the
parameters are tuned to achieve the best control performance
for a given reference and then fixed to validate the generality
of the different controllers.

FIGURE 7. Experiment results for xd = 9 sin(2πt/6) (a) Position tracking
and tracking errors; (b) Control u for different controllers.

Case 1: A sinusoidal signal xd = 7 sin(2π/5) is employed
as a desired trajectory. Fig.6 depicts the experiment result
for case 1, where the position tracking performance, tracking
errors (Fig.6(a)) and control action (Fig.6(b)) are all depicted.
We can find from Fig.6 that the load position output can
follow the reference signal xd well by using our developed
ANFC algorithm, and the tracking error of the ANFC is
remained within a funnel boundary. While the tracking errors
of the other two control methods (e.g., ANC and PID) exceeds
the given boundary. In addition, the control action u of the
proposed ANFC is smooth, nevertheless, the control action
of ANC and PID produces the oscillation.
Case 2: To further compare the control performance of the

designed ANFC, another sinusoidal signal xd = 9 sin(2π/6)
with large amplitude and period is adopted. The experimen-
tal results are shown in Fig.7. As seen from these figures,
the proposed ANFC performs better than ANC and PID con-
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trol schemes. Compared with ANC and PID, the tracking
error of the ANFC is guaranteed within prescribed boundary.
This is because that the ANFC used in this paper can improve
the control performance.

V. CONCLUSION
In this paper, a novel adaptive neural funnel control scheme
was presented for nonlinear two-inertia servo mechanisms
with backlash. ACTDwas used in DSC design procedure that
can improve the filter performance. The unknown dynamics
are approximated by using echo state neural network and
compensated in controller design. A novel funnel variable
was employed and incorporated into DSC design to improve
control performance. Then, an adaptive neural funnel control
algorithm was developed for two-inertia servo mechanisms.
The stability of the closed-loop control system was proved
by using Lyapunov stability theory. Extensive comparative
experiment results illustrate the benefits and reliability of the
developed control algorithm in comparison to the other two
algorithms.
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