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ABSTRACT The real-time traffic status estimation in urban signalized intersections is highly valuable for
modern traffic control and management. This paper presents a real-time queue length estimation method
based on probe vehicles’ data in the connected vehicle (CV) environment. The probe data are used to
identify the stopping states of CVs. Based on this, a queue length time series referring to the stopping
time and the positions of CVs is built for describing the queuing process at an intersection. Considering
the statistical average traffic rate, queue length time series in historical cycles, and the stopping states for
real-time CV arrival features in the current cycle, the critical queuing time is forecasted based on the linear
fitting method and the real-time queue length is estimated based on the Markov model. The overall scheme
is thoroughly tested and demonstrated in a realistic scenario at different penetration rates. Under different
conditions, the stationarity of the queue length series is tested by the augmented Dickey–Fuller. TwoMarkov
models based on the transition matrices of the current cycle and both the current and historical cycles are
verified, respectively. The results demonstrate the high accuracy in the real-time queue length estimation,
and the proposed method shows good performance in handling the randomness, especially when the
CV penetration rate is low.

INDEX TERMS Connected vehicle, Markov model, queue length, time series.

I. INTRODUCTION
Real-time road traffic parameter collection and accurate
road congestion evaluation are the prerequisites for bet-
ter applying various Advanced Traffic Management System
(ATMS) applications, such as traffic signal control, traf-
fic guidance, traffic state forecasting and traffic accident
identification. Traditional traffic parameter collection meth-
ods by transect-detectors [1]–[6] can only obtain the traffic
information where the detector locates, mainly the vehicular
throughput, speed and occupancy. Some procedural param-
eters which can describe the traffic status of an entire road
segment or intersection and are more useful for deploying
ATMS applications, such as the queue length, traffic delay
and number of stops, are not easily obtained. In actual
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engineering applications, the drawbacks in comprehensive-
ness, accuracy and real-time of traffic parameter collection
methods have become the ‘bottleneck’ for taking full advan-
tage of the aforementioned advanced intelligent applications
while improving the traffic flow.

Recently, with the development of wireless communication
and intelli-sensing technologies, the connected vehicle (CV)
system has been attracted much attention from scholars.
For CV, the entire space-time driving state is obtained by
all kinds of onboard sensors and the trajectory information
can be transmitted to the data-centric processing system for
further analysis. In the CV environment, the introduction of
some probe data, such as the position, speed, accelerated
speed of CVs, provides new data source for traffic status eval-
uation. This makes it possible to mine the real-time procedure
traffic parameters which cannot be obtained in the traditional
pattern. In recent years, for fully using the CV information,
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many researches focusing on the traffic parameter evaluation,
such as vehicle density [7]–[11], travel time [12]–[14] and
origin-destination trip matrices [15], [16], have been pre-
sented for different applications.

Queue length is one of the most important performance
measures of an intersection, as it reflects the delay and
travel time at the intersection and is widely used in traffic
signal plan design, traffic congestion evaluation, non-
stopping speed guidance. The first study on queue length
dates back to the use of probe vehicle, another form of CV.
Comert and Certin [17], [18] use the location of the last
probe vehicle in the queue length as well as the probability
function to evaluate the expectation of queue length. A queue
length estimation model is presented based on the penetration
ratio. However, the probability function of total queue must
be obtained for the proposed model. In [19], a cycle-by-
cycle queue length estimation method by means of shock
wave theory and probe vehicle data is proposed. This kind
of probability-based method or shock wave theory based
method generally gives a statistical queue length estimation
value under the given probability assumptions. Due to the
data quality of the probe vehicle, for example, the long term
sampling interval and the low data accuracy, the estimation
result is generally not satisfactory.

Using the trajectory information entirely, mainly the
position and speed, some real-time queue length estimated
methods are also presented. Tiaprasert et al. [20] present
a mathematical model for real-time queue estimation using
connected vehicle technology from wireless sensors net-
works. The calculation of estimated queue length begins with
joint probability function of the total number of vehicles and
connected vehicles. However, the proposed model is based on
the assumption that the probability of the connected vehicle
follows Bernoulli distribution, which is not able to perfectly
describe the random characteristics of traffic flow, especially
when the CV penetration is low. In order to achieve the over-
flow control, a maximum queue length calculation method is
proposed in [21]. By tracking the variation of the speed of
the CVs, the stop state is identified and the maximum queue
length is denoted as farthest position of stopped CVs. In the
proposed method, a full coverage of the CVs is needed if the
system expects to get an accurate estimation result.

In actual applications, the penetration rate is really a chal-
lenge for designing a reliable model, especially in the early
stage of implementation of CV engineering [22]–[24]. Fully
considering the low penetration of CV in road traffic, a queue
tail location estimation model is presented in [25]. In the
model, the whole link is divided into upstream and down-
stream of queue tail. A rough estimation of queue tail based
on connected vehicle located at farthest from downstream end
of link, together with an error compensation scheme based
on the penetration rate and number of lanes, are presented.
It demonstrates the efficiency and accuracy of high-resolution
estimation approach.

Summarizing the research on queue length estimation
methods based on probe data mentioned above, we can also

realize that, there are very few studies which present a com-
prehensive strategy for dealing with the random character-
istics of traffic flow. In actual scenario, especially when the
traffic is unsaturated, the traffic volume and arriving/releasing
features all dynamically change at any time. The traffic char-
acteristics may be quite different even in two different adja-
cent signal cycles. Sometimes there may be sharp increase
or decrease in traffic volume compared with the statistical
average value. In this case, some assumptions may be no
longer appropriate and the effectiveness of corresponding
queue length estimation models will surely be reduced [26].

For fully extracting the value of the probe data of CVs and
to address the issues existing in the current traffic parameter
evaluation methods, this paper proposes a new real-time
queue length estimation method at signalized intersection
under unsaturated traffic condition. The stopping states
of CVs, including the complete stopping and incomplete stop-
ping, are identified based on the probe data of CVs. Under
certain penetration, the critical queuing time is forecasted.
Further, a queue length time series model is built to describe
the evolution of vehicle arriving and releasing characteristics.
Using the Markov method, the series is analyzed and the
real-time queue length is estimated. The overall scheme is
thoroughly tested and demonstrated in a realistic scenario at
different penetration rates. The results demonstrate the real-
time behavior and accuracy for high-resolution estimation.

The rest of the paper is organized as follows. In Section 2,
the survey of the method is briefly introduced. In Section 3, a
real-time queue length forecasting method based on Markov
Model is proposed, including the construction of queue length
time series, forecasting of critical queuing time and opti-
mization of state transition matrix for further queue length
estimation. The case study and the evaluation results are
presented in Section 4. In Section 5, we conclude the paper
and provide the directions for future work.

II. METHOD DESCRIPTION
In the CV environment, each intelligent vehicle which is
equipped with onboard sensors and wireless transmitting
devices and can be considered as probe vehicle. The stopping
state of the CV, which is critical for estimating the real-
time queuing length of road section, can be identified using
the real-time trajectory data. Generally, the vehicle stopping
state can be classified into two types: complete stopping and
incomplete stopping.

A. COMPLETE STOPPING
Blocked by the red light, vehicles wait in line and join the
queue in turn. When a CV arrives and the front queue has not
completely discharged, it should slow down the speed to zero
and remain in the stopped state for a certain time dk (dk equals
to the sum of the waiting time for the red light and the time of
queue discharge, dk > 0), as shown in Fig. 1. When a CV is
complete stopping, it means that the standing queue spreads
to the position where the CV locates and it may extend farther.
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FIGURE 1. Complete stopping state identification based on speed
variation.

FIGURE 2. Incomplete stopping state identification based on speed
variation.

B. INCOMPLETE STOPPING
When a CV slows down to the tail of the queue and the
front vehicle is about to start, it has to speed up again to
recover the normal running state in the next moment. In this
situation, the parking time dk = 0, as shown in Fig. 2.
When a CV is in the state of incomplete stopping, it means
that the standing queue spreads to the position where the
CV located, and the following vehicles no longer need to
stop.

When the CV is blocked by traffic signal light and queues
in turn, the stopping position of the CV is exactly the
instantaneous queuing place for traffic flow in the inter-
section entrance lanes. As shown in Fig. 3, the vehicles
stopped behind the stopping line during the red time period.
Among all vehicles, the CVs which are completed stopped
make probe points for describing the queuing character-
istics. By detecting the stopping time tk and position Lk
of CVs, a queue length variation series can be formed,
that is {L1(t1),L2(t2), · · · ,Lk (tk ), · · · ,L†(t†)}, reflecting the
real-time queuing progress dynamically. In the series,
L†(t†) is the critical queue length at the critical queuing
time, denoting the farthest queue state in one signal cycle
where the queue buildup wave meets the queue discharge
wave. In this paper, the pivotal idea of the proposed method
is using the time series analysis and forecasting approach
for evaluating the real-time queue length in a traffic signal
cycle.

III. A REAL-TIME QUEUE LENGTH FORECASTING
METHOD BASED ON MARKOV MODEL
A. CONSTRUCTION OF THE QUEUE LENGTH TIME SERIES
The mathematical description for queue length variation of
an intersection is the basis for forecasting the real-time traffic
states. In this paper, we use the number of queuing vehicles
to describe the queue length for further analysis. The queue
length time series is built by (1):

Q = {q(t1), · · · , q(tm), · · · , q(tM )} (1)

where M denotes the number of elements in the series.
t1, · · · , tm, · · · , tM are the equidistant time points. q(tm) is
the number of queuing vehicles at tm.

The tm is expressed as follows:

tm = m1T = m(tN /qN ) (2)

where 1T denotes the average stopping interval, which is a
statistical value calculated by the stopping time tN of the last
detected CV (the N -th CV) and the queuing number qN at
the stopping time in certain historical signal cycles. Taking
the 1T as a time step, the whole signal cycle is segmented
intoM = dC/1T e time intervals.

Accordingly, the queuing state of the road section is seg-
mented into qmax continuous intervals by unit 1, in which
qmax denotes the maximum accommodating vehicles in the
road section. In summary, the qmax continuous intervals rep-
resent the state space for the queuing length variations.

In one traffic signal cycle, the data-centric processing sys-
tem receives the trajectories of N CVs and identifies the
stopping states, including the stopping time, parking duration
time, leaving time, queue length and the number of queuing
vehicles, which are expressed as follows:

Stopping time series for N CVs:

T sB = {t
s
1, · · · , t

s
k , · · · , t

s
N } (3)

Parking duration time series:

DB = {d1, · · · , dk , · · · , dN } (4)

Leaving time series:

T rB = {t
r
1 , · · · , t

r
k , · · · , t

r
N } (5)

Queue length series (the distance between the vehicle and
stop-line, of which the location information is acquired by
positioning devices, such as GPS):

PB = {L1, · · · ,Lk , · · · ,LN } (6)

The number of queuing vehicles series:

QB = {q1, · · · , qk , · · · , qN } (7)

In (7),

qk = dLk/He (8)

In (8), H is the statistical average space headway when
vehicles queue at the intersection. d∗e is the symbol for
rounded integer calculation.
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FIGURE 3. Queuing process based on CVs.

Based on the identification of stopping state of CV, the time
series analysis method is used to describe the queuing states
and forecast the real-time queue length. The arrival time and
distributions in the queue present heterogeneous characteris-
tics due to random characteristics of traffic flow. In Q, if one
CV happens to arrive in the M -th time interval, the state
of tm equals to the number of queuing vehicles when the
vehicle stops. For other time intervals, a data compensation
method is proposed to make the time series complete as
follows:

Suppose the k th probe vehicle stops in the ith time interval
with the queuing state qk , and the (k + 1)th CV stops in the
jth time interval with the queuing state qk+1(j > i), the queu-
ing states of the (j − i − 1)th time intervals between
i and j are lacking. For these intervals, the state calcu-
lation equation is built for data compensation, as shown
in (9).
q(ti) = qk
q(tj) = qk+1
q(ti+l) = d(qk+1 − qk )l/(j− i)+ qke

l = 1, 2, · · · , j− i− 1

(9)

The construction process of the queue length time series is
described in Fig. 4

In Fig. 4, we can intuitively find that, according to the inter-
section queuing mechanism, the state presents progressive
increase as the time grows in the queue length time series.
This kind of time series consequentially shows non-stationary
characteristics.

FIGURE 4. The construction of the queue length time series.

B. CRITICAL QUEUING TIME FORECASTING
BASED ON CVs
The CVs send the trajectories to the data-centric processing
system. The system identifies the vehicles which have an
integrated parking process (IPP) based on the trajectories and
stopping information, in which the IPP is defined as a whole
parking process includes stopping, parking and restarting.
Referring to the queue buildup and discharge characteristics
in actual scenario, the parking time series presents a declining
trend, as is shown in Fig. 5.

The stopping time series is fitted using a linear method and
the fitting function is presented in (10).

d(t) = at + b (10)

In (10), the parameters a and b are demarcated according
to the minimum mean square error between fitted value and
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FIGURE 5. Parking time trend for integrated parking vehicles.

actual value principle, which is shown in (11).

minQ(a, b) = min
N−1∑
k=1

(d(tk )− dk )2

= min
N−1∑
k=1

(atk + b− dk )2 (11)

In (11), when d(t†) = 0, the critical queuing time t† can be
obtained.

While using the aforementioned method to forecast the
critical queuing time, one necessary prerequisite is that the
systemmust receive the IPP information from part of the CVs.
Theoretically, as long as two samples are acquired, the fitting
function is able to be established. Higher the samples are,
the more accurate the function shows to forecast the critical
queuing time. However in actual scenario, there may be very
few, even no vehicle which can meet the IPP conditions when
forecasting the critical queuing time. When such situation
happens, the fitting model accumulates large error and even
may become useless.

In order to solve the problem presented above, this paper
proposes a reference point th† for forecasting the critical queu-
ing time of present cycle using the historical values of latest
NC signal cycles. The reference point considers two factors,
the forecasting critical queuing time based on the historical
NC values and confidence level for the distribution of the
historical values respectively.

In the historical signal cycles, all CVs’ trajectories are
obtained and they certainly meet the IPP conditions. The
final critical queuing time series for the latest NC cycles is
expressed by (12):

T† = {t
h
†(1), · · · , t

h
†(k), · · · , t

h
†(NC )} (12)

Besides, we assume that the distribution of the elements in
T† follows the normal distribution N (t†, σ 2).
Based on the historical critical queuing time values,

the value for the current cycle is firstly forecasted using the
linear fitting method, as follows:

th† = flf (th†(1), · · · , t
h
†(k), · · · , t

h
†(NC )) (13)

where flf is the fitting function, referring to (10) and (11).

In order to decrease the estimation error, the confidence
level for the distribution of the historical values is used to
modify the preliminary forecasting result. Let θ and θ repre-
sent the upper and lower boundary values of the confidence
interval for historical NC critical queuing time values under
1− α confidence level, then,

(θ, θ) = (t† −
σ
√
NC

µα/2, t† +
σ
√
NC
µα/2) (14)

Under the 1−α confidence level, the critical queuing time
forecasting value is modified by (15).

th† =


θ aflf ≥ 0 and th† > θ

th† θ ≤ th† ≤ θ

θ aflf < 0 and th† < θ

(15)

where aflf is the one term coefficient of the fitting
function (13).

The intuitionistic description of (15) is that, within the
range of the rational critical queuing time values under cer-
tain confidence level, when the queue length trend has been
increasing in the latest historical cycles, the critical queu-
ing time of the current cycle should be no later than the
maximum reliable value. On the contrary, when the queue
length decreases in the past cycles, the critical queuing time
of the current cycle should be no earlier than the minimum
reliable value. By this restriction, the influence caused by
traffic randomness can be weakened to higher level.

Suppose the forecasted critical queuing time of current
cycle in (10) is denoted as tc† , and the value based on historical
cycles in (15) is denoted as th† , the final critical queuing time
is calculated as follows:

t† = µt
c
† + (1− µ)th† (16)

where µ is the weight coefficient.
As the analysis above, as long as the IPP samples are

more than two CVs, the fitting forecasting method is avail-
able. When there are only two samples, the minimum weight
coefficient for tc† is set as µmin. With the growth of the
number of samples, the real-time fitting forecasted value has
been leading to a highly valuable weight compared with the
historical data. As a conclusion, µ is assigned as follows:

µ =


0 n < 2
µmin n = 2
µmin + (1− µmin)[1+ eλ(−n+nc)]−1 n > 2

(17)

where µmin is the minimum weight value. n is the number of
collected real-time IPP samples and nc is the critical number.
λ is the adjustment coefficient. Under different λ conditions,
the weight value variation is presented as Fig. 6.

C. REAL-TIME QUEUE LENGTH ESTIMATION BASED ON
MARKOV MODEL
As described in Section 2, as the queue length increases, the
established time series consequentially shows non-stationary
characteristics. In order to estimate the real-time queue
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FIGURE 6. Weight coefficient value variation.

length, this paper initially takes a data transformation oper-
ation based on the historical vehicle average arrival rate to
make the series trend to be stationary, and further builds a
Markov chain for discretization analysis.

The real-time queuing time series is defined as (18).

T = {τ1, · · · , τm, · · · , τM } (18)

where τm denotes the difference between the actual queuing
number of vehicles and the theoretical vehicle arrival number
at tm, as shown in (19).

τm = q(tm)− u(tm) (19)

In (19), u(t) is the statistical average vehicle arrival rate in
the last NC historical cycles.

The system makes a statistical analysis of the difference
value of the latest NC historical signal cycles and takes
[−max |τm|,max |τm|] as the error margin. Furthermore,
the error margin is divided into Ne sequential sub-margins by
unit 1, which represents one vehicle error, as is shown in (20).

�={[−L,−L + 1), · · · , [−1, 0), [0, 1) · · · , [L − 1,L]}1×Ne
(20)

where,

L = dmax |τm|e ,Ne = 2 dmax |τm|e (21)

In �, suppose that each sub-margin corresponds with one
error state, denoted as {e1, e2, · · · , eNe} respectively.
Similarly, the signal control cycle is divided into M sub-

time periods by 1T , M = dC/1T e, where 1T is the mean
stopping interval and it is calculated by the stopping time
of latest CV and the number of cumulative vehicles at that
moment.

Since the sub-time period is divided by mean stopping
interval, we can make an assumption that there is one vehicle
stopping at the queue tail in each sub-time period. If the
vehicle is a CV, then the difference value τk is calculated
using (19) and correspond further with the certain state ek .
If there is no CV detected in the halfway period, supposing
that there is virtual one is stopping at the half-way time and

FIGURE 7. Compensation of queuing time series.

time series is compensated by keeping its integrity as shown
in Fig. 7.

As aforementioned, there are total Ne states of the values
of difference between the actual In each sub-time period
of [0, c], when a vehicle arrives at the queue tail, there are
Ne transitions for the difference value states, that is, ei→ e1,
ei → e2, . . . , ei → em. Based on the previous N CVs, the
Markov chain is built as follows:

Considering that the probability of the transition for the
state ei to ej is:

pij = p(ej|ei) = p(ei→ ej) (22)

The transition matrix for stopping states can be expressed
by (23):

P(1) =


p11 p12 · · · p1Ne
p21 p22 · · · p2Ne
...

...
. . .

...

pNe1 pNe2 · · · pNeNe

 (23)

The transition matrix calculated by the CVs in the current
cycle is denoted as P′, which is used for further queue length
forecasting. In order to further decrease the influence caused
by the random traffic characteristics to the queue length
estimation error, an improved transition matrix considering
the P′ and the historical matrixes is used for the future
k-steps forecasting. The improved transition matrix is pre-
sented in (24).

P = ηP′ + (1− η)(γ1P1 + · · · + γiPi + · · · + γNCP
NC )

(24)

where Pi is the transition matrix of the ith former cycles ahead
of the current. η is the weight coefficient for the current cycle,
0 < η < 1, and presented in (25).

η = 1− e−ζx
ψ

(25)

In (25), ζ andψ are the adjustment factors, x is the number
of elements in queue length series at calculation point in the
current cycle. When there are few elements at the forecasting
point, the transition matrix established by these limited ele-
ments presents a smaller weight for forecasting operations,
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FIGURE 8. Weight distribution of the current signal cycle. (a) Weight
variation under different ζ values (ψ = 0.6). (b) Weight variation under
different ψ values (ς = 1).

while the historical matrix gives a decisive effect. With the
increase of number of elements, the matrix in the current
cycles is more and more reliable for describing the real-time
state transition characteristics. In this case, the impact of the
current cycle increases while the historical data has a more
moderate effect. The variation of the η is shown in Fig. 8.

In (24), γi is the normalized weight coefficient for histori-

cal cycles,
NC∑
i=1
γi = 1. The cycle which is nearer to the current

is assigned a higher weight. In this paper, we use the Gaussian
function to assign values to weight coefficient.

γi =
γ ′i

NC∑
i=0
γ ′i

(26)

where,

γ ′i = e−ρ(i−1)
χ

(27)

In (27), ρ is the accommodation coefficient. Suppose that
the minimum weight confidence level is ε when i = NC , the
accommodation coefficient is calculated as follows:

γ ′NC = e−ρ(NC−1)
χ

≤ ε (28)

ρ ≥ −
ln ε

(NC − 1)χ
(29)

The weight distribution is shown in Fig. 9.

FIGURE 9. Weight distribution of different historical signal cycles.

In summary, the improved transition matrix is expressed
by (30), as shown at the bottom of the next page, and the k-
step transition matrix is expressed by (31), as shown at the
bottom of the next page.

Suppose that the difference value state at tsN is ei, the initial
state probability vector can be expressed by (32).

5(0) = (π1(0), π2(0), · · · , πNe (0)) (32)

where πi(0) = 1, π1∼i−1,i+1∼Ne (0) = 0.
At the critical queuing time t†, the transition steps

k =
⌈
(t† − tsN )/1t

⌉
, and the state probability vector at t† is

expressed by (33).

5(k) = 5(0)P(k) = (π1(k), π2(k), · · · , πNe (k)) (33)

Suppose that the state of
Ne
max
i=1
{πi(k)} is e† and the corre-

sponding difference value is τ†, based on (19), the forecasting
queue length is calculated by (34).

q(t†) = u(t†)+ τ† (34)

where u(t†) denotes the number of queuing vehicles at the
critical queuing time t† referring to the statistical average
vehicle arrival rate.

IV. CASE STUDY
To evaluate the proposed method, a case study is presented
with an example intersection at the Hongkong Road-Fuzhou
Road of Qingdao City of China (Fig. 10). The trajectory of
vehicles and the queuing process are obtained from the high-
definition video camera.

The background details of the intersection are introduced
as follows:

A. ROAD CHANNELIZATION
The case entrance lane contains three through lanes and two
left-turn lanes. The middle two through lanes are selected for
the case study.

B. BACKGROUND TRAFFIC SIGNAL PLAN
The signal control cycle is 154s and the phase-time of through
direction is 43s, as is shown in Fig. 11.
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FIGURE 10. The sample Case example of an intersection.

C. TRAFFIC FLOW VOLUME CHARACTERISTICS
The analysis time period is chosen at 12:00-14:00 in which
the traffic is unsaturated. The statistical analysis to get the
traffic volume by high-definition video where the hourly
volume is 441 veh/h. The variation of traffic volume per cycle
is shown in Fig. 12.

As an example, the five cycles mentioned in Fig. 12 are
selected for studying the case further.

D. STABILITY ANALYSIS OF QUEUE LENGTH SERIES
From Fig. 12, we can see that, the traffic volume values
in the chosen five cycles change dynamically, presenting a
typical random feature. Under 60% penetration rate of CVs,
the samples are selected using a random method. And for
the fifth cycle in case cycles, the CVs are also randomly
selected at the penetration rate of 20%, 40%, 60% and 80%
respectively. For instance, part of the CVs distributions in
different cycles are presented in Fig. 13.

Using the method proposed, the time series is built and the
stability characteristics are analyzed by ADF test. The results
are shown in TABLE 1 and TABLE 2.

From the ADF test results, it is found that, the original
difference value series of the case intersection, where the
value is calculated by the difference between the actual queu-
ing number of vehicles and the theoretical vehicle arrival
number, are all still non-stationary. This phenomenon is
mainly caused by the short-term vehicle arrival behavior
which is influenced by some time-invariant and time-varying
features.

Under 60% penetration rate, the first-order differences of
the original difference value series in the five case cycles all
present stationary at 5% level. Besides, in the fifth cycle,
the first-order or second-order differences under different
penetration rates are also present stationary. This verifies that
the proposed queue length series construction method is able
to model the random characteristic of the traffic flow and the
translation to be stationary provides a feasible method for
real-time queue length estimation.

To illustrate this aspect further, in TABLE 2, when the
penetration rates are 20% and 40%, a second-order difference
calculation must be performed to make the original series sta-
tionary. While at 20%, the time series itself is just stationary
for Lane 2. Compared with other situations, these extreme
differences mainly caused by the less number of samples
at low penetration rate conditions, where these samples are
not enough to describe the queuing process. The random
distributions of the samples may cause different series with
entirely variation trends. For any cases, these series can be
made stationary by different operations.

E. ANALYSIS OF THE QUEUE LENGTH ESTIMATION
RESULTS
The fifth cycle is taken as an example to verify the per-
formance of the proposed method under penetration rate
of 60%. As is described in Section 3, two kinds of transition
matrixes are used for the Markov forecasting model in this
paper, the transition matrix (TM for short, as (23)) based

P(1) =



γ0p′11 +
NC∑
i=1
γipi11 γ0p12 +

NC∑
i=1
γipi12 · · · γ0p1Ne +

NC∑
i=1
γipi1Ne

γ0p′21 +
NC∑
i=1
γipi21 γ0p22 +

NC∑
i=1
γipi21 · · · γ0p2Ne +

NC∑
i=1
γipi2Ne

...
...

. . .
...

γ0p′Ne1 +
NC∑
i=1
γipiNe1 γ0pNe2 +

NC∑
i=1
γipiNe2 · · · γ0pNeNe +

NC∑
i=1
γipiNeNe


(30)

P(k) = Pk =



γ0p′11 +
NC∑
i=1
γipi11 γ0p12 +

NC∑
i=1
γipi12 · · · γ0p1Ne +

NC∑
i=1
γipi1Ne

γ0p′21 +
NC∑
i=1
γipi21 γ0p22 +

NC∑
i=1
γipi21 · · · γ0p2Ne +

NC∑
i=1
γipi2Ne

...
...

. . .
...

γ0p′Ne1 +
NC∑
i=1
γipiNe1 γ0pNe2 +

NC∑
i=1
γipiNe2 · · · γ0pNeNe +

NC∑
i=1
γipiNeNe



k

(31)
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TABLE 1. Adf test results of different cycles (60% penetration rate).

FIGURE 11. Signal time plan of the case intersection.

on the queue length time series of CVs in the current signal
cycle, and the comprehensive transition matrix (CTM for
short, as (30)) based on the TMs of the current cycle and
the historical cycles. Using the Markov model, the differ-
ence values between the theoretical and actual queue length
are estimated based on two kinds of transition matrixes
and the results are shown in Fig. 14. As shown, the

referenced original series is obtained when penetration rate
is 100%, that is, all the vehicles on road are connected
vehicles.

From the results shown in Fig. 14, it is evident that,
both of the two estimation curves appropriately match the
actual value. However, in the early stage of the signal cycle,
the errors are generally larger than the later stage due to
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FIGURE 12. Variation of traffic volume.

TABLE 2. Adf test results of the fifth cycle.

only a few number of samples. With the time increases, more
CVs are detected and the queue time series present a much
stronger relevant characteristic. To provide a quantitative

evaluation, the root mean squared errors (RMSE) of
the two estimation methods are calculated and shown
in TABLE 3.
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FIGURE 13. CVs distribution examples under different penetration rates (yellow number represents CV). (a) The first cycle. (b) The second cycle. (c) The
third cycle. (d) The fourth cycle. (e) The fifth cycle.

TABLE 3. RMSEs of the two estimation methods for difference error (number of vehicles).

From TABLE 3, we can see that, the estimation errors can
reach a decimal level (less than 0.2 vehicles in the case study).
Furthermore, the Markov model based on CTM provides

a more accurate estimation result compared with the model
based on TM. The CTM makes great impact to alleviate the
effect caused by the random distributions of CVs when there
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FIGURE 14. Difference value estimation results. (a) Lane 1. (b) Lane 2.

TABLE 4. RMSEs of the two estimation methods for queue length (number of vehicles).

are only a few samples, especially in the early stage of the
signal cycle.

Further, based on the difference estimation results, the real-
time queue length estimation results and the critical queue
length forecasting results are presented in Fig. 15.

From the results shown in Fig. 15, it is evident that, the
queuing estimation curves appropriately fit the actual queue
length using the CV stopping states. To give a quantitative

evaluation, the RMSEs of the two estimation methods are
calculated and shown in TABLE 4.

From TABLE 4, we can see that, the Markov model based
on the CTM provides a more accurate estimation result com-
pared with the model based on TM. This result shows con-
sistent with the conclusions in TABLE 3. Moreover, we use
gray correlation analysis method to further study the queue
variations to the actual scenario of the two proposed methods.
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FIGURE 15. Real-time queue length estimation and the critical queue length forecasting results.
(a) Lane 1. (b) Lane 2.

Suppose the series of the characteristic behaviors
(the queue length series using the CV stopping states in the
case study) are:

X0(k) = (x0(1), x0(2), · · · , x0(n)) (35)

The series of relevant factors (two estimated queue length
series based on Markov model) are:

Xi(k) = (xi(1), xi(2), · · · , xi(n)) (36)

The displacement difference of series X0 and Xi at the point
k can be expressed by (37).

1x0i(k) = x0(k)− xi(k) (37)

|1x0i(k)| is the absolute difference which represents the
close degree for the two series at the point k . The smaller the
value of |1x0i(k)| is, the closer the two lines are.

The correlation degree for Xi and X0 is expressed by (38).

γ (X0,Xi) =
n∑

k=1

ωkγ (x0(k), xi(k)) (38)

In (38), ωk is the weight. γ (x0(k), xi(k)) is the correlation
coefficient, which is calculated by (39).

γ (x0(k), xi(k)) =
min
i

min
k
|1x0i(k)| + ρmax

i
max
k
|1x0i(k)|

|1x0i(k)| + ρmax
i

max
k
|1x0i(k)|

(39)

where min
i

min
k
|1x0i(k)| is the minimum difference and

max
i

max
k
|1x0i(k)| is the maximum difference. ρ is the res-

olution ration, and ρ ∈ [0, 1]. The valuing method of ρ refers
to [27].

VOLUME 7, 2019 20837



H. Liu et al.: Real-Time Queue Length Estimation Method

From (39), the average gray relational degree of the esti-
mation results based on the current cycle is 0.682 for Lane 1,
and the value for Lane 2 is 0.693. The results show a highly
consistency compared to earlies research.

V. CONCLUSIONS AND FUTURE WORK
In the CV environment, the trajectory information of the
CVs provides a new data resource to estimate the real-
time queue length at signalized intersection. In this paper,
the anchor message when the CV stops is fully used and a
real-time queue length estimation using the time series anal-
ysis is proposed. Themethod includes two steps: queue length
series construction and real-time queue length estimation.
The queue length time series can appropriately describe the
random variations of traffic flow. Besides, the optimized state
transition matrix considering the current cycle and the histor-
ical cycles makes up for the randomness when the number
of CV samples is small and improves the accuracy for queue
length estimation.

The proposed method is tested in actual traffic scenario.
Under different cycles and penetration rates, the station-
ary characteristic is analyzed and the results verify that the
queue length series is possible to be forecasted after certain
order difference process. Further estimation results using the
Markov model shows that, the proposed method provides a
reasonable and more accurate real-time queue length fore-
casting value.

We believe that this approach can be practically applied
to a number of real-time applications such as traffic conges-
tion evaluation, traffic guidance, and signal control which
rely on the accuracy of queue length. To further mining the
detailed random characteristics of traffic flow to influence
the performance the proposed method, our future work is
mainly focused on the impact of queue length estimation
accuracy caused by different CV distributions in the queue,
for instance, the concentrated distribution, the uniform distri-
bution or other distributions etc.
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