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ABSTRACT In this paper, a recently proposed Jaya algorithm is implemented on the economic load
dispatch problems (ELDPs). Different from most of the other meta-heuristics, Jaya algorithm needs no
algorithm-specific parameters, and only two common parameters are required for effective execution, which
makes the implementation simple and effective. Simultaneously, considering the non-convex, non-linear,
and non-smooth characteristics of the ELDPs, the multi-population (MP) method is introduced to improve
the population diversity. However, the introduction of the MP method adds extra parameters to the Jaya
algorithm, hence a self-adaptive strategy is used to cope with the tuning problem for extra parameters.
Moreover, to avoid being trapped by local optima, Lévy flights distribution is incorporated into the population
iteration phase. Finally, Jaya algorithm with self-adaptive multi-population and Lévy flights (Jaya-SML) is
proposed, it is evaluated by ELDPswith different constraints including power balance constraints, generating
capacity limits, ramp rate limits, prohibited operating zones, valve-point effects, and multi-fuel options. The
comparisons with state-of-the-art methods indicate that Jaya-SML can generate more competitive results for
solving the ELDPs.

INDEX TERMS Economic load dispatch problems, Jaya, self-adaptive, multi-population, Lévy flights.

I. INTRODUCTION
Economic load dispatch problems (ELDPs) are regarded as
optimization problems with high dimensional, non-convex,
non-linear and non-smooth characteristics under various of
constraints, which requires powerful optimization technique
to handle [1], [2]. The prime requirement of ELDPs are to
allocate all the committed generators so as to accomplish
the total load demand in the most economical way, while
satisfying physical and operational constraints imposed by
generators and system limitations. Over the recent decades,
great efforts of researchers across the world have been made
to solve ELDPs by using meta-heuristic methods such as
tabu search (TS) [3], genetic algorithm (GA) [4], parti-
cle swarm optimization (PSO) [5], artificial immune sys-
tem (AIS) [6], harmony search (HS) [7], firefly algorithm [8],
biogeography based optimization (BBO) [9], artificial bee
colony algorithm (ABC) [10] and teaching-learning-based
optimization (TLBO) [11]. Competitive results in terms of
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fuel cost savings and convergence rate have been achieved.
However, since the ELDPs exhibit highly non-convex, non-
linear and non-smooth characteristics, they tend to be easily
trapped by local optima rather than at the global optimum.

To overcome the drawbacks, hybrid meta-heuristic
approaches have been reported to further obtain the global
optimum for ELDPs, such as new particle swarm opti-
mization with local random search (NPSO-LRS) [12],
chaos mutation firefly algorithm (CMFA) [13], hybrid
of fuzzy adaptive particle swarm optimization with vari-
able DE (FAPSO-VDE) [14], DE with chaos sequences
and sequential quadratic programming (DEC-SQP) [15],
DE with truncated Lévy flight and population diversity mea-
sure (DEL) [16], genetic algorithm with pattern search and
sequential quadratic programming (GA-PS-SQP) [17], across
neighborhood search algorithm with variable reduction
strategy (ANS-VRS) [18], multi-population based chaotic
JAYA algorithm (MP-CJAYA) [19], posteriori multiobjective
self-adaptive multipopulation Jaya algorithm (MO-SAMP
Jaya) [20], self-adaptive Jaya algorithm (SJaya) and chaotic-
Jaya (CJaya) algorithm [21]. However, even though the
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modified approaches have gained better performances, the
combination may lead to increased number of algorithm
parameters whose turning task is quite time-consuming and
disturbing. Hence, we call for new algorithms with parame-
ters as fewer as possible.

Jaya algorithm is a recently proposed method with excel-
lent advantage of reducing the number of parameters. Except
for two common parameters named maximum number of
iteration Nmax and population size Npop, not a single more
algorithm-specific parameter is needed [22]. This unique
advantage has perfectly satisfied the calls for the number
of parameters to be as fewer as possible. However, Jaya
algorithm only guarantees the population to keep on getting
close to the best position and getting away from the worst
position, so the population converge so quickly to optima
because of the strong attraction of the best position nearby,
which will cause premature. Actually, for solving ELDPs,
it is quite necessary to guide the population search in different
regions to get local optima as many as possible, since these
local optima have larger probability to become the global
optima in the next iteration.

Multi-population (MP) method is proved to be a good
technique to satisfy the requirements above, which works
by dividing the whole population in the entire region into
a certain number of sub-populations in different subregions,
with the goal of enhancing population diversity and avoiding
premature. However, there is a crucial question to consider
for MPmethod, that is howmany sub-populations are needed
to cover the entire region? To answer this question, a self-
adaptive (SA) strategy is employed to MP method, then the
number of sub-populations is either decreased or increased
automatically according to the strength of the environmental
changes, which resolves the problem of the determination for
the number of sub-populations. When sub-populations are
properly created by SA strategy, they will undergo convergent
process to keep exploiting the covered subregions.

In order to speed up the convergent process, as well as to
increase the potential of finding global optima, we incorpo-
rate Lévy flights into the population updating phase. Finally,
Jaya algorithm with self-adaptive multi-population and Lévy
flights (Jaya-SML) is proposed in this study. To the best of
the authors’ knowledge, this is the first time for adaptive Jaya
algorithm being implemented in solving the ELDPs.

The rest of this paper is constructed as follows.
In Section 2, the formulations of ELDPs are presented.
Related works on Jaya, MP method, SA strategy and Lévy
flights are described in Section 3. The procedures of solving
ELDPs are explained in Section 4. Experimental results and
comparisons are provided and analyzed in Section 5. Finally,
discussions and conclusion are given in Section 6.

II. PROBLEM FORMULATION
A. OBJECTIVE FUNCTION
Mathematical model for ELDPs is to add up all the fuel
costs of the generating units in a power system as expressed

below [11], [23]:

min F =
N∑
i=1

Fi(Pi) (1)

where N is the total number of committed generators, i is the
index of generator where i ∈ [1,N ], Pi is the power output
of generator i, Fi(Pi) is the cost function of generator i with
power output Pi, F is the total cost of all the generators.
Generally speaking, in classical ELDPs, the cost function

of each generating unit is described by quadratic polynomial
as:

Fi(Pi) = aiP2i + biPi + ci (2)

where ai, bi, ci is the fuel cost coefficients of generator i.
In practice, the valve-point effects on the costs of generat-

ing units must be considered. So the rectified sinusoidal com-
ponents are added to the classical cost function as follows:

Fi(Pi) = aiP2i + biPi + ci + |ei sin(fi(P
min
i − Pi))| (3)

where ei, fi are the fuel cost coefficients of generator i reflect-
ing valve-point effects.

In some cases, the committed generators may be supplied
by multiple fuels as natural gas, coal or oil. Then the cost
function is defined with piecewise quadratic functions which
reflect the effects of the fuel type changes [4]. Considering
valve-point effects and multiple fuels, the objective function
can be described as:

Fi(Pi)

=



ai1P2i + bi1Pi + ci1 + |ei1 sin(fi1(P
min
i1 − Pi))|,

for fuel 1, Pmin
i ≤ Pi ≤ Pi,1

ai2P2i + bi2Pi + ci2 + |ei2 sin(fi2(P
min
i2 − Pi))|,

for fuel 2, Pi,1 ≤ Pi ≤ Pi,2
...

aimP2i + bimPi + cim + |eim sin(fim(Pmin
im − Pi))|,

for fuel m, Pi,m−1 ≤ Pi ≤ Pmax
i

(4)

where m is the total number of fuel types, aiq, biq, ciq, eiq, fiq
are the fuel cost coefficients of generator i using fuel type q
where q ∈ [1,m].

B. CONSTRAINED FUNCTIONS
1) POWER BALANCE
The total power generated by all the committed generators
must equal to the summation of the demanded power Pdemand
and the total transmission power loss Ploss, which can be
formulated as:

N∑
i=1

Pi = Pdemand + Ploss (5)
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where Ploss is calculated by Kron’s formula:

Ploss =
N∑
i=1

N∑
j=1

PiBijPj +
N∑
i=1

Bi0Pi + B00 (6)

where Bij, Bi0, B00 are the B-matrix coefficients for Ploss
which can be generally assumed to be constants under a
normal operating condition.

2) GENERATING CAPACITY
The power output Pi should be within its maximum and
minimum limits, as shown below:

Pmin
i ≤ Pi ≤ Pmax

i (7)

where Pmax
i and Pmin

i are the maximum and minimum limits
of the ith generator.

3) RAMP RATE LIMIT
Under practical circumstances, the operating range of every
generating unit is restricted by its ramp rate limit, so the
output power Pi can not be adjusted instantaneously. The
up-ramp and down-ramp constraints are as follows:

Pi − P0i ≤ URi and P
0
i − Pi ≤ DRi (8)

where Pi is the present power output, P0i is the previous
power output, URi and DRi is the up-ramp and down-ramp
limit of generator i respectively. Considering together with
the generating capacity limit, ramp rate limit can be modified
as:

max(Pmin
i ,P0i − DRi) ≤ Pi ≤ min(Pmax

i ,P0i + URi) (9)

4) PROHIBITED OPERATING ZONES (POZS)
In practice, since there are physical limitations when operat-
ing the generating units, the whole operating zones are not
always available. Prohibited operating zones (POZs) lead to
discontinuous regions for the objective function. The output
power Pi has constraints as follows:

Pi ∈


Pmin
i ≤ Pi ≤ Ploweri,1

Pupperi,r−1 ≤ Pi ≤ P
lower
i,r

Pupperi,zi ≤ Pi ≤ P
max
i

(10)

where zi is the total number of POZs for generator i, r is the
index of POZs where r ∈ [1, zi], Ploweri,r and Pupperi,r are the
lower and upper bounds of the r th POZ of the ith generator
respectively.

III. RELATED WORK
A. THE STANDARD JAYA ALGORITHM
Jaya algorithm is a newly developed meta-heuristic method
for solving constrained and unconstrained optimization prob-
lems [22]. Different from other heuristic algorithms requiring
for algorithm-specific parameters, Jaya algorithm is free from
the algorithm-specific parameters, two and only two com-
mon parameters named maximum number of iteration Nmax
and population size Npop are required, whose values can be

initialised without difficulties. This significant improvement
makes the application of Jaya algorithm simple and efficient.

Let us assume F(X ) is the objective function required to
be maximized or minimized, F(X )bs and F(X )ws represent
the best value and the worst value of F(X ) among all the
candidate solutions during each iteration. Suppose the design
variable number is Nvar where the index of design variable
j ∈ [1,Nvar ], suppose the population size is Npop where the
index of population k ∈ [1,Npop], suppose the maximum
iteration number is Nmax where the index of current iteration
t ∈ [1,Nmax]. Let Xj,k,t be the value of the jth design variable
for the k th candidate population during the t th iteration, then
the modified value X ′j,k,t by Jaya algorithm is calculated by:

X ′j,k,t = Xj,k,t + r1 × (Xj,bs,t − |Xj,k,t |)

− r2 × (Xj,ws,t − |Xj,k,t |) (11)

where Xj,bs,t and Xj,ws,t are the values of the jth variable
for F(X )bs and F(X )ws during the t th iteration respectively,
r1 and r2 are two random numbers ranged in [0, 1]. The
term r1 × (Xj,bs,t − |Xj,k,t |) indicates the tendency of the
solution to move closer to the best position and the term
r2 × (Xj,ws,t − |Xj,k,t |) indicates the tendency of the solution
to avoid the worst position. F(X )′ is the modified value of
F(X ), if F(X )′ provides better value than F(X ), then Xj,k,t is
replaced by X ′j,k,t and F(X ) is replaced by F(X )′; otherwise,
keep the old value. All the values of new obtained Xj,k,t
and F(X ) are maintained and become the inputs to the next
iteration [22]. The pseudo code of Jaya algorithm is shown in
Algorithm 1:

Algorithm 1 The Standard Jaya
Initialize Npop, Nvar and Nmax;
Generate initial population X ;
Evaluate the fitness value F(X );
Set t = 1;
while t < Nmax do

Identify Xj,bs,t and Xj,ws,t according to F(X );
for k = 1→ Npop do

for j = 1→ Nvar do
Generate updated solutions X ′j,k,t by (11);

end
if F(X ′j,k,t ) is better than F(Xj,k,t ) then

Xj,k,t = X ′j,k,t
F(Xj,k,t ) = F(X ′j,k,t )

else
Keep the old value;

end
end
t = t + 1;

end

B. MULTI-POPULATION METHOD
Multi-population (MP) method is implemented with the aim
of improving population diversity by scattering the entire
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region with the whole population into a certain number of
subregions with sub-populations. Each subregion is assigned
to either intensifying or diversifying the searching process.
There may be one or more local optima covered within each
subregion, by keeping searching the subregions separately,
changes can be monitored more effectively. Whenever a
change in the solution is observed during the iteration, all the
sub-populations interact with each other bymeans of dividing
and merging process. So cooperating with MP method is an
effective way to improve population diversity and to enhance
the searching ability for Jaya algorithm.

As mentioned above, to represent the total number of
divided sub-populations, a key parameter is introduced as K ,
hence the population size of each sub-population Nsub_pop is:

Nsub_pop = Npop/K (12)

where Npop is the population size of initially generated
population.

It should be noted that, each individual is grouped to a sub-
population by random way, each sub-population is assigned
to explore a different region in the fitness area. If (12) has
remainders, then the remaining individuals are randomly
grouped to one of the sub-populations. Pseudo code of MP
method is shown in Algorithm 2:

Algorithm 2 MP
Initialize Npop;
Generate initial population X ;
Set K ;
while (Maximum number of iterations is not met) do

Divide population X into K sub-populations as
X1,X2,· · · ,XK−1,XK ;
for q = 1→ K do

for k = 1→ Nsub_pop do
Perform algorithm to Xq,k to generate X ′q,k ;
if F(X ′q,k ) is better than F(Xq,k ) then

Xq,k = X ′q,k
F(Xq,k ) = F(X ′q,k )

else
Keep the old value;

end
end

end
Merge the sub-populations into X ;

end

C. SELF-ADAPTIVE STRATEGY
For MP method, the disadvantage is that one more param-
eter K has to be introduced, and the selection of a proper
value for K is quite a difficult task since it depends on the
complexity of the problem. In order to address this issue,
a self-adaptive (SA) strategy which modifies the value of
K automatically is applied in this work. By integrating SA
strategy with MP method, K value can be self-adaptively

Algorithm 3 Self-Adaptive MP
Initialize Npop;
Generate initial population X ;
Initial K=2;
while (Maximum number of iterations is not met) do

Divide population X into K sub-populations as
X1,X2,· · · ,XK−1,XK ;
for q = 1→ K do

for k = 1→ Nsub_pop do
Perform algorithm to Xq,k to generate X ′q,k ;
if F(X ′q,k ) is better than F(Xq,k ) then

Xq,k = X ′q,k
F(Xq,k ) = F(X ′q,k )

else
Keep the old value;

end
end

end
Merge the sub-populations into X ;
if F(cr_best) is better than F(fm_best) then

K = K + 1
else if F(cr_best) is worse than F(fm_best) then

K = K − 1
else

K = K
end

end

determined by the change strength of the solution without
manual parameter tuning. Compared with steady-size MP,
self-adaptive MP not only monitors the solution changes
more effectively, but also maintains the population diversity
very well [24]. The steps of self-adaptive MP are illustrated
as follows, pseudo code is shown in Algorithm 3.

i. Generate initial population X and suppose the fitness
function is F(X ).

ii. Divide the population X into K sub-populations (initial
K = 2).

iii. Calculate the fitness value of each sub-population inde-
pendently by the pre-defined algorithm.

iv. Compare the present fitness value with its former fit-
ness value, if the fitness value gets better, keep the
present sub-population; otherwise, keep the former
sub-population.

v. Merge all the sub-populations together.
vi. Suppose F(cr_best) is the current best fitness value

and F(fm_best) is the former best fitness value,
if F(cr_best) is better than F(fm_best), then K is
increased by 1 with the purpose to enhance the explo-
ration ability among the entire region; if F(cr_best) is
worse than F(fm_best), then K is decreased by 1 as
the searching process needs to be more exploitive than
explorative; if F(cr_best) is equal to F(fm_best), then
keep the K value unchanged.

VOLUME 7, 2019 21375



J.-T. Yu et al.: Jaya Algorithm With SA MP and Lévy Flights for Solving ELDPs

vii. If the maximum number of evaluations has reached,
end the loop and report the best value; Otherwise,
go back for re-dividing the population.

D. LÉVY FLIGHTS
The generation of random numbers using Lévy flights con-
sists of two steps: the choice of a random direction and the
generation of step which obeys the chosen Lévy distribution.
Lévy distribution is a simple power-law formula L(s) ∼
|s|−1−β where 0 < β < 2 is an index [25]. If the value of
β is small, it allows the variable perform long-distance jumps
in the search space and avoids being trapped in local optima;
if the value of β is big, it continues to derive new values
around the variable. As a result, by employing Lévy flights on
updating the population, variables are able to take short jumps
together with occasionally long-distance jumps towards its
best value, thereby enhancing the population diversity and
facilitating the algorithm to perform stronger global explo-
ration throughout the search space.

In this study, we apply Lévy flights to each variable of the
current iteration by the following equation:

X levyj,k,t = Levy(Xj,k,t )+ r1 × (Xj,bs,t − |Xj,k,t |)

− r2 × (Xj,ws,t − |Xj,k,t |) (13)

where

Levy(Xj,k,t ) = Xj,k,t + stepsize× rand(size(Xj,k,t )) (14)

where

stepsize = 0.01× step× (Xj,k,t − Xj,bs,t ) (15)

here rand is randomly generated numbers ranged in [0, 1];
the factor 0.01 comes from the fact that step/100 should be
the typical step size of walks where step is the typical length
scale; otherwise, Lévy flights may become so aggressive that
new solutions jump outside of the domain and thus waste
evaluations. Xj,k,t and Xj,bs,t are variables from (11).
For random walk, the value of step can be calculated by

Mantegna’s algorithm as:

step =
u
|v|1/β

(16)

here it should be noted that β parameter takes major role in
Lévy distributions, by setting different values for β, the dis-
tribution situation is changed accordingly. In this study,
we choose constant value 1.5 for β. The other two parameters
u and v are drawn from normal distributions with standard
deviation σu and σv given by:

u ∼ N (0, σ 2
u ), v ∼ N (0, σ 2

v ) (17)

where

σu =

[
0(1+ β)× sin(πβ2 )

0( 1+β2 )× β × 2(β−1)/2

]1/β

(18)

σv = 1 (19)

where 0(·) is standard Gamma function [26].
Pseudo code for Lévy flights is shown in Algorithm 4.

Algorithm 4 Lévy Flights With Jaya
Initialize Npop, Nvar and Nmax;
Generate initial population X ;
Evaluate the fitness value F(X );
Set t = 1;
while t < Nmax do

Identify Xj,bs,t and Xj,ws,t according to F(X );
for k = 1→ Npop do

for j = 1→ Nvar do
Generate modified solutions X levyj,k,t by (13);

end
if F(X levyj,k,t ) is better than F(Xj,k,t ) then

Xj,k,t = X levyj,k,t

F(Xj,k,t ) = F(X levyj,k,t )
else

Keep the old value;
end

end
t = t + 1;

end

E. CONSTRAINTS HANDLING STRATEGY
1) HANDLING OF CONSTRAINED EQUATIONS
The constraints handling strategy is one of the significant con-
cerns in solving ELDPs. Among all the techniques, penalized
fuel cost function is the most commonly used one. By adding
certain values to the objective function based on the constraint
violations, the constrained problems are transformed into
unconstrained ones. In this paper, the constraints of power
balance limit and POZs are handled by adding penalty factors
to the objective function as follows:

Fp =
N∑
i=1

Fi(Pi)+ λpb × (
N∑
i=1

Pi − Pdemand − Ploss)

+ λpoz ×

N∑
i=1

Qi (20)

where Fp is the value of the penalized objective function; Qi
is an indicator of falling into POZs; λpb and λpoz are penalty
factors used to penalize the fuel cost proportional to the
amount of constraint violations. Notes that λpoz equals to zero
if the probability of falling into POZs is not considered [12].

2) HANDLING OF UPPER AND LOWER LIMITS
New solutions generated via supposed algorithmsmay violate
themaximumorminimum limits, so they need to be redefined
to satisfy the limits. For power output limit and ramp rate limit
constraints, we adopt the following strategy to handle:

Pi =


max(Pmin

i ,P0i −DRi), if Pi≤max(Pmin
i ,P0i −DRi)

min(Pmax
i ,P0i +URi), if Pi≥min(Pmax

i ,P0i +URi)
Pi, otherwise

(21)
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where Pmin
i , Pmax

i , P0i , DRi and URi have already been
illustrated before.

3) HANDLING OF POZS VIOLATION
As mentioned above, because of the exists of POZs, there
are upper and lower limits for power output of the generator.
If the obtained power output falls into POZs, it needs to
be recalculated to satisfy the limits. For handling the POZs
violation, a ‘‘middle point’’ concept is defined as follows:

Pmiddlei,r =
Ploweri,r + Pupperi,r

2
(22)

Therefore, there are two sub-POZs divided from ‘‘middle
point’’ including left and right ones, then the new value of
power output is re-determined as below [27]:

Pnewi =

{
Ploweri,r , if Pi ≤ Pmiddlei,r

Pupperi,r , if Pi > Pmiddlei,r
(23)

where Ploweri,r and Pupperi,r are the lower and upper bounds of
the r th POZ of the ith generator respectively.

IV. IMPLEMENTATION OF JAYA-SML FOR ELDPS
According to the related work in previous section, Jaya
algorithm with self-adaptive multi-population and Levy
flights (Jaya-SML) is proposed. In Jaya-SML, three mod-
ifications are added to the standard Jaya, they are multi-
population (MP) method, self-adaptive (SA) strategy and
Lévy flights distribution. Pseudo code of the proposed
Jaya-SML is shown in Algorithm 5.

It starts by initializing the values for common parameters.
Then the initial population is created and evaluated. Next,
the whole population is divided intoK sub-populations. After
that, each sub-population utilises Jaya algorithm with Lévy
flights. If there is a change in the solution, the algorithm
compares the change strength to update the K value. If the
stopping condition (we set this as maximum number of itera-
tions) has been reached, the algorithm terminates and the best
solution is returned. Otherwise, the algorithm merges all the
sub-populations and re-divides the whole population into K
sub-populations, then starts a new iteration. The main steps
are described with further details below:

i. Set parameters. Four common parameters are initial-
ized as population size Npop, maximum iteration num-
ber Nmax, number of design variables Nvar and number
of sub-populations K (initial K = 2).

ii. Initialization. Initial population X are generated as
follows:

Xj,k = Xmin
j + (Xmax

j − Xmin
j )× rand(Npop,Nvar )

(24)

hereXj,k is the jth generator in the k th candidate solution
where j ∈ [1,Nvar ] and k ∈ [1,Npop], Xmin

j and Xmax
j

are the lower and upper limits of the jth generator given
by (7).

Algorithm 5 Jaya-SML
Initialize Npop, Nvar , Nmax and K ;
Generate initial population X by (24);
Calculate the fuel cost F(X );
Set t = 1;
while t < Nmax do

Divide population X into K sub-populations as
X1,X2,· · · ,XK−1,XK ;
for q = 1→ K do

Confirm Xq,best,t and Xq,worst,t within Xq,t
for k = 1→ Nsub_pop do

for j = 1→ Nvar do
Generate modified solutions X levyq,j,k,t by
(13);

end
if F(X levyq,j,k,t ) is better than F(Xq,j,k,t ) then

Xq,j,k,t = X levyq,j,k,t

F(Xq,j,k,t ) = F(X levyq,j,k,t )
else

Keep the old value
end

end
end
Merge the sub-populations into X ;
if F(cr_best) is better than F(fm_best) then

K = K + 1
else if F(cr_best) is worse than F(fm_best) then

K = K − 1
else

K = K
end
t = t + 1

end

iii. Evaluation. Fitness values are calculated by objective
function, which is problem dependent. That is to use
(2) without considering valve-point effect, or to use (3)
with considering valve-point effect, or to use (4) with
considering multi-fuel options and valve-point effects.

iv. Dividing. Divide population X into sub-populations
[X1,X2, · · · ,XK−1,XK ], as presented in Algorithm 2.

v. Assign algorithm. Each sub-population is calculated
by Jaya algorithm with Lévy flights, as presented in
Algorithm 4.

vi. Merging. All the sub-populations are merged together
into population X .

vii. Update K . Compare the current best value of the objec-
tive function F(cr_best) with the previous best value
of the objective function F(fm_best), then update the
K value according to Algorithm 3.

viii. Check the stopping condition. If Nmax is reached, stop
the loop and report the best solution; otherwise set the
iteration number t = t + 1 and go back for re-dividing
the population.
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V. NUMERICAL EXPERIMENTS
Since the proposed Jaya-SML is the hybridization of Jaya,
MPmethod, SA strategy and Lévy flights, it is quite necessary
to observe the relative effectiveness of each constituent with
application in solving ELDPs, hence four different versions
of Jaya algorithm are experimented respectively:
• Jaya: The standard Jaya algorithm to compare with its
variants.

• Jaya-M: Jaya algorithm with MP method.
• Jaya-SM: Jaya algorithm with SA strategy and MP
method.

• Jaya-SML: Jaya algorithmwith SA strategy,MPmethod
and Lévy flights.

In the following, Jaya, Jaya-M, Jaya-SM and Jaya-SML are
all applied on ELDPs with different number of generators and
constraints to test their own performances. All the compared
results are provided from papers where the algorithms were
proposed except for Jaya, whose results have been updated
from [19]. All the cases are run in Matlab 2016 under win-
dows 7 on Intel(R) Core(TM) i5-6500 CPU 3.20GHz with
8GB RAM.

A. CASE 1
This case includes a 13-units system for load demand
of 2520MW and only valve-point effect is considered. Sys-
tem data is provided in [28]. Common parameters including
independent run time Nrun, maximum number of iterations
Nmax and population size Npop are set to 50, 3000 and 30 for
fair comparison. The obtained results are minimum fuel
cost Fmin, average fuel cost Favg, maximum fuel cost Fmax,
standard deviation of the minimum fuel cost Std and the
execution time T .

FIGURE 1. Results of independent runs for Case 1 with 13-units system.

To observe the robustness of the four versions of Jaya
algorithm in terms of spacing and coverage, Fig. 1 provides
the value distributions of Fmin over 50 independently running
trials and Fig. 2 shows the distribution results in box plot
format. It can be clearly observed that the solution qualities
obtained by Jaya, Jaya-M and Jaya-SM are all inferior to the
solution quality obtained by Jaya-SML, which is more con-
sistent, stable and reliable due to all the individuals are close
to the best value. Fig. 3 shows the convergent curves chosen
from 50 runs, it can be observed that Jaya-M and Jaya-SM

FIGURE 2. Boxplot of the results for Case 1 with 13-units system.

FIGURE 3. Convergence characteristic for Case 1 with 13-units system.

TABLE 1. Result comparison for Case 1 with 13-units system.

have greatly improved the solution quality and convergence
rate compared with Jaya, while Jaya-SML has outperformed
Jaya-M and Jaya-SM in achieving the minimum value of fuel
cost.

Result comparison with state-of-the-art methods is shown
in Table 1. Obviously, the proposed Jaya-SML algorithm
has obtained the best value of Fmin among all the compared
methods, which is as low as 24169.9087$/h, but it has not
obtained the best value of Favg and Fmax. However, if we
compare Jaya, Jaya-M, Jaya-SM and Jaya-SML separately,
we can observe that Jaya-SML has improved all the qualities
of Fmin, Favg, Fmax and Std than the others. The optimal
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solutions by the four algorithms for this case are given in
Appendix.

B. CASE 2
Jaya-SML algorithm is further evaluated by 40 generating
units with load demand of 10500MW in this case to investi-
gate its effectiveness for larger scale power system. System
data is provided in [28] and only the valve-point effect is
considered. Common parameters of Nrun and Nmax are still
fixed at 50 and 3000 respectively, whereas Npop is increased
from 30 to 50. The obtained results include Fmin, Favg, Fmax,
Std and T .

FIGURE 4. Results of independent runs for Case 2 with 40-units system.

FIGURE 5. Boxplot of the results for Case 2 with 40-units system.

Fig. 4 shows the value distributions of Fmin and Fig. 5
shows the distribution results in box plot format. Similar
to Case 1, these two figures illustrate the span of Fmin in
detail. We can visually observe that Jaya-SML behaves the
strongest robustness and coherence since all individuals stay
more or less steady at the best value, whereas individuals
by Jaya-M and Jaya-SM vary much more than Jaya-SML,
while Jaya shows the worst performance. Fig. 6 provides the
convergence characteristic chosen from 50 trails, it can be
observed that Jaya-SML has the best solution quality and the
fastest convergence rate.

The result comparison is shown in Table 2. It can be
seen that the proposed Jaya-SML has obtained the best
value of Fmin among all the compared methods, which is
as low as 121476.3977$/h. Meanwhile, Jaya-SML has also
obtained the best value of Favg and Fmax, as well as Std ,
which has obviously verified that Jaya-SML has the strongest

FIGURE 6. Convergence characteristic for Case 2 with 40-units system.

TABLE 2. Result comparison for Case 2 with 40-units system.

capabilities for handling ELDPs with large number of gener-
ators. Optimal solutions for this case are given in Appendix.

C. CASE 3
In this case, Jaya-SML algorithm is applied to 6-units sys-
tem with constraints of ramp rate limit, transmission loss
and prohibited operating zones (POZs). System data and
B-coefficients are taken from [40]. There are two POZs in
every generator with increasing number of non-convex deci-
sion spaces, this situation causes challenging complexity to
find global optimum. Common parameters of Nrun, Nmax and
Npop are set to 50, 2000 and 30 for fair comparison. Obtained
results include Fmin, Favg, Fmax, Std and T .

Fig. 7 provides the value distributions of Fmin over 50 inde-
pendently running trials and Fig. 8 shows the distribution
results in box plot format. It can be seen that within 50 inde-
pendent runs, Jaya-M has lower fuel cost and higher robust-
ness than Jaya because of the extra MP method, while
Jaya-SM obtained even lower fuel cost and higher robust-
ness than Jaya-M because of SA strategy, while Jaya-SML
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FIGURE 7. Results of independent runs for Case 3 with 6-units system.

FIGURE 8. Boxplot of the results for Case 3 with 6-units system.

FIGURE 9. Convergence characteristic for Case 3 with 6-units system.

achieved the lowest value of fuel cost and maintained the
highest robustness because of the Lévy distribution in popu-
lation updating phase. From the convergence curve in Fig. 9,
we can observe that Jaya-SML approaches optimum value
within no more than 50 iterations, which is the fastest speed
in convergence rate among the four algorithms.

Table 3 illustrates that the proposed Jaya-SML algo-
rithm has obtained the best value of Fmin and Favg as
15445.1682$/h and 15447.2910$/h. The best value of Fmax
is achieved by DE as 15449.777$/h [42], which actually is
very close to 15450.6497$/h that obtained by Jaya-SML.
Optimal solutions for this case are given in Appendix.

D. CASE 4
A larger size of 15-units system with the same constraints
as in Case 3 is experimented in this case. System data and

TABLE 3. Result comparison for Case 3 with 6-units system.

FIGURE 10. Results of independent runs for Case 4 with 15-units system.

FIGURE 11. Boxplot of the results for Case 4 with 15-units system.

B-coefficients are taken from [40]. There are four generators
having POZs. Generators 2, 5 and 6 have three POZs and
generator 12 has two POZs. Nrun is still fixed at 50, whereas
Nmax and Npop are modified to 3000 and 50 to cope with the
increased number of non-convex decision spaces resulted by
increased number of generators as well as the POZs. Obtained
results include Fmin, Favg, Fmax, Std and T .

Fig. 10 provides the value distributions of Fmin and Fig. 11
shows the distribution results in box plot format. Convergence
curve of Fmin is shown in Fig. 12. We can observe from these
figures that Jaya-M performs better than Jaya in convergence
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FIGURE 12. Convergence characteristic of Case 4 with 15-units system.

TABLE 4. Result comparison for Case 4 with 15-units system.

quality and consistency due to the enhanced population diver-
sity provided byMPmethod, Jaya-SM shows superiority over
Jaya-M due to the adaptive value of K provided by SA strat-
egy, while Jaya-SML has made the biggest improvements in
accelerating the convergence rate and maintaining the lowest
cost among 50 independent runs.

Result comparisons are shown in Table 4. Obviously,
the proposed Jaya-SML algorithm has obtained the best
value of Fmin, Favg, Fmax and Std among all the compared
methods. Especially for Std , which is as least as 2.3244,
means Jaya-SML has extremely high precision in achiev-
ing the global optimum. Conclusion is that Jaya-SML has
powerful capabilities of handling larger size of ELDPs with
complex constrained conditions. Optimal solutions are given
in Appendix.

E. CASE 5
In the last case, a 10-units system with multi-fuel options
and valve-point effect for load demand of 2700MW is exper-
imented. Different from aforementioned cases, the objective
function for each generator in this case consists of two or three
piecewise-quadratic cost functions representing different fuel
types. System data is taken from [4]. Common parameters
of Nrun is still fixed at 50, whereas Nmax and Npop are set to
1000 and 30 respectively. The obtained results include Fmin,
Favg, Fmax, Std and T .
Fig. 13 and Fig. 14 illustrate the span of Fmin in detail.

We can observe that Jaya, Jaya-M and Jaya-SM are able to
give continuously decreasing values of Fmin while Jaya-SML

FIGURE 13. Results of independent runs for Case 5 with 10-units system.

FIGURE 14. Boxplot of the results for Case 5 with 10-units system.

FIGURE 15. Convergence characteristic for Case 5 with 10-units system.

has achieved the lowest fuel cost. Moreover, Jaya-SML not
only achieves the lowest fuel cost but also maintains almost
the same lowest value during all the independent running
times, which confirms its powerful capability of convergence
and robustness. Fig. 15 shows the convergence characteristic
chosen from 50 independent runs, it can be concluded that
Jaya-SML has the best solution quality and the fastest con-
vergence rate compared with Jaya, Jaya-M and Jaya-SM.

Comparisons are shown in Table 5. It is observed that
CBPSO-RVM [38] has reached the best value of Fmin as
623.9588$/h, the proposed Jaya-SML ranked the second
place as 623.9738$/h. However when we analysis the values
of Favg and Fmax, we can see that Jaya-SML has achieved
the first place in ranking for both of them, which is as low
as 624.0468$/h and 624.1300$/h respectively. Moreover,
the best value of Std is also achieved by Jaya-SML, which
is as least as 0.0327, it means almost all the 50 independent
solutions have converged to the global optimum.
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TABLE 5. Result comparison for Case 5 with 10-units system.

TABLE 6. Result comparison for Case 4 with different population size
Npop and K value.

VI. DISCUSSION AND CONCLUSION
In this study, Jaya algorithm with self-adaptive multi-
population and Levy flights (Jaya-SML) is proposed and
experimented in solving economic load dispatch prob-
lems (ELDPs) with different constrained conditions. There
are three advantages for the implementation of Jaya-SML
algorithm. Firstly, compared with the standard Jaya, there
is not a single one parameter has been added throughout
the whole procedure, except for the K value which can be
initialised as 2. Secondly, it is simple to use, because no
complicated techniques are introduced, only MP method,
SA strategy and Lévy flights are involved in the algorithm.
Thirdly, it can be easily combined with different evolutionary
algorithms (EAs), such as PSO, DE and GA, this is one of the
author’s interests for future work.

By summarizing the ELDP cases, we can get two con-
clusions. The first one is, Jaya-SML algorithm is the best
performer in aspects of solution quality, convergence rate
and stability among Jaya, Jaya-M, Jaya-SM and Jaya-SML,
regardless of the generator numbers and constrained con-
ditions. The second one is, compared with the other
hybrid-heuristic algorithms such as CPSO-SQP, NPSO-LRS,
CBPSO-RVM,MP-CJAYAand so on, Jaya-SML achieves the
best or nearly best results in reducing the total fuel cost of
Fmin, Favg and Fmax.
However, it needs to be mentioned that in steady-size

MP method, different K value results in different solution
quality. If K is too small, it can not contribute to the pop-
ulation diversity; if K is too big, the number of individuals

TABLE 7. The optimal solution for Case 1 with 13-units system.

TABLE 8. The optimal solution for Case 2 with 40-units system.

in each sub-population will be too small to perform com-
prehensive search within the subregions. To illustrate these
two situations, Table 6 provides the comparisons for Fmin in
Case 4with different population sizeNpop and steadyK value,
as well as adaptive K . We can observe that for different Npop,
the best value of Fmin is not always achieved by the same K
value, actually it depends on the complexity of the problem
to be solved. However, by using adaptive K value, we do not
have to test the perfect value for K , since it is able to adapt
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TABLE 9. The optimal solution for Case 3 with 6-units system.

TABLE 10. The optimal solution for Case 4 with 15-units system.

himself to the complexity of the problem and always can
achieve the best solutions, which is the benefits of adopting
self-adaptive MP method.

It should also be addressed that, when using MP method,
two issues need to be considered. One is how to guide the sub-
populations to move toward subregions in a more promising
way except for the ‘‘random way’’ used in this paper. This
issue is crucial since if the sub-populations cannot move to
different subregions, Jaya cannot search and track the local
optima in subregions. The other issue is concerned on how to
define suitable space size for each subregion. If the subregion
is too small, the population might converge fast and the
population diversity will be lost, then no progress can be
made during the iteration. However if the subregion is too
large, there is a potential that more than one local optima are
covered within the area, due to the updating mechanism only
one local optima is recorded, so the useful information of the
other local optima cannot be kept, which is also a bad loss of
diversity. These two issues will be further investigated by the
author.

As long as Jaya-SML algorithm has gained outstand-
ing superiority in solving the ELDPs, it is supposed to be
applied to other optimization problems such as micro grid
power dispatch problems and dynamic optimization prob-
lems, to broaden its applications in power system in the
future.

APPENDIX
See Tables 7–11.

TABLE 11. The optimal solution for Case 5 with 10-units system.
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