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ABSTRACT In this paper, a recently proposed Jaya algorithm is implemented on the economic load
dispatch problems (ELDPs). Different from most of the other meta-heuristics, Jaya algorithm needs no
algorithm-specific parameters, and only two common parameters are required for effective execution, which
makes the implementation simple and effective. Simultaneously, considering the non-convex, non-linear,
and non-smooth characteristics of the ELDPs, the multi-population (MP) method is introduced to improve
the population diversity. However, the introduction of the MP method adds extra parameters to the Jaya
algorithm, hence a self-adaptive strategy is used to cope with the tuning problem for extra parameters.
Moreover, to avoid being trapped by local optima, Lévy flights distribution is incorporated into the population
iteration phase. Finally, Jaya algorithm with self-adaptive multi-population and Lévy flights (Jaya-SML) is
proposed, it is evaluated by ELDPs with different constraints including power balance constraints, generating
capacity limits, ramp rate limits, prohibited operating zones, valve-point effects, and multi-fuel options. The
comparisons with state-of-the-art methods indicate that Jaya-SML can generate more competitive results for

solving the ELDPs.

INDEX TERMS Economic load dispatch problems, Jaya, self-adaptive, multi-population, Lévy flights.

I. INTRODUCTION

Economic load dispatch problems (ELDPs) are regarded as
optimization problems with high dimensional, non-convex,
non-linear and non-smooth characteristics under various of
constraints, which requires powerful optimization technique
to handle [1], [2]. The prime requirement of ELDPs are to
allocate all the committed generators so as to accomplish
the total load demand in the most economical way, while
satisfying physical and operational constraints imposed by
generators and system limitations. Over the recent decades,
great efforts of researchers across the world have been made
to solve ELDPs by using meta-heuristic methods such as
tabu search (TS) [3], genetic algorithm (GA) [4], parti-
cle swarm optimization (PSO) [5], artificial immune sys-
tem (AILS) [6], harmony search (HS) [7], firefly algorithm [8],
biogeography based optimization (BBO) [9], artificial bee
colony algorithm (ABC) [10] and teaching-learning-based
optimization (TLBO) [11]. Competitive results in terms of
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fuel cost savings and convergence rate have been achieved.
However, since the ELDPs exhibit highly non-convex, non-
linear and non-smooth characteristics, they tend to be easily
trapped by local optima rather than at the global optimum.
To overcome the drawbacks, hybrid meta-heuristic
approaches have been reported to further obtain the global
optimum for ELDPs, such as new particle swarm opti-
mization with local random search (NPSO-LRS) [12],
chaos mutation firefly algorithm (CMFA) [13], hybrid
of fuzzy adaptive particle swarm optimization with vari-
able DE (FAPSO-VDE) [14], DE with chaos sequences
and sequential quadratic programming (DEC-SQP) [15],
DE with truncated Lévy flight and population diversity mea-
sure (DEL) [16], genetic algorithm with pattern search and
sequential quadratic programming (GA-PS-SQP) [17], across
neighborhood search algorithm with variable reduction
strategy (ANS-VRS) [18], multi-population based chaotic
JAYA algorithm (MP-CJAYA) [19], posteriori multiobjective
self-adaptive multipopulation Jaya algorithm (MO-SAMP
Jaya) [20], self-adaptive Jaya algorithm (SJaya) and chaotic-
Jaya (Claya) algorithm [21]. However, even though the
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modified approaches have gained better performances, the
combination may lead to increased number of algorithm
parameters whose turning task is quite time-consuming and
disturbing. Hence, we call for new algorithms with parame-
ters as fewer as possible.

Jaya algorithm is a recently proposed method with excel-
lent advantage of reducing the number of parameters. Except
for two common parameters named maximum number of
iteration Nmax and population size Np,p, not a single more
algorithm-specific parameter is needed [22]. This unique
advantage has perfectly satisfied the calls for the number
of parameters to be as fewer as possible. However, Jaya
algorithm only guarantees the population to keep on getting
close to the best position and getting away from the worst
position, so the population converge so quickly to optima
because of the strong attraction of the best position nearby,
which will cause premature. Actually, for solving ELDPs,
it is quite necessary to guide the population search in different
regions to get local optima as many as possible, since these
local optima have larger probability to become the global
optima in the next iteration.

Multi-population (MP) method is proved to be a good
technique to satisfy the requirements above, which works
by dividing the whole population in the entire region into
a certain number of sub-populations in different subregions,
with the goal of enhancing population diversity and avoiding
premature. However, there is a crucial question to consider
for MP method, that is how many sub-populations are needed
to cover the entire region? To answer this question, a self-
adaptive (SA) strategy is employed to MP method, then the
number of sub-populations is either decreased or increased
automatically according to the strength of the environmental
changes, which resolves the problem of the determination for
the number of sub-populations. When sub-populations are
properly created by SA strategy, they will undergo convergent
process to keep exploiting the covered subregions.

In order to speed up the convergent process, as well as to
increase the potential of finding global optima, we incorpo-
rate Lévy flights into the population updating phase. Finally,
Jaya algorithm with self-adaptive multi-population and Lévy
flights (Jaya-SML) is proposed in this study. To the best of
the authors’ knowledge, this is the first time for adaptive Jaya
algorithm being implemented in solving the ELDPs.

The rest of this paper is constructed as follows.
In Section 2, the formulations of ELDPs are presented.
Related works on Jaya, MP method, SA strategy and Lévy
flights are described in Section 3. The procedures of solving
ELDPs are explained in Section 4. Experimental results and
comparisons are provided and analyzed in Section 5. Finally,
discussions and conclusion are given in Section 6.

Il. PROBLEM FORMULATION

A. OBJECTIVE FUNCTION

Mathematical model for ELDPs is to add up all the fuel
costs of the generating units in a power system as expressed
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below [11], [23]:

N
min F =) Fi(P) 1)

i=1

where N is the total number of committed generators, i is the
index of generator where i € [1, N], P; is the power output
of generator i, F;(P;) is the cost function of generator i with
power output P;, F is the total cost of all the generators.

Generally speaking, in classical ELDPs, the cost function
of each generating unit is described by quadratic polynomial
as:

Fi(P)) = aiP} + biPi + ¢; @

where a;, b;, c; is the fuel cost coefficients of generator i.

In practice, the valve-point effects on the costs of generat-
ing units must be considered. So the rectified sinusoidal com-
ponents are added to the classical cost function as follows:

Fi(P)) = a;P? 4 b;P; + ¢; + |e; sin(fy(P™™ — P)|  (3)

where e;, f; are the fuel cost coefficients of generator i reflect-
ing valve-point effects.

In some cases, the committed generators may be supplied
by multiple fuels as natural gas, coal or oil. Then the cost
function is defined with piecewise quadratic functions which
reflect the effects of the fuel type changes [4]. Considering
valve-point effects and multiple fuels, the objective function
can be described as:

Fi(P;)

aitP? + byt P + cit + lej sin(fyy (PR — Py))],
for fuel 1, P;m“ <P <P

apP} + bpoP; + cip + |en sin(fin(PR™ — P))l,
— ] forfuel2, P;; <P, <Pi»

aimP? + bimP; + Cim + €im SIn(fin (PN — P)))],
for fuel m, P; -1 < P; < P™

“

where m is the total number of fuel types, a4, big, Cig, €ig» fig
are the fuel cost coefficients of generator i using fuel type ¢
where g € [1, m].

B. CONSTRAINED FUNCTIONS
1) POWER BALANCE
The total power generated by all the committed generators
must equal to the summation of the demanded power P jeimand
and the total transmission power loss Pj,s, Which can be
formulated as:

N

ZPi = Pdemand + Ploss (5)

i=1
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where Pj,; is calculated by Kron’s formula:

Piogs = Z Z PiB;iP; + Z BioP; + Boo (6)

i=1 j=1

where Bjj, Bjo, Boo are the B-matrix coefficients for Pjyg
which can be generally assumed to be constants under a
normal operating condition.

2) GENERATING CAPACITY

The power output P; should be within its maximum and
minimum limits, as shown below:

PP < P < PP )

where P{"®* and P{™" are the maximum and minimum limits
of the i generator.

3) RAMP RATE LIMIT

Under practical circumstances, the operating range of every
generating unit is restricted by its ramp rate limit, so the
output power P; can not be adjusted instantaneously. The
up-ramp and down-ramp constraints are as follows:

P; — PY < UR; and P — P; < DR; (8)

where P; is the present power output, P? is the previous
power output, UR; and DR; is the up-ramp and down-ramp
limit of generator i respectively. Considering together with
the generating capacity limit, ramp rate limit can be modified
as:

max(PM", P — DR;) < P; < min(P™, PO + UR;)  (9)
4) PROHIBITED OPERATING ZONES (POZS)

In practice, since there are physical limitations when operat-
ing the generating units, the whole operating zones are not
always available. Prohibited operating zones (POZs) lead to
discontinuous regions for the objective function. The output
power P; has constraints as follows:

P;nin <P < Piulwer
Pi e Pupper < P‘ < Plower (10)

U, er
P[I;l’ < P < Pmax

where z; is the total number of POZs for generator i, r is the
index of POZs where r € [1, z], Pl"w‘” and P"p P are the
lower and upper bounds of the " POZ of the i generator
respectively.

lIl. RELATED WORK

A. THE STANDARD JAYA ALGORITHM

Jaya algorithm is a newly developed meta-heuristic method
for solving constrained and unconstrained optimization prob-
lems [22]. Different from other heuristic algorithms requiring
for algorithm-specific parameters, Jaya algorithm is free from
the algorithm-specific parameters, two and only two com-
mon parameters named maximum number of iteration Npax
and population size Np,), are required, whose values can be
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initialised without difficulties. This significant improvement
makes the application of Jaya algorithm simple and efficient.
Let us assume F(X) is the objective function required to
be maximized or minimized, F(X)ps; and F(X), represent
the best value and the worst value of F(X) among all the
candidate solutions during each iteration. Suppose the design
variable number is N,,- where the index of design variable
J € [1, Ny, suppose the population size is N, where the
index of population k € [1, Npopl, suppose the maximum
iteration number is Npyax Where the index of current iteration
t € [1, Nmax]. Let Xj  ; be the value of the jh design variable
for the k" candidate population during the " iteration, then
the modified value X/, , by Jaya algorithm is calculated by:

.kt
1Xj ke 1)

—rn X (Xj,ws,t -

!
Xiwe =Xjks +r1 X Kjps, —

Xjxe) (1)

where X ps; and Xj ., are the values of the j’h variable
for F(X)ps and F(X),,s during the " iteration respectively,
r1 and rp are two random numbers ranged in [0, 1]. The
term 71 X (Xjps,s — |Xj ) indicates the tendency of the
solution to move closer to the best position and the term
r2 X (Xjws,r — 1Xj k,¢|) indicates the tendency of the solution
to avoid the worst position. F(X)' is the modified value of
F(X), if F(X)' provides better value than F(X), then X;  ; is
replaced by X/, , and F(X) is replaced by F(X)'; otherwise,
keep the old value All the values of new obtained X ,
and F(X) are maintained and become the inputs to the next
iteration [22]. The pseudo code of Jaya algorithm is shown in
Algorithm 1:

Algorithm 1 The Standard Jaya
Initialize Npop, Nyar and Nmax;
Generate initial population X;
Evaluate the fitness value F(X);
Sett =1;
while ¢ < N« do

Identify Xj p;,, and Xj 5, according to F(X);
for k =1 — Ny, do
forj=1— N,, do
‘ Generate updated solutions Xj/’ ke by (11);
end
if F(X’k ;) is better than F (X; ;. ;) then
X],k,z =X okt
F(Xjaa) = FX[, )
else
| Keep the old value;
end
end
t=t+1,

end

B. MULTI-POPULATION METHOD
Multi-population (MP) method is implemented with the aim
of improving population diversity by scattering the entire
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region with the whole population into a certain number of
subregions with sub-populations. Each subregion is assigned
to either intensifying or diversifying the searching process.
There may be one or more local optima covered within each
subregion, by keeping searching the subregions separately,
changes can be monitored more effectively. Whenever a
change in the solution is observed during the iteration, all the
sub-populations interact with each other by means of dividing
and merging process. So cooperating with MP method is an
effective way to improve population diversity and to enhance
the searching ability for Jaya algorithm.

As mentioned above, to represent the total number of
divided sub-populations, a key parameter is introduced as K,
hence the population size of each sub-population Nyp_pep is:

Nsub_pop =Np0p/K (12)

where N,,, is the population size of initially generated
population.

It should be noted that, each individual is grouped to a sub-
population by random way, each sub-population is assigned
to explore a different region in the fitness area. If (12) has
remainders, then the remaining individuals are randomly
grouped to one of the sub-populations. Pseudo code of MP
method is shown in Algorithm 2:

Algorithm 2 MP
Initialize Npop;
Generate initial population X;
Set K;

while (Maximum number of iterations is not met) do
Divide population X into K sub-populations as
Xl aXZ" o 7XK71 7XK;
forg=1— K do
for k =1 — Nyup_pop do
Perform algorithm to X, ; to generate X é, P
if F(X;,k) is better than F(X, i) then
Xgk = X;,k ,
F(Xqa) = F(X; 1)
else
| Keep the old value;
end

end

end
Merge the sub-populations into X;

end

C. SELF-ADAPTIVE STRATEGY

For MP method, the disadvantage is that one more param-
eter K has to be introduced, and the selection of a proper
value for K is quite a difficult task since it depends on the
complexity of the problem. In order to address this issue,
a self-adaptive (SA) strategy which modifies the value of
K automatically is applied in this work. By integrating SA
strategy with MP method, K value can be self-adaptively

VOLUME 7, 2019

Algorithm 3 Self-Adaptive MP

Initialize Npgp;

Generate initial population X;

Initial K=2;

while (Maximum number of iterations is not met) do

Divide population X into K sub-populations as

X1.X2, - Xk —1.Xk 3

forg=1— K do

for k =1 — Nyp_pop do

Perform algorithm to X, to generate X, ;;

if F(X, ;) is better than F (Xq i) then
Xgk = Xf/l’k
F(Xq,k) = F(X;’k)

else

| Keep the old value;
end

end

end
Merge the sub-populations into X;
if F(cr_best) is better than F (fm_best) then

| K=K+1

else if F(cr_best) is worse than F(fim_best) then
| K=K-1

else
| K=K

end

end

determined by the change strength of the solution without
manual parameter tuning. Compared with steady-size MP,
self-adaptive MP not only monitors the solution changes
more effectively, but also maintains the population diversity
very well [24]. The steps of self-adaptive MP are illustrated
as follows, pseudo code is shown in Algorithm 3.

i. Generate initial population X and suppose the fitness
function is F (X).

ii. Divide the population X into K sub-populations (initial
K =2).

iii. Calculate the fitness value of each sub-population inde-
pendently by the pre-defined algorithm.

iv. Compare the present fitness value with its former fit-
ness value, if the fitness value gets better, keep the
present sub-population; otherwise, keep the former
sub-population.

v. Merge all the sub-populations together.

vi. Suppose F(cr_best) is the current best fitness value
and F(fin_best) is the former best fitness value,
if F(cr_best) is better than F(fim_best), then K is
increased by 1 with the purpose to enhance the explo-
ration ability among the entire region; if F'(cr_best) is
worse than F(fin_best), then K is decreased by 1 as
the searching process needs to be more exploitive than
explorative; if F(cr_best) is equal to F(fin_best), then
keep the K value unchanged.
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vii. If the maximum number of evaluations has reached,
end the loop and report the best value; Otherwise,
go back for re-dividing the population.

D. LEVY FLIGHTS
The generation of random numbers using Lévy flights con-
sists of two steps: the choice of a random direction and the
generation of step which obeys the chosen Lévy distribution.
Lévy distribution is a simple power-law formula L(s) ~
Is|~!=# where 0 < B < 2 is an index [25]. If the value of
B is small, it allows the variable perform long-distance jumps
in the search space and avoids being trapped in local optima;
if the value of B is big, it continues to derive new values
around the variable. As a result, by employing Lévy flights on
updating the population, variables are able to take short jumps
together with occasionally long-distance jumps towards its
best value, thereby enhancing the population diversity and
facilitating the algorithm to perform stronger global explo-
ration throughout the search space.

In this study, we apply Lévy flights to each variable of the
current iteration by the following equation:

X = Ley(ie) + 11 % Kjoss = X
=12 X Kjwsr — 1 Xjk ) (13)
where
Levy(Xj k1) = Xj k1 + stepsize x rand(size(Xj 1))  (14)
where
stepsize = 0.01 x step X (Xj k.1 — Xj ps,1) (15)

here rand is randomly generated numbers ranged in [0, 1];
the factor 0.01 comes from the fact that step/100 should be
the typical step size of walks where step is the typical length
scale; otherwise, Lévy flights may become so aggressive that
new solutions jump outside of the domain and thus waste
evaluations. Xj x ; and X; p;,,; are variables from (11).

For random walk, the value of step can be calculated by
Mantegna’s algorithm as:

u
siep |V|1/ﬁ ( )

here it should be noted that § parameter takes major role in
Lévy distributions, by setting different values for S, the dis-
tribution situation is changed accordingly. In this study,
we choose constant value 1.5 for 8. The other two parameters
u and v are drawn from normal distributions with standard
deviation o, and o, given by:

u~N(@©,02), v~N(©, o2 (17)
where
~ [ (1 + B) x sin(%£) }”’3 )
C L rEE) x g x 26-D12
o, =1 (19)

where I'(-) is standard Gamma function [26].
Pseudo code for Lévy flights is shown in Algorithm 4.
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Algorithm 4 Lévy Flights With Jaya
Initialize Npop, Nyar and Nipax;
Generate initial population X;
Evaluate the fitness value F(X);
Setr =1;
while ¢ < Npax do
Identify X; 5., and Xj ., according to F'(X);
fork =1— Ny, do
forj=1— Ny, do

‘ Generate modified solutions X]lekvyt by (13);
end
if F(X/) is better than F(X;.;) then
levy
Xjki = X/',k,t ;
FXj k) = FX;50)
else
| Keep the old value;
end

end
t=t+1;

end

E. CONSTRAINTS HANDLING STRATEGY

1) HANDLING OF CONSTRAINED EQUATIONS

The constraints handling strategy is one of the significant con-
cerns in solving ELDPs. Among all the techniques, penalized
fuel cost function is the most commonly used one. By adding
certain values to the objective function based on the constraint
violations, the constrained problems are transformed into
unconstrained ones. In this paper, the constraints of power
balance limit and POZs are handled by adding penalty factors
to the objective function as follows:

N N

Fp, = ZF[(P[) + Apb X (Zpi — Pemand — Ploss)
i=1 i=1

N
+hpor X )0 (20)
i=1

where F), is the value of the penalized objective function; Q;
is an indicator of falling into POZs; A, and A, are penalty
factors used to penalize the fuel cost proportional to the
amount of constraint violations. Notes that A, equals to zero
if the probability of falling into POZs is not considered [12].

2) HANDLING OF UPPER AND LOWER LIMITS

New solutions generated via supposed algorithms may violate
the maximum or minimum limits, so they need to be redefined
to satisfy the limits. For power output limit and ramp rate limit
constraints, we adopt the following strategy to handle:

max(P™", PO—DR;), if P;<max(P™", P9—DR;)
I’Ilin(P?laX,P?-f-UR,'), if Pizmin(P;nax’ P?+UR;)
Pi, otherwise

P =

2
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where P;“i“, P, P?, DR; and UR; have already been
illustrated before.

3) HANDLING OF POZS VIOLATION
As mentioned above, because of the exists of POZs, there
are upper and lower limits for power output of the generator.
If the obtained power output falls into POZs, it needs to
be recalculated to satisfy the limits. For handling the POZs
violation, a “middle point™ concept is defined as follows:
Pl 4 I
= 3 (22)
Therefore, there are two sub-POZs divided from ‘“‘middle
point” including left and right ones, then the new value of
power output is re-determined as below [27]:

middle
Pi,r

lower D X middle
Pi r if Pi < Pi,F

upper .o . middle
PP if P > P

ir

new __
P =

(23)

where Pf”rw‘)r and P;”;p “" are the lower and upper bounds of
the " POZ of the i"" generator respectively.

IV. IMPLEMENTATION OF JAYA-SML FOR ELDPS
According to the related work in previous section, Jaya
algorithm with self-adaptive multi-population and Levy
flights (Jaya-SML) is proposed. In Jaya-SML, three mod-
ifications are added to the standard Jaya, they are multi-
population (MP) method, self-adaptive (SA) strategy and
Lévy flights distribution. Pseudo code of the proposed
Jaya-SML is shown in Algorithm 5.

It starts by initializing the values for common parameters.
Then the initial population is created and evaluated. Next,
the whole population is divided into K sub-populations. After
that, each sub-population utilises Jaya algorithm with Lévy
flights. If there is a change in the solution, the algorithm
compares the change strength to update the K value. If the
stopping condition (we set this as maximum number of itera-
tions) has been reached, the algorithm terminates and the best
solution is returned. Otherwise, the algorithm merges all the
sub-populations and re-divides the whole population into K
sub-populations, then starts a new iteration. The main steps
are described with further details below:

i. Set parameters. Four common parameters are initial-
ized as population size Np,p, maximum iteration num-
ber Nmax, number of design variables N, and number
of sub-populations K (initial K = 2).

ii. Initialization. Initial population X are generated as

follows:

Xjk = ijin +( jmax - ijin) S rand(Npopa Nyar)
(24)
here X; ; is the ;™ generator in the k" candidate solution
where j € [1, Nyl and k € [1, Npgpl, ijm and ijax

are the lower and upper limits of the j generator given
by (7).

VOLUME 7, 2019

Algorithm 5 Jaya-SML

Initialize Npop, Nyar, Nmax and K;

Generate initial population X by (24);

Calculate the fuel cost F(X);

Setr =1;

while 1 < Np.x do

Divide population X into K sub-populations as
X1.X2, - Xg1.Xk;

forg=1— K do

Confirm Xy pesr,r and Xy yorsr,r Within X, ,
for k =1 — Nyp_pop do

forj=1— Ny, do

Generate modified solutions Xée;yk , by
(13);

end

if F(X,(7} ) is better than F(Xy,jx.;) then
o _ ylevy
Xqjka = Xq,j,k,z

le
FXgjun) = FXD )

else
| Keep the old value

end

end

end

Merge the sub-populations into X;

if F(cr_best) is better than F(fim_best) then
| K=K+1

else if F(cr_best) is worse than F (fim_best) then
| K=K-1

else
| K=K

end

t=t+1

end

iii. Evaluation. Fitness values are calculated by objective
function, which is problem dependent. That is to use
(2) without considering valve-point effect, or to use (3)
with considering valve-point effect, or to use (4) with
considering multi-fuel options and valve-point effects.

iv. Dividing. Divide population X into sub-populations
[X1, X2, -+, Xk—1, Xk, as presented in Algorithm 2.

v. Assign algorithm. Each sub-population is calculated
by Jaya algorithm with Lévy flights, as presented in
Algorithm 4.

vi. Merging. All the sub-populations are merged together
into population X .

vii. Update K. Compare the current best value of the objec-
tive function F(cr_best) with the previous best value
of the objective function F(fm_best), then update the
K value according to Algorithm 3.

viii. Check the stopping condition. If N,y is reached, stop
the loop and report the best solution; otherwise set the
iteration number ¢t = ¢ 4 1 and go back for re-dividing
the population.
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V. NUMERICAL EXPERIMENTS

Since the proposed Jaya-SML is the hybridization of Jaya,
MP method, SA strategy and Lévy flights, it is quite necessary
to observe the relative effectiveness of each constituent with
application in solving ELDPs, hence four different versions
of Jaya algorithm are experimented respectively:

o Jaya: The standard Jaya algorithm to compare with its

variants.

o Jaya-M: Jaya algorithm with MP method.

o Jaya-SM: Jaya algorithm with SA strategy and MP

method.

o Jaya-SML: Jaya algorithm with SA strategy, MP method

and Lévy flights.

In the following, Jaya, Jaya-M, Jaya-SM and Jaya-SML are
all applied on ELDPs with different number of generators and
constraints to test their own performances. All the compared
results are provided from papers where the algorithms were
proposed except for Jaya, whose results have been updated
from [19]. All the cases are run in Matlab 2016 under win-
dows 7 on Intel(R) Core(TM) i5-6500 CPU 3.20GHz with
8GB RAM.

A. CASE 1

This case includes a 13-units system for load demand
of 2520MW and only valve-point effect is considered. Sys-
tem data is provided in [28]. Common parameters including
independent run time N,,,, maximum number of iterations
Nmax and population size Ny, are set to 50, 3000 and 30 for
fair comparison. The obtained results are minimum fuel
cost Fiin, average fuel cost Fy,y, maximum fuel cost Fiax,
standard deviation of the minimum fuel cost Std and the
execution time 7.
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FIGURE 1. Results of independent runs for Case 1 with 13-units system.

To observe the robustness of the four versions of Jaya
algorithm in terms of spacing and coverage, Fig. 1 provides
the value distributions of Fyj, over 50 independently running
trials and Fig. 2 shows the distribution results in box plot
format. It can be clearly observed that the solution qualities
obtained by Jaya, Jaya-M and Jaya-SM are all inferior to the
solution quality obtained by Jaya-SML, which is more con-
sistent, stable and reliable due to all the individuals are close
to the best value. Fig. 3 shows the convergent curves chosen
from 50 runs, it can be observed that Jaya-M and Jaya-SM
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FIGURE 2. Boxplot of the results for Case 1 with 13-units system.
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FIGURE 3. Convergence characteristic for Case 1 with 13-units system.

TABLE 1. Result comparison for Case 1 with 13-units system.

Total Fuel Cost ($/h)
Methods p—— Frvg y - Std T(s)
GA [29] 2439823  NA NA NA NA
SA [29] 24970.91 NA NA NA NA
HSS [29] 24275.71 NA NA NA NA
EP-SQP [30] 24266.44 NA NA NA NA
PSO-SQP [30] 24261.05 NA NA NA NA
CPSO [31] 24211.56 NA NA NA NA
CPSO-SQP [31] 24190.97 NA NA NA NA
PSO [32] 24262.73 24271.92 24277.81 NA NA
FAPSO [32] 24170.93 24173.01 24176.40 NA NA
FAPSO-NM [32] 24169.92 24170.00 24170.50 NA NA
FAMPSO [33] 24169.92 24169.92 24169.92 NA NA
UHGA [34] 24172.25 NA NA NA NA
TSA [35] 24171.21 24184.06 24392.20 41.00 NA
DSPSO-TSA [35] 24169.92 24173.14 24230.80 7.72 NA
CJAYA [19] 24178.8040 24385.7604 NA NA NA
MP-CJAYA [19] 24175.5444 24228.1331 NA NA NA
Jaya 24177.6049 24436.3863 24577.0292 93.4513 1.32
Jaya-M 24171.6158 24387.4825 24486.7267 81.0386 1.98
Jaya-SM 24170.7655 24279.9223 24377.9884 69.7049 1.86
Jaya-SML 24169.9087 24217.0898 24285.8889 52.9052 245

have greatly improved the solution quality and convergence
rate compared with Jaya, while Jaya-SML has outperformed
Jaya-M and Jaya-SM in achieving the minimum value of fuel
cost.

Result comparison with state-of-the-art methods is shown
in Table 1. Obviously, the proposed Jaya-SML algorithm
has obtained the best value of Fi,i, among all the compared
methods, which is as low as 24169.9087$/h, but it has not
obtained the best value of Fy,, and Fiax. However, if we
compare Jaya, Jaya-M, Jaya-SM and Jaya-SML separately,
we can observe that Jaya-SML has improved all the qualities
of Fiin» Favg, Fmax and Std than the others. The optimal
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solutions by the four algorithms for this case are given in
Appendix.

B. CASE 2

Jaya-SML algorithm is further evaluated by 40 generating
units with load demand of 10500MW in this case to investi-
gate its effectiveness for larger scale power system. System
data is provided in [28] and only the valve-point effect is
considered. Common parameters of N,,, and Npax are still
fixed at 50 and 3000 respectively, whereas Ny, is increased
from 30 to 50. The obtained results include Frin, Favg, Fmaxs
Std and T.
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FIGURE 4. Results of independent runs for Case 2 with 40-units system.
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FIGURE 5. Boxplot of the results for Case 2 with 40-units system.

Fig. 4 shows the value distributions of Fp,i, and Fig. 5
shows the distribution results in box plot format. Similar
to Case 1, these two figures illustrate the span of Fpy, in
detail. We can visually observe that Jaya-SML behaves the
strongest robustness and coherence since all individuals stay
more or less steady at the best value, whereas individuals
by Jaya-M and Jaya-SM vary much more than Jaya-SML,
while Jaya shows the worst performance. Fig. 6 provides the
convergence characteristic chosen from 50 trails, it can be
observed that Jaya-SML has the best solution quality and the
fastest convergence rate.

The result comparison is shown in Table 2. It can be
seen that the proposed Jaya-SML has obtained the best
value of Fpj, among all the compared methods, which is
as low as 121476.3977$/h. Meanwhile, Jaya-SML has also
obtained the best value of Fy,, and Fiax, as well as Std,
which has obviously verified that Jaya-SML has the strongest
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FIGURE 6. Convergence characteristic for Case 2 with 40-units system.

TABLE 2. Result comparison for Case 2 with 40-units system.

Total Fuel Costs ($/h)

Methods Std T(s)
Finin Foug Frax
PSO-LRS [12] 122035.7946 122558.4565 123461.6794 NA 15.75
NPSO [12] 121704.7391 122221.3697 122995.0976 NA 3.52
NPSO-LRS [12] 121664.4308 122209.3185 122981.5913 NA 3.93
SPSO [36] 122049.66 NA NA NA NA
PC-PSO [36] 121767.89 NA NA NA NA
SOH-PSO [36] 121501.14  121853.57  122446.30 NA NA
EP-SQP [30] 122323.97  122379.63 NA NA 997.73
PSO-SQP [30] 122094.67  122245.25 NA NA 733.97
MPSO [5] 122252.2650 NA NA NA NA
PSO [37] 12173547  122513.92 12346741 NA NA
APSO(1) [37] 121704.74  122221.37  122995.10 NA NA
APSO(2) [37] 121663.52  122153.67 12291240 NA NA
CPSO [38] 121885.11  122469.64 123767.36  307.15 NA
PSO-GM [38] 121845.98  122398.38  123219.22 25844 NA
CBPSO-RVM [38] 12155532 122281.14  123094.98 25999 NA
HDE [39] 121813.26  122705.66 NA NA 6.92
ST-HDE [39] 121698.51  122304.30 NA NA 6.07
DEC-SQP [15] 121741.9793 122295.1278 122839.2941 386.1809 14.26
TLBO [11] 124517.27  126581.56  128207.06 1060 NA
CTLBO [11] 121553.83 12179023  122116.18 150 NA
CJAYA [19] 12151697  121926.77 NA NA NA
MP-CJAYA [19] 121480.10  121861.08 NA NA NA
Jaya 121733.5492 122279.1504 122707.1277 243.6377 9.89
Jaya-M 121516.9603 121814.4651 122269.0088 186.9668 11.77
Jaya-SM 121485.0974 121801.9415 122150.9126 177.6231 10.38
Jaya-SML 121476.3977 121689.0773 122039.8731 147.8901 12.89

capabilities for handling ELDPs with large number of gener-
ators. Optimal solutions for this case are given in Appendix.

C. CASE3

In this case, Jaya-SML algorithm is applied to 6-units sys-
tem with constraints of ramp rate limit, transmission loss
and prohibited operating zones (POZs). System data and
B-coefficients are taken from [40]. There are two POZs in
every generator with increasing number of non-convex deci-
sion spaces, this situation causes challenging complexity to
find global optimum. Common parameters of Ny, Nmax and
Npop are set to 50, 2000 and 30 for fair comparison. Obtained
results include Fiyin, Favg, Fmax, Std and T'.

Fig. 7 provides the value distributions of Fij, over 50 inde-
pendently running trials and Fig. 8 shows the distribution
results in box plot format. It can be seen that within 50 inde-
pendent runs, Jaya-M has lower fuel cost and higher robust-
ness than Jaya because of the extra MP method, while
Jaya-SM obtained even lower fuel cost and higher robust-
ness than Jaya-M because of SA strategy, while Jaya-SML
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FIGURE 7. Results of independent runs for Case 3 with 6-units system.
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FIGURE 8. Boxplot of the results for Case 3 with 6-units system.
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FIGURE 9. Convergence characteristic for Case 3 with 6-units system.

achieved the lowest value of fuel cost and maintained the
highest robustness because of the Lévy distribution in popu-
lation updating phase. From the convergence curve in Fig. 9,
we can observe that Jaya-SML approaches optimum value
within no more than 50 iterations, which is the fastest speed
in convergence rate among the four algorithms.

Table 3 illustrates that the proposed Jaya-SML algo-
rithm has obtained the best value of Fi, and Fge as
15445.1682%/h and 15447.2910$/h. The best value of Fax
is achieved by DE as 15449.777$/h [42], which actually is
very close to 15450.6497$/h that obtained by Jaya-SML.
Optimal solutions for this case are given in Appendix.

D. CASE 4
A larger size of 15-units system with the same constraints
as in Case 3 is experimented in this case. System data and
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Methods Std T(s)
Fiin Fauvg Fiax
SA [41] 15461.10  15488.98  15545.50  28.3678 50.36
GA [41] 15457.96  15477.71 15524.69  17.4072 46.60
TS [41] 15454.89 15472.56  15498.05 13.7195 20.55
PSO [41] 15450.14  15465.83 15491.71 10.1502 6.82
MTS [41] 15450.06  15451.17  15453.64  0.9287 1.29
PSO-LRS [12] 15450.00  15454.00  15455.00 NA NA
NPSO [12] 15450.00  15452.00  15454.00 NA NA
NPSO-LRS [12] 15450.00  15450.50  15452.00 NA NA
SPSO [36] 15466.63  15523.64  15642.68 NA 0.0602
PC-PSO [36] 15453.09 1551498 1563330 NA 0.0643
SOH-PSO [36] 15446.02  15497.35 15609.64  NA 0.0633
AIS [6] 15448.00 15472.00  15459.70  6.252 NA
DE [42] 15449.766  15449.874 15449.777 NA NA
FA [13] 15450.5090 15452.5310 15458.4427 2.048 1.965
CMFA [13] 15449.8994 15449.8994 15449.8994 8.96E-06 2.724
CJAYA [19] 15446.71 15461.62 1548434 NA NA
MP-CJAYA [19] 15446.17 15449.23 15451.68 NA NA
Jaya 15446.5675 15489.7034 15573.5151 13.3122 1.30
Jaya-M 15446.0196 15464.8797 15498.5242 10.9328 1.80
Jaya-SM 15445.8001 15459.4744 15468.9230 8.4657 1.87
Jaya-SML 15445.1682 15447.2910 15450.6497 6.2214 2.11
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FIGURE 10. Results of independent runs for Case 4 with 15-units system.
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FIGURE 11. Boxplot of the results for Case 4 with 15-units system.

B-coefficients are taken from [40]. There are four generators
having POZs. Generators 2, 5 and 6 have three POZs and
generator 12 has two POZs. Ny, is still fixed at 50, whereas
Nmax and Ny, are modified to 3000 and 50 to cope with the
increased number of non-convex decision spaces resulted by
increased number of generators as well as the POZs. Obtained
results include Fiin, Favg, Fmax, Std and T'.

Fig. 10 provides the value distributions of Fi,;, and Fig. 11
shows the distribution results in box plot format. Convergence
curve of Fpiy is shown in Fig. 12. We can observe from these
figures that Jaya-M performs better than Jaya in convergence
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TABLE 4. Result comparison for Case 4 with 15-units system.

Total Fuel Costs ($/h)

Methods Std T(s)
Frnin Fouvg Frax

SA [41] 32786.40  32869.51 33028.95 112.32 71.25
GA [41] 32779.81 32841.21 33041.64  81.22 48.17
TS [41] 32762.12  32822.84  32942.71 60.59 26.41
PSO [41] 32724.17  32807.45  32841.38 21.24 13.25
MTS [41] 32716.87  32767.21 32796.15 17.51 3.65
TSA [35] 32917.87  33066.76 3324554  66.82 25.75
DSPSO-TSA [35] 32715.06  32724.63 3273039  8.40 2.30
AIS [6] 32854.00  32873.25  32892.00 10.8079 NA

CJAYA [19] 32710.0768 32740.0719 32828.6554 NA NA

MP-CJAYA [19] 32706.5158 32706.7150 32708.8736 NA NA

Jaya 32712.6458 32743.4613 32822.9993 47.0256 3.80
Jaya-M 32707.0312 32714.4386 32743.6808 12.0972 5.07
Jaya-SM 32706.9830 32709.0463 32728.2292 8.7817  4.40
Jaya-SML 32706.3578 32706.6764 32707.2925 2.3244 5.14

quality and consistency due to the enhanced population diver-
sity provided by MP method, Jaya-SM shows superiority over
Jaya-M due to the adaptive value of K provided by SA strat-
egy, while Jaya-SML has made the biggest improvements in
accelerating the convergence rate and maintaining the lowest
cost among 50 independent runs.

Result comparisons are shown in Table 4. Obviously,
the proposed Jaya-SML algorithm has obtained the best
value of Fiin, Favg, Fmax and Std among all the compared
methods. Especially for Std, which is as least as 2.3244,
means Jaya-SML has extremely high precision in achiev-
ing the global optimum. Conclusion is that Jaya-SML has
powerful capabilities of handling larger size of ELDPs with
complex constrained conditions. Optimal solutions are given
in Appendix.

E. CASE5
In the last case, a 10-units system with multi-fuel options
and valve-point effect for load demand of 2700MW is exper-
imented. Different from aforementioned cases, the objective
function for each generator in this case consists of two or three
piecewise-quadratic cost functions representing different fuel
types. System data is taken from [4]. Common parameters
Of Ny 18 still fixed at 50, whereas Nmax and N, are set to
1000 and 30 respectively. The obtained results include Fip,
Favg, Fiax, Std and T'.

Fig. 13 and Fig. 14 illustrate the span of Fp, in detail.
We can observe that Jaya, Jaya-M and Jaya-SM are able to
give continuously decreasing values of Fyyi, while Jaya-SML
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FIGURE 13. Results of independent runs for Case 5 with 10-units system.
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FIGURE 14. Boxplot of the results for Case 5 with 10-units system.
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FIGURE 15. Convergence characteristic for Case 5 with 10-units system.

has achieved the lowest fuel cost. Moreover, Jaya-SML not
only achieves the lowest fuel cost but also maintains almost
the same lowest value during all the independent running
times, which confirms its powerful capability of convergence
and robustness. Fig. 15 shows the convergence characteristic
chosen from 50 independent runs, it can be concluded that
Jaya-SML has the best solution quality and the fastest con-
vergence rate compared with Jaya, Jaya-M and Jaya-SM.

Comparisons are shown in Table 5. It is observed that
CBPSO-RVM [38] has reached the best value of Fpi, as
623.9588%/h, the proposed Jaya-SML ranked the second
place as 623.9738%/h. However when we analysis the values
of Fayg and Fiax, we can see that Jaya-SML has achieved
the first place in ranking for both of them, which is as low
as 624.0468$/h and 624.1300$/h respectively. Moreover,
the best value of Std is also achieved by Jaya-SML, which
is as least as 0.0327, it means almost all the 50 independent
solutions have converged to the global optimum.
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TABLE 5. Result comparison for Case 5 with 10-units system.

Total Fuel Costs ($/h)
Frin Fovg Frax
624.2297

Methods

Std T(s)

PSO-LRS [12] 625.7887  628.3214 NA 0.88

NPSO [12] 624.1624 6252180 627.4237 NA 0.35
NPSO-LRS [12] 624.1273  624.9985 626.9981 NA 0.52
CGA-MU [4] 624.7193  627.6087 633.8652 NA 26.64
IGA-MU [4] 624.5178  625.8692  630.8705 NA 7.32
CPSO [38] 624.1715 6245493  624.7844  0.1278 NA
PSO-GM [38] 624.3050  624.6749  625.0854 0.1580 NA
CBPSO-RVM [38]  623.9588  624.0816 6242930 0.0576 NA
PSO [37] 624.3506  625.8198  629.1073 NA NA
APSO(1) [37] 624.1624  625.2180 627.4237 NA NA
APSO(2) [37] 624.0145 624.8185 627.3049 NA NA
TSA [35] 624.3078  624.8285 635.0623  1.1593 9.71
GA [35] 624.5050  624.7419 6248169  0.1005 18.37
PSO [35] 624.3045 6245054  625.9252 0.1749 11.04
Jaya 624.6819  626.1531 637.5108 1.6584 5.29
Jaya-M 624.4959  625.9222  630.7652 0.8578 4.88
Jaya-SM 624.0850 624.2788  624.9105 0.1139 4.86
Jaya-SML 623.9738  624.0468  624.1300 0.0327 7.31

TABLE 6. Result comparison for Case 4 with different population size
Npop and K value.

Minimum Fuel Cost Fi,i, ($/h)

Npop

K=1 K=2 K=5 K=10 Adaptive K
10 32726.4036 32720.3048 32721.7049 32727.5490 32719.9215
20 32721.5161 32717.6211 32715.6761 32721.6341 32711.4402
30 32715.6830 32712.3094 32710.6970 32711.8766 32707.2889
40 32714.8774 32710.4459 32707.8741 32707.8627 32707.1126
50 32712.6458 32709.6691 32707.0312 32707.3474 32706.9830

VI. DISCUSSION AND CONCLUSION

In this study, Jaya algorithm with self-adaptive multi-
population and Levy flights (Jaya-SML) is proposed and
experimented in solving economic load dispatch prob-
lems (ELDPs) with different constrained conditions. There
are three advantages for the implementation of Jaya-SML
algorithm. Firstly, compared with the standard Jaya, there
is not a single one parameter has been added throughout
the whole procedure, except for the K value which can be
initialised as 2. Secondly, it is simple to use, because no
complicated techniques are introduced, only MP method,
SA strategy and Lévy flights are involved in the algorithm.
Thirdly, it can be easily combined with different evolutionary
algorithms (EAs), such as PSO, DE and GA, this is one of the
author’s interests for future work.

By summarizing the ELDP cases, we can get two con-
clusions. The first one is, Jaya-SML algorithm is the best
performer in aspects of solution quality, convergence rate
and stability among Jaya, Jaya-M, Jaya-SM and Jaya-SML,
regardless of the generator numbers and constrained con-
ditions. The second one is, compared with the other
hybrid-heuristic algorithms such as CPSO-SQP, NPSO-LRS,
CBPSO-RVM, MP-CJAYA and so on, Jaya-SML achieves the
best or nearly best results in reducing the total fuel cost of
Fuin, Favg and Fiax.

However, it needs to be mentioned that in steady-size
MP method, different K value results in different solution
quality. If K is too small, it can not contribute to the pop-
ulation diversity; if K is too big, the number of individuals
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TABLE 7. The optimal solution for Case 1 with 13-units system.

Unit Jaya Jaya-M Jaya-SM Jaya-SML
1 628.2987 628.1543 628.3097 628.3185
2 298.9136 299.1229 299.1872 299.1993
3 298.5001 299.1932 298.8792 299.1993
4 159.6981 159.4463 159.6752 159.7331
5 159.5153 159.7002 159.6668 159.7331
6 159.0483 159.6522 159.6952 159.7331
7 159.5602 159.6385 159.5858 159.7331
8 159.4420 159.7012 159.7286 159.7331
9 159.6187 159.5676 159.6722 159.7331
10 113.7344 77.1030 77.3290 77.3999
11 76.8710 76.8889 77.3559 77.3999
12 91.7618 89.8069 92.2491 92.3999
13 55.0158 92.0428 88.7024 87.6711
Piotar(MW) 251998 2520.00 2520.00 2519.99
Feost($/h) 24177.6049 24171.6158 24170.7655  24169.9087

TABLE 8. The optimal solution for Case 2 with 40-units system.

Unit Jaya Jaya-M Jaya-SM Jaya-SML
1 114.0000 113.5252 110.7999 110.7998
2 113.0278 110.7998 110.7998 110.7998
3 99.9503 120.0000 97.3999 97.3999
4 179.8226 179.7331 179.7331 179.7331
5 96.2457 97.0000 97.0000 96.3199
6 140.0000 140.0000 140.0000 140.0000
7 299.7289 300.0000 259.5997 300.0000
8 285.6087 284.5997 284.5997 284.5997
9 286.6349 284.5997 284.5997 284.5997
10 130.2800 130.0000 130.0000 130.0000
11 94.2775 94.0000 168.7998 94.0000
12 94.0287 94.0000 94.0000 94.0000
13 125.0160 125.0000 304.5196 125.0000
14 484.6313 394.2794 394.2794 394.2794
15 304.4157 394.2794 304.5196 394.2794
16 394.2211 394.2794 304.5196 394.2794
17 489.6003 489.2794 489.2794 489.2794
18 489.8317 489.2794 489.2794 489.2794
19 511.8611 511.2794 511.2794 511.2794
20 511.3126 511.2794 511.2794 511.2794
21 524.0884 523.2794 523.2794 523.2794
22 523.8282 523.2794 523.2794 523.2794
23 523.6836 523.2794 523.2794 523.2794
24 524.0062 523.2794 523.2794 523.2794
25 524.5391 523.2794 523.2794 523.2794
26 526.4563 523.2794 523.2794 523.2794
27 10.0789 10.0000 10.0000 10.0000
28 10.2151 10.0000 10.0000 10.0000
29 10.6094 10.0000 10.0000 10.0000
30 96.5283 97.0000 87.9271 87.7999
31 189.8846 190.0000 190.0000 190.0000
32 190.0000 190.0000 190.0000 190.0000
33 189.7319 190.0000 190.0000 190.0000
34 200.0000 164.7999 200.0000 200.0000
35 170.1334 200.0000 200.0000 200.0000
36 199.9047 200.0000 164.7998 200.0000
37 109.4948 110.0000 110.0000 110.0000
38 109.9924 110.0000 110.0000 110.0000
39 110.0000 110.0000 110.0000 110.0000
40 512.2693 511.2794 511.2794 511.2794
Piotar(MW)  10500.05 10499.97 10499.97 10499.97
Feost($/h) 121733.5492 121516.9603 121485.0974 121476.3977

in each sub-population will be too small to perform com-
prehensive search within the subregions. To illustrate these
two situations, Table 6 provides the comparisons for Fij, in
Case 4 with different population size Ny, and steady K value,
as well as adaptive K. We can observe that for different Ny,
the best value of F;, is not always achieved by the same K
value, actually it depends on the complexity of the problem
to be solved. However, by using adaptive K value, we do not
have to test the perfect value for K, since it is able to adapt
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TABLE 9. The optimal solution for Case 3 with 6-units system.

Unit Jaya Jaya-M Jaya-SM Jaya-SML

1 429.3031 456.7211 453.5270 447.8944

2 177.0305 163.9166 171.7646 182.9939

3 267.5871 269.6730 261.4402 264.0069

4 143.0923 140.3796 147.3180 139.9736

5 165.3239 155.0737 154.1639 154.7018

6 93.0325 89.6049 87.0225 85.7651
Piotat(MW) 12753694  1275.3686  1275.2361 1275.3357
Poss(MW) 12.3605 12.3686 12.2160 12.3356
Feost($/) 15446.5675 15446.0196 154458001  15445.1682

TABLE 10. The optimal solution for Case 4 with 15-units system.

Unit Jaya Jaya-M Jaya-SM Jaya-SML
1 455.0000 455.0000 455.0000 454.9999
2 380.0000 380.0000 380.0000 380.0000
3 130.0000 130.0000 130.0000 130.0000
4 130.0000 130.0000 130.0000 130.0000
5 170.0000 170.0000 170.0000 170.0000
6 459.4440 460.0000 460.0000 460.0000
7 430.0000 430.0000 430.0000 430.0000
8 108.4288 60.0000 60.9089 71.4456

9 25.0000 70.8256 69.9168 59.3587
10 158.3287 160.0000 160.0000 160.0000
11 80.0000 80.0000 80.0000 79.9997
12 80.0000 80.0000 80.0000 80.0000
13 25.0000 25.0000 25.0000 25.0000
14 15.0000 15.0000 15.0000 15.0000
15 15.0000 15.0000 15.0000 15.0000
Piotait(MW) 26612015  2660.8256  2660.8257 2660.8039
Pioss(MW)  31.1936 30.8280 30.8288 30.8039
Feost($/h) 32712.6458 32707.0312 32706.9830  32706.3578

himself to the complexity of the problem and always can
achieve the best solutions, which is the benefits of adopting
self-adaptive MP method.

It should also be addressed that, when using MP method,
two issues need to be considered. One is how to guide the sub-
populations to move toward subregions in a more promising
way except for the “random way” used in this paper. This
issue is crucial since if the sub-populations cannot move to
different subregions, Jaya cannot search and track the local
optima in subregions. The other issue is concerned on how to
define suitable space size for each subregion. If the subregion
is too small, the population might converge fast and the
population diversity will be lost, then no progress can be
made during the iteration. However if the subregion is too
large, there is a potential that more than one local optima are
covered within the area, due to the updating mechanism only
one local optima is recorded, so the useful information of the
other local optima cannot be kept, which is also a bad loss of
diversity. These two issues will be further investigated by the
author.

As long as Jaya-SML algorithm has gained outstand-
ing superiority in solving the ELDPs, it is supposed to be
applied to other optimization problems such as micro grid
power dispatch problems and dynamic optimization prob-
lems, to broaden its applications in power system in the
future.

APPENDIX
See Tables 7-11.
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TABLE 11. The optimal solution for Case 5 with 10-units system.

Unit Fuel Type  Jaya Jaya-M Jaya-SM Jaya-SML
1 2 2159857  214.3788  218.2575 217.7758
2 1 215.0708  214.0979  212.6408 211.6629
3 1 282.8981  277.3448  283.4240 279.4465
4 3 2377716 242.3610  238.7602 240.3575
5 1 278.6049  279.3389  282.2614 279.9952
6 3 235.8957  241.0124  239.1227 240.0703
7 1 281.2280 287.9884  287.2395 285.9509
8 3 240.9229  246.1329  240.2153 240.3611
9 3 440.0000 4217795  424.8005 429.0488
10 1 271.6440 2755739  273.2647 275.3385
Piotar(MW) 2700.02 2700.01 2700.00 2700.01
Feost($/) 624.6819  624.4959  624.0850 623.9738
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