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ABSTRACT Background: Non-small cell lung cancer is defined at the molecular level by mutations
and alterations to oncogenes, including AKT1, ALK, BRAF, EGFR, HER2, KRAS, MEK1, MET, NRAS,
PIK3CA, RET, and ROS1. A better understanding of non-small cell lung cancer requires a thorough con-
sideration of these oncogenes. However, the complexity of the problem arises from high-dimensional gene
vector space, which complicates the identification of cluster boundaries, and hence gene expression cluster
membership. This paper aims to analyze potential biological biomarkers for tumorigenesis in lung cancer
based on different treatment solutions. Results: Genes BRAF, RET, and ROS1 show an overexpression
transition by one cluster from non-treatment to treatment states, followed by a stabilization in the 3 treatment
states at the same cluster. Genes MET, ALK, and PIK3CA show an overexpression transition by two clusters
from non-treatment to treatment states, followed by a stabilization in the 3 treatment states at the same cluster.
SME1 shows an under-expression transition by two clusters from non-treatment to the treatment states, a
stabilization in the 3 treatment states at the same cluster. Conclusions: We present a novel fusion-based
approach for gene expression profiling of non-small cell lung cancer under non-thermal plasma treatment.
The main contribution of the proposed approach is to exploit Dempster–Shafer evidence theory-based data
fusion to combine information from different samples in the considered dataset. This minimizes uncertainty
and enhances the reliability and validity of decisions, leading to a better description of genes related to
non-small cell lung cancer. We also propose use of fuzzy c-means-with-range clustering to track changes of
genes’ states under different non-thermal plasma treatments.

INDEX TERMS Gene expression, Dempster Shafer, evidence theory, data fusion, clustering, non-small cell
lung cancer.

I. INTRODUCTION
DNA microarray has made the analysis of the dynamics and
interactions of thousands of genes simultaneously possible.
The inference of expression data is guided by the following
facts: 1) expression data are high dimensional and complex,
and 2) dynamic relations exist among thousands of genes
simultaneously and/or sequentially. Dynamic relations on one
hand may reveal cascade interactions between genes. Indeed,
the expression of one gene may alter the transcription rate
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of another one. On the other hand, dynamic relations may
show coherent patterns (i.e. genes with similar expressions
suggest they are more likely co-regulating each other or to
be regulated by a parental gene). Expression data may also
show both cascade interactions and coherent patterns. Further
complicating the inference is the fact that sample profile-to-
gene profile ratio is typically very small.

Expression data can roughly be visualized as individual
cells or expression profiles. An individual cell in the gene
expression matrix represents the expression levels of each
gene under each sample or time point. An alternative to the
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individual cell representation of gene expression data is
expression profile representation. Following the expression
matrix structure and the fact that sample-to-gene ratio is
usually small, gene expression profile can be thought of as a
vector represented in the samples’ vector space. In addition,
the sample expression profile can be thought of as a vector
represented in the high-dimensional gene vector space.

Tumor suppressor gene (TSG) protects the cell from cancer
by controlling the cell cycle and promoting apoptosis through
a number of mechanisms. First, TSG has a repressive effect
on genes that dutifully controls cell cycle; therefore, this
repressive effect on the gene inhibits cell division. Second,
TSG tethers the DNA damage to the cell cycle, such that if
DNA damage occurs and cannot be repaired, the cell initiates
apoptosis.

The main goal of this paper is to analyze potential biolog-
ical biomarkers for tumorigenesis non-small cell lung cancer
based on different treatment solutions. The identification of
cluster boundaries and the membership of gene expression
clusters is known to be a difficult task due to the high
dimensionality of the gene vector space. We thus present a
novel fusion-based approach for gene expression profiling of
non-thermal plasma treatment of non-small cell lung cancer.
The proposed approach is based on data fusion and fuzzy
clustering to analyze genes’ clustering. The context of our
work is molecular expression profiling of biological biomark-
ers for non-small cell lung cancer.

The remainder of this paper is organized as follows.
In Section 2, we present related works. Section 3 describes
the considered dataset. In section 4, we detail the proposed
framework. Simulation results are presented in Section 5.
Finally, Section 6 concludes the paper and outlines some
future work directions.

II. RELATED WORKS
Clustering in the gene expression context helps to eluci-
date gene functions and reveal tumor typology [1]. The
aim of gene-based clustering techniques is the projection of
high-dimensional individual clusters to an optimal reduced
dimension of group clusters, to determine distinct gene
expression levels that can aid in the understanding of gene
functions. Sample-based clustering techniques search for
samples with similar expression patterns to specify different
(distinct) tumor types. Due to the small sample-to-gene ratio,
sample-based clustering is a challenging task [2]. In the liter-
ature, several works attempt to apply clustering techniques in
the gene expression context.

Microarray technology has made possible the measure-
ment of expression of thousands of genes simultaneously.
The process of identifying the number of informative genes
is crucial and is an area of intensive research. For exam-
ple, Fisher discriminant criterion (FDC), Cross projection
(CP) and discrete partition are measures studied by Cao and
Zhu [3] to identify genes that are predictive of clinical con-
ditions. However, the imprecision of state-of-the-art classi-
fication methods and uncertainties in the microarray data are

problems that need to be addressed. In their work, the authors
introduced a knowledge-based belief reasoning system (BRS)
to solve the problem of uncertainties in classification results.
This initially sorts the results of FDC, CP and DP of gene
values separately and picks up the top 5% of genes. Then,
Dempster-Shafer evidence fusion is performed on the candi-
date list to return the fusion genes.

A common challenge in hierarchal clustering is the
determination of the cut-off level or splitting level of the
dendrogram. The commonly fixed height branch split-level
is inflexible. Langfelder et al. [4] introduced flexible den-
drogram branch cutting methods, named the dynamic tree
cut package, which is available online. By combining hier-
archical clustering and partitioning-around medoid advan-
tages, dynamic cutting methods give better outlier detection.
The use of these methods was illustrated on simulated gene
expression data.

Richards et al. [5] compared results of four clustering
algorithms namely, CRC, k-means, ISA, and memISA on
datasets of microarray brain expression. The comparison
is based on three performance measures: speed, gene cov-
erage, and GO-enrichments. Although ISA and memISA
GO-enrichments slightly outperform k-means enrichments
but this is at the cost of gene coverage and speed. The authors
report that k-means outperforms the other three algorithms
with a gene coverage of 100%. However, combining k-means
and ISA or memISA can further improve the clustering per-
formance. The estimation of number of clusters for the PAM
clustering algorithm is crucial.

Wang et al. [6] addressed the issue of accurate estimation
of number of clusters in the PAM algorithm by introducing
a system evolution method. The authors proposed to analyze
cluster structures of a dataset from the viewpoint of a pseudo
thermodynamics system by using partitioning and merg-
ing processes. The experimental results of gene expression
demonstrate a good performance of the introduced system on
data structures (i.e. data structures are well separated or data
present a slightly overlapping structure).

Zhang and Sun [7] exploited evidence theory as one
of the mathematical theories to construct more informa-
tive gene regulatory networks (GRNs) by combining mul-
tiple biological data sources. Specifically, they proposed
to fuse transcription factor and gene expression data using
Dempster-Shafer evidence theory. In addition, a smooth
probabilistic model was applied to the transcription fac-
tor data while the Pearson correlation model was applied
to gene expression data. Finally, a dynamic Bayesian net-
work algorithm was used for learn, as part of the proposed
system.

Krejnik and Klema [8] proposed a methodology to impar-
tially verify the applicability of particular types of gene
clustering approaches. The verification was conducted as
part of a predictive classification framework and focussed
on prior biological knowledge-based functional clustering.
The analysis was performed in terms of gene expression
classification and used predictive accuracy as an unbiased
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performance measure. Features of biological samples that
originally corresponded to genes were replaced by fea-
tures that represented centroids of gene clusters, and then
used for classifier learning. The authors validated their
approach using 10 benchmark datasets and compared the
performance of their approach with existing clustering
methods.

Chen and Jian [9] presented a segmentation method for
clustering gene expression data based on graph-regularized
subspace. The goal of their approach was to combine graph
regularization with subspace segmentation, for modeling the
intrinsic geometrical structure of the data space. Specifically,
the authors used the Sylvester equation to find a global opti-
mal solution for segmentation of the graph regularized sub-
space. The proposed approach was evaluated using eight gene
expression datasets and compared with subspace segmenta-
tion methods, traditional clustering methods, and clustering
methods based on nonnegative matrix factorization.

Jiang et al. [10] proposed fuzzy c-means (FCM) clus-
tering based on weights and gene expression programming
to improve the performance of classical FCM. Specifically,
the authors first introduced a similarity calculation formula
to obtain the average entropy of data. Next, cluster centers
were computed through gene expression programming by
encoding them as chromosomes, in order to determine the
appropriate cluster centers. The approachwas validated based
on ten UCI datasets and compared to classical FCM results.

Dutta and Saha [11] explored the use of multi-objective
optimization based on genetic clustering techniques. The
objective was to classify genes into groups with respect
to their functional similarities and biological relevance.
Specifically, the authors developed a quality measure to
compute the goodness of gene-clusters, namely confidence
score of protein-protein interaction. Further, they proposed
multi-objective based clustering which employed integrated
information of expression values of microarray dataset
and protein-confidence score for protein interactions, in
order to select both statistically and biologically relevant
genes. Experiments were performed on three datasets of
real-life gene expression and results compared to existing
techniques.

Paul and Shill [12] proposed annotations for gene ontology
based on a semi-supervised clustering algorithm. The devel-
oped algorithm was termed GO fuzzy relational clustering,
in which one gene could be assigned to multiple clusters.
The algorithm utilised biological knowledge, available in the
form of a gene ontology, as prior knowledge, along with
the gene expression data. The prior knowledge was found
to help improve the coherence of the groups. The algorithm
was tested using two yeast datasets and results compared with
other state-of-the-art clustering algorithms.

III. DATASET
Plasma is one of the fundamental states of matter. It has gas
property (i.e. no definite shape or volume) and unlike solid
and liquid, is less dense [13]. It is created by a process called

TABLE 1. Dataset notations.

ionization, wherein atoms ormolecules of a gas acquire a neg-
ative or positive charge by heating, or are subjected to a strong
electromagnetic field at relatively very high temperature. This
process causes a gain or loss of electrons, which leads to
forming positively or negatively charged particles called ions.
Plasma can be thermal or non-thermal. Thermal plasma has
the same temperature for electrons, ions and neutrals. While
in non-thermal plasma, the temperature of electrons is higher
than that of ions and neutrals.

Recent technological advances have made the use of
non-thermal plasma in the medical field a reality. Cancer
arises as a disorder of one of the organs’ cell function, specif-
ically cell division. This causes an abnormal growth of cells
and can spread from one organ to another through a process
called metastases. Hou et al. [14] provided tumor cellular
gene expression profile of lung adenocarcinoma, upon treat-
ment with non-thermal atmospheric plasma. Their data pro-
vided the transcriptome of the tumor cell prior to treatment for
three cases (which we term samples in our work), as well as
the transcriptome upon short exposure, non-thermal plasma
treatment and long exposure, non-thermal plasma treatment
for each of the three samples. The transcriptomewas obtained
at different time points. Specifically, the short exposure for
non-thermal plasma treatment transcriptome of the tumor
cell was measured post 4 hours, while the long exposure for
non-thermal plasma treatment transcriptome was measured
post 1, 2 and 4 hours. This data is publicly accessible through
the NCBI Gene Expression Omnibus under GEO accession
number GSE59997.

The heat map in Figure 1 is constructed based on gene
expression analysis and gives an overview of the consid-
ered dataset. In the columns, we depict 15 dataset samples
(NT1 refers to NT sample 1, NT2 refers to NT sample 2,
NT3 refers to NT sample 3, SE1 refers to SE sample 1,
SE2 refers to SE sample 2, SE3 refers to SE sample 3,
LE1hr1 refers to LE post 1hr sample 1, LE1hr2 refers to LE
post 1hr sample 2, LE1hr3 refers to LE post 1hr sample 3,
LE2hr1 refers to LE post 2hr sample 1, LE2hr2 refers to LE
post 2hr sample 2, LE2hr3 refers to LE post 2hr sample 3,
LE4hr1 refers to LE post 4hr sample 1, LE4hr2 refers to LE
post 4hr sample 2 and LE4hr3 refers to LE post 4hr sample
3). In the rows, we depict values of genes (49395 genes in our
dataset).
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FIGURE 1. Heat map of the considered dataset.

FIGURE 2. Proposed framework.

IV. PROPOSED FRAMEWORK
Our proposed microarray framework based on gene expres-
sion fusion is presented in Figure 2. Individual stages in the
framework are described in Algorithm 1.

Next, in this section, and the next, we discuss details of the
framework showing in Figure 2, and Algorithm 1. As with
most clustering problems, we start by probing the clustering
tendency. This step aims to determine if the considered data
exhibits an intrinsic predisposition to cluster into distinct
groups. This step is performed for the non-treatment samples.
Here, we employ three techniques to measure the clustering
tendency. Two statistical techniques namely Hopkins [15]
and Cox-Lewis [16], and one visual technique namely Visual
Assessment of cluster Tendency (VAT) [17]. Since we have
three samples for the NT dataset, an ensemble-learning step
is needed to reach a hybrid decision on the cluster tendency
of this dataset. In the case of presence of a clustering structure

in our dataset, a further step is required to determine the
clustering cardinality.

The third step in our proposed approach is to perform a
fuzzy c-means clustering for the three NT samples [18], [19].
The main goal of this step is to compute masses needed in the
next fusion step. In this paper, the squared Euclidean distance
metric is used for fuzzy c-means clustering. The fusion is
based on evidence theory and allows combining the three NT
samples into a single clustering output, that gives a better
description of the NT dataset.

The last step performed for NT samples is determination
of upper and lower bounds for each cluster, obtained after
the fusion process. These bounds are then used for clustering
of the SE and LE samples. The SE treatment aims to deter-
mine changes in gene membership from NT and SE samples.
Therefore, the upper and lower bounds for each cluster in the
SE samples are taken to be the same for NT samples. Next,
we perform fuzzy c-means clustering while considering this
constraint. Evidence-then based fusion is then applied to the
results of clustering the three SE samples. The final step of
the SE treatment is to determine genes that preserved their
clusters in the NT and SE treatments.

The same process applied to the SE dataset is repeated for
the datasets LE post 1hr, post 2hr and post 4hr.

In this work, we are interested in discovering genes related
to non-small cell lung cancer. In the considered dataset,
we have two different non-thermal plasma treatments with
two doses: short exposure and long exposure. The goal is
to analyze the effect of different treatment strategies on the
non-small cell lung cancer genes. For each of the 5 states we
have (NT, SE, LE post 1hr, LE post 2hr and LE post 4hr),
three cases are present. The idea is to combine information
from three cases in each state into a single decision for each
state. This decision will depict a better description of genes
related to non-small cell lung cancer. The process of data
fusionwill ensure data integration from three cases to produce
more consistent and accurate information on genes related
to non-small cell lung cancer, than that provided by any
individual case.

The next section describes the main steps of the fusion
process and the fuzzy c-means-with-range clustering.

A. EVIDENCE FUSION PROCESS
A key contribution of this paper is to exploit advantages
of redundancies and complementarities between information
obtained by different data of gene-expression samples to pro-
pose more accurate and relevant decisions on the data. This
is ensured by employing evidence-fusion theory which aims
to address the uncertainty related to subjective judgements
provided by different data samples of the same treatment
(NT, SE and LE), to disregard incompatible and conflicting
opinions, and to incorporate information using belief struc-
tures. This will provide reliability and validity for resulting
decisions on gene expression data.

In this paper, we propose to fuse samples data using
the Dempster-Shafer method [20]–[23]. Let D (frame of

37144 VOLUME 7, 2019



M. W. Farouq et al.: A Novel Multi-Stage Fusion based Approach for Gene Expression Profiling in Non-Small Cell Lung Cancer

Algorithm 1 FGEP (Fusion of Samples of Gene Expression
Profiling) Steps

1.Clustering tendency and cardinality
1.1 Clustering tendency based on control group
(Non-treatment) samples.
1.2 Ensemble learning for clustering tendency.
1.3 Clustering cardinality based on control group
(Non-treatment) samples.

2. Non-treatment
2.1 Apply fuzzy c-means clustering for each sample.
2.2 Fusion of 3 NT samples.
2.3After fusion for each cluster, we determine the upper
and lower bounds.

3. SE treatment
3.1 Apply a fuzzy c-means-with-range clustering
for each sample of SE.
3.2 Fusion of 3 SE samples.
3.3 Test the results (changes in gene membership)
between NT fusion and SE fusion.

4. LE treatment post 1hr
4.1 Apply LE post 1hr fuzzy c-means-with-range clus-

tering for each sample.
4.2 Fusion of 3 samples of LE post 1hr.
4.3 Test the results (changes in gene membership)

between NT fusion and LE post 1hr fusion.
5. LE Treatment post 2hr

5.1 Apply fuzzy c-means-with-range clustering
for each sample of LE post 2hr.
5.2 Fusion of 3 samples of LE post 2hr.
5.3 Test the results (changes in gene membership)

between NT fusion and LE post 2hr fusion.
6. LE Treatment post 4hr

6.1 Apply a fuzzy c-means-with-range clustering
for each sample of LE post 4hr.
6.2 Fusion of 3 samples of LE Post 4hr.
6.3 Test the results (changes in gene membership)
between NT fusion and LE Post 4hr fusion.

discernment) be a finite set. A mass function on D, where
D= {C1, C2, . . . , Cn}, Ci is the cluster i, and n is the number
of clusters, is a function m: 2D→[0,1].∑

A⊆D

m (A) = 1

The subsets A of D such that m(A) > 0 are called the focal
elements ofm. In our case, a mass functionm is used to model
samples’ beliefs about a gene X .

To each mass m can be associated a belief (Bel) and plau-
sibility (Pls) functions defined as follows [24], [25]:

Bel (A) =
∑

B⊆A,B6=0

m (B)∀A ∈ 2D

Pls (A) =
∑

B∩A6=0

m (B) = 1− Bel
(
AC
)
∀A ∈ 2D

In this method, mass functions are combined using Demp-
ster’s orthogonal rule [24], [26]

m (A) = (m1 ⊕ m2⊕, . . . ,ml⊕) (A)

=

∑
B1∩,...,∩Bl=A

m1 (B1)m2 (B2) , . . . ,ml (Bl)

1− K
K =

∑
B1∩,...,Bl 6=0

m1 (B1)m2 (B2) , . . . ,ml (Bl)

K represents the degree of conflict between samples.
The decision can be taken using one of several

rules [25], [26]:
• The maximum of plausibility is defined as

x ∈ Ci si Bel (Ci) (x)

= max{PLs (Ck) (x)}1 ≤ k ≤ n

• The maximum of belief is defined as

x ∈ Ci si Bel (Ci) (x)

= max{Bel (Ck) (x)}1 ≤ k ≤ n

The novel contribution presented here, is feeding the car-
dinality and the range for each cluster from fusion of NT
samples to SE and LE clustering. The next step is application
of fuzzy c-means-with-range clustering for each sample data
as outined below.

B. FUZZY C-MEANS-WITH-RANGE CLUSTERING
The main goal of fuzzy c-means-with-range clustering is to
perform clustering on the SE and LE data while considering
the range of each cluster obtained in the previous fusion step.

The proposed process consists of taking clusters result-
ing from the fusion of NT samples. Then, we compute, for
each obtained cluster, the lower and upper bounds for genes
belonging to the NT data that are part of the cluster. The next
step is to apply Dempster-Shafer based fusion to the resulting
fuzzy c-means-with-range clustering.

The same algorithmic steps for SE treatment are applied to
the LE treatment with its three states (post 1hr, post 2hrs, and
post 4hrs).

The final phase is to explore the presence of change in
the cluster size among the NT, SE and LE conditions. This
will acts as an indicator of the migration of part/all genes
from one cluster to another. Analyzing this migration and the
change in each individual gene membership score is used to
reveal the effect of non-thermal plasma treatment on tumor
transcriptome.

In summary, our proposed scheme, depicted in Figure
3 and Table 2, presents the clustering structure and gene
membership of the non-thermal plasma treatment dataset.
The aim is to represent the gene dynamics under the three
conditions; starting with an initial clustering structure of
the non-treatment condition, that is used as an indicator
of the cardinality of clustering solutions, and cluster range for
the conditions. After determining the cardinality and range
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FIGURE 3. Fusion clustering scheme.

TABLE 2. Clustering boundaries.

of clusters, we apply the clustering algorithm to reveal the
clustering structure or solution for both SE and LE. The result
is three clustering structures with the same cardinality and
range. Finally, we look for any consensus among the cluster-
ing solutions of NT, SE and LE for gene cluster membership.

V. EXPERIMENTS
In this section, a set of experiments are conducted to validate
our proposed approach. We start by examining the cluster
tendency of the dataset and compute the optimal number of
clusters. Next, fuzzy clustering with range and fusion are
applied to SE, LE post 1hr, LE post 2hr, and LE post 4hrs.
The goal of this step is to determine stable/unstable genes.
Finally, an interpretation of the obtained results is presented.
The experiments were carried out using Matlab R2016b and
performed on a laptop computer with an Intel Core i7-6600U
CPU@ 2.60 GHz-2.40GHz (4CPUs), 8GB of RAM, 512GB
SSD, and a Windows 10 OS.

A. CLUSTERING TENDENCY AND CARDINALITY
The first step in the proposed approach is examining the
cluster tendency of the NT condition of non-thermal plasma
treatment data. We used the two statistical indices (Hopkins
and Cox Lewis), and visual technique VAT for the three NT
samples. Table 3 depicts values of Hopkins and Cox Lewis
indices for the three NT samples. Figure 4 shows output
images of theVAT algorithm for the threeNT samples.Cluster
tendency values depicted in Table 3 and results of the VAT
algorithm convey a plausible evidence of the presence of
clustering structure in the NT data.

TABLE 3. Clustering tendency indices.

FIGURE 4. VAT images for the NT samples.

FIGURE 5. Optimal number of clusters given by the Calinski method.

The next step is to determine the number of clusters. Since
we do not have any prespecified structure to compare with,
we used only internal validation indices to determine cluster
cardinality. The cluster cardinality is determined by a com-
binatorial decision from the three NT samples. We present
below the internal validation indices for NT sample 1. The
same process is repeated for NT samples 2 and 3. We used
three indices: Calinski, Davies Bouldin and Silhouette under
different clustering schemes and searched for the optimal
number of clusters. The optimal number of clusters for Calin-
ski was found to be 10 with Calinski value of 3.75, as shown
in Figure 5. The Davis Bouldin index achieves a minimum
value slightly above 0.51 at 8 clusters as illustrated in Fig-
ure 6. Figure 7 shows the optimal silhouette value at 2 clusters
where it is at a maximum. An average silhouette width close
to one indicates a strong cluster structure; the silhouette value
at 2 clusters is 0.78.

In order to achieve a robust cluster cardinality combining
results from three above indices, we propose an ensemble of
internal validity index. Specifically, to use the three internal
validity indices, we employ the following equation for nor-
malization of values

normalized index =
index −min(index)

max (index)−min(index)

Figure 8 presents the optimal number of clusters, that is 4,
corresponding to the highest index value slightly below 0.6.
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FIGURE 6. Optimal number of clusters given by the Davies Bouldin
method.

FIGURE 7. Optimal number of clusters given by the Silhouette method.

FIGURE 8. Proposed optimal number of clusters.

The same process is repeated for NT samples 2 and 3. The
optimal number of clusters for the clustering solution is found
to be 4.

B. NT DATA CLUSTERING AND EVIDENCE FUSION
The first step applies fuzzy c-means clustering to each NT
sample. Table 4 depicts the range of the 4 clusters and the
number of genes belonging to each cluster. As can be seen
from Table 1, C1 is bounded between 2.7 to slightly above
5, C2 is bounded between 5 and 7.2, C3 is bounded between
7.2 to slightly above 9.7 and C4 is bounded between 9.7 and
15.1. Moreover, C1 can be seen to be the biggest cluster for
the three NT samples, comprising 19011 genes for NT sample
1, 15888 genes for NT sample 2 and 19080 genes for NT
sample 3. Whereas, the smallest cluster is C4 comprising
5309 genes for NT sample 1, 5180 genes for NT sample 2 and

TABLE 4. Cluster boundaries and number of genes for the NT group.

TABLE 5. Cluster solution and number of genes for fusion of samples of
LE post 1hr, LE post 2hr and LE post 4hr.

5365 genes for NT sample 3. Results of the three NT samples
are combined using evidence theory fusion technique, with
fusion results depicted in the last column in Table 4. The
fusion of NT samples can be seen to sustain the cluster
boundaries where C1 is still bounded between 2.7635 to
5.0882with the biggest cluster comprising 17000 genes, C2 is
the second biggest cluster with 140369 genes and bounded
between 5.0904 and 7.2614, C3 has 13867 genes with expres-
sion profiles between 7.2618 and 9.9480, and finally C4 is
the smallest cluster of 4489 genes with expression values
bounded between 9.9490 and 15.0773.

C. GENERALIZATION OF CLUSTERING AND FUSION
The cluster boundaries after the fusion of NT samples now
act as a prespecified clustering structure for the SE post 4hrs,
LE post 1hr, LE post 2hrs and LE post 4hrs. Next, we perform
clustering for each sample while considering the boundaries
of each cluster that were obtained above. Results of fusion
of the three samples of LE post 1hr are presented in Table 5.
In the samemanner, the fusion of three LE post 2hrs and three
LE post 4hrs samples are illustrated in Table 5. The fusion
results reveal a very close cluster gene size under all 3 LE
states, with C1 ranging from 12907 to 12912 genes, C2 from
11824 to 11855 genes, C3 from 11850 to 11872 genes and
C4 from 12783 to 12796 genes.

D. VALIDATION AND INTERPRETATION
Using a microarray-based approach, Hou et al. [14]
analyzed the cellular gene expression profile of lung
adenocarcinoma A549 cells upon treatment with non-thermal
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TABLE 6. Matrix of gene change proposed by Hou et al. [14].

TABLE 7. Matrix of gene change proposed by our approach.

plasma. They focused on finding plasma-associated molecu-
lar signatures to elucidate the impact of NTP on the transcrip-
tome of this tumor cell.

Even though survival of the 3-min treatment group
decreased to only approximately 20 % at 4h post exposure,
when compared to sham control, the RNA integrity num-
ber (RIN) still showed that RNA was not degraded and had
sufficiently high quality for further analysis (data not shown).

With the selection criteria mentioned above, 1209 differ-
entially expressed genes were obtained for all time points.
Specifically, at 4h after 1-min NTP treatment, 802 genes
(559 down-regulated and 243 genes) showed significant
expression according to the preset criteria (with fold changes
more than 1.2, and FDR p-value less than 0.05), whereas
only 10 genes (10 down-regulated genes), 132 genes (109
down-regulated and 23 up-regulated genes) and 773 genes
(684 down-regulated and 89 up-regulated genes) expressed
at 1h, 2h and 4h, respectively, after 3-min NTP exposures.
These data have been deposited in NCBI’s Gene Expression
Omnibus and are accessible through GEO Series accession
number GSE59997. A complete overview of the differentially
regulated genes can be obtained using GEO2R or other soft-
ware. Table 6 summarizes the above-described results.

Based on our approach, the number of genes changing
their cluster membership between two states or conditions is
presented in Table 7. It is seminal to clarify that this gene
membership comparison is based on the fusion of the three
states under consideration. That is, this comparison is for
the fusion of NT, fusion of SE, fusion of LE states, and not
for samples 1, 2 and 3 of each condition. The comparison
reveals interesting results, with 36999 genes changing clus-
ter membership from NT to LE post 1hr. There is also an
eminent decline in the number of genes that changed their
cluster membership from LE post 1hr to LE post 2hr, to only
4039 genes. Further, 899 more genes joined the 4039 genes
to change their cluster membership from LE post 2hr to LE
post 4hr.

Non-small cell lung cancer is defined at the molecular
level by mutations and alterations to oncogenes including
AKT1, ALK, BRAF, EGFR, HER2, KRAS, MEK1, MET,
NRAS, PIK3CA, RET and ROS1. In Table 8, we present a
molecular expression profiling of the biological biomarkers

TABLE 8. NSLC oncogenes molecular profiling.

for non-small cell lung cell cancer due to fusion of NT,
LE post 1hr, LE post 2hr and LE post 4hr.

Genes BRAF, RET and ROS1 show an overexpression
transition by one cluster from NT to LE states, followed by
a stabilization in the 3 LE states at the same cluster. BRAF
move from C1 to C2 while both RET and ROS1 move from
C2 to C3.

Genes MET, ALK and PIK3CA show an overexpression
transition by two clusters from NT to LE states, and a stabi-
lization in the 3 LE states at the same cluster. MET moves
from C1 to C3 and C4, ALK moves from C2 to C4 while
PIK3CA moves from C1 to C3.

SME1 shows an under-expression transition by two clus-
ters from NT to LE states, followed by a stabilization in the
3 LE states at the same cluster. SME1 moves from C4 to C2.

VI. CONCLUSION
In this paper, we presented a novel fusion-based approach for
gene expression profiling in non-small cell lung cancer. The
goal was to discover genes related to non-small cell lung can-
cer. The main contribution was to exploit Dempster-Shafer
evidence theory-based data fusion to integrate data from dif-
ferent cases in the considered dataset to provide clinicians
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with more consistent and accurate information, than can be
offered by any individual case. In addition, we proposed use
of fuzzy c-means-with-range clustering to track changes of
genes’ states under different non-thermal plasma treatments.

Experiments depicted potential biological biomarkers for
tumorigenesis of lung cancer. Oncogenes BRAF, RET, ROS1,
MET, ALK and PIK3CA were found to exhibit an overex-
pression transition from non-treatment to non-thermal plasma
treatment state. SME1 is the only gene exhibiting a suppres-
sion from the NT state to the LE states. However, an eminent
gene expression consistency in the non-thermal plasma treat-
ment state at post 1hr, 2hr and 4hr was observed for all genes.

For future work, we plan to use more cases studies and
test the performance of our proposed approach on different
datasets. Additionally, we plan to introduce a mathematical
model that can simulate dynamics of gene expression pro-
files and integrate it with qualitative counterpart evidence
fusion clustering. Further, our current work on uncertainty
modeling can be extended as it is a first attempt to model
uncertainty related to gene expression based on data fusion.
Our proposed process is composed of many steps, with each
step is a source of uncertainty. This uncertainty can be prop-
agated from one-step to another, which can influence the
final decision on genes related to non-small cell lung cancer.
Integrating uncertainty propagation in our proposed approach
will constitute a further challenging perspective for other
related works [27]–[29].

REFERENCES

[1] A. Wang, N. An, G. Chen, L. Liu, and G. Alterovitz, ‘‘Subtype dependent
biomarker identification and tumor classification from gene expression
profiles,’’ Knowl.-Based Syst., vol. 146, pp. 104–117, Apr. 2018.

[2] D. Jiang, C. Tang, and A. Zhang, ‘‘Cluster analysis for gene expres-
sion data: A survey,’’ IEEE Trans. Knowl. Data Eng., vol. 16, no. 11,
pp. 1370–1386, Nov. 2004.

[3] K. Cao and Q. Zhu, ‘‘Belief combination for uncertainty reduction in
microarray gene expression pattern analysis,’’ in Proc. Int. Conf. Comput.
Sci., 2007, pp. 844–851.

[4] P. Langfelder, B. Zhang, and S. Horvath, ‘‘Defining clusters from a hierar-
chical cluster tree: The dynamic tree cut package for R,’’ Bioinformatics,
vol. 24, no. 5, pp. 719–720, Mar. 2008.

[5] A. L. Richards, P. Holmans, M. C. O’Donovan, M. J. Owen, and L. Jones,
’’A comparison of four clustering methods for brain expression microarray
data,’’ BMC Bioinf., vol. 9, no. 1, p. 490, 2008.

[6] K. Wang, J. Zheng, J. Zhang, and J. Dong, ‘‘Estimating the number
of clusters via system evolution for cluster analysis of gene expression
data,’’ IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 5, pp. 848–853,
Sep. 2009.

[7] H. Zhang and Y.-F. Sun, ‘‘Learning gene regulatory networks based on
Dempster–Shafer evidence theory,’’ in Proc. 3rd Int. Conf. Adv. Comput.
Theory Eng., 2010, pp. 100–104.

[8] M. Krejník and J. Kléma, ‘‘Empirical evidence of the applicabil-
ity of functional clustering through gene expression classification,’’
IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 9, no. 3, pp. 788–798,
May/Jun. 2012.

[9] X. Chen and C. Jian, ‘‘Gene expression data clustering based on
graph regularized subspace segmentation,’’ Neurocomputing, vol. 143,
pp. 44–50, Nov. 2014.

[10] Z. Jiang, T. Li, W. Min, Z. Qi, and Y. Rao, ‘‘Fuzzy c-means clustering
based on weights and gene expression programming,’’ Pattern Recognit.
Lett., vol. 90, pp. 1–7, Apr. 2017.

[11] P. Dutta and S. Saha, ‘‘Fusion of expression values and protein interaction
information using multi-objective optimization for improving gene clus-
tering,’’ Comput. Biol. Med., vol. 89, pp. 31–43, Oct. 2017.

[12] A. K. Paul and P. C. Shill, ‘‘Incorporating gene ontology into fuzzy rela-
tional clustering ofmicroarray gene expression data,’’Biosystems, vol. 163,
pp. 1–10, Jan. 2018.

[13] D. Dhar. (Apr. 2009). ‘‘States of matter.’’ [Online]. Available:
https://arxiv.org/abs/0904.2664

[14] J. Hou et al., ‘‘Non-thermal plasma treatment altered gene expression pro-
filing in non-small-cell lung cancer A549 cells,’’ BMC Genomics, vol. 16,
no. 1, p. 435, Dec. 2015.

[15] A. Banerjee and R. N. Dave, ‘‘Validating clusters using the hopkins statis-
tic,’’ in Proc. Int. Conf. Fuzzy Syst., vol. 1, Jul. 2004, pp. 149–153.

[16] E. Panayirci and R. C. Dubes, ‘‘A test for multidimensional clustering
tendency,’’ Pattern Recognit., vol. 16, no. 4, pp. 433–444, 1983.

[17] J. C. Bezdek, R. J. Hathaway, and J. M. Huband, ‘‘Visual assessment of
clustering tendency for rectangular dissimilarity matrices,’’ IEEE Trans.
Fuzzy Syst., vol. 15, no. 5, pp. 890–903, Oct. 2007.

[18] J. C. Bezdek, R. Ehrlich, andW. Full, ‘‘FCM: The fuzzy c-means clustering
algorithm,’’ Comput. Geosci., vol. 10, nos. 2–3, pp. 191–203, 1984.

[19] M.-S. Yang and Y. Nataliani, ‘‘Robust-learning fuzzy c-means clustering
algorithm with unknown number of clusters,’’ Pattern Recognit., vol. 71,
pp. 45–59, Nov. 2017.

[20] I. R. Farah, W. Boulila, K. S. Ettabaa, B. Solaiman, and M. Ben Ahmed,
‘‘Interpretation of multisensor remote sensing images: Multiapproach
fusion of uncertain information,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 46, no. 12, pp. 4142–4152, Dec. 2008.

[21] I. R. Farah,W. Boulila, K. S. Ettabaa, andM. Ben Ahmed, ‘‘Multiapproach
system based on fusion of multispectral images for land-cover classifica-
tion,’’ IEEE Trans. Geosci. Remote Sens., vol. 46, no. 12, pp. 4153–4161,
Dec. 2008.

[22] R. R. Yager, ‘‘A class of fuzzy measures generated from a Dempster–
Shafer belief structure,’’ Int. J. Intell. Syst., vol. 14, no. 12, pp. 1239–1247,
Dec. 1999.

[23] R. R. Yager, ‘‘Satisfying uncertain targets using measure generalized
Dempster–Shafer belief structures,’’Knowl.-Based Syst., vol. 142, pp. 1–6,
Feb. 2018.

[24] W. Boulila, I. R. Farah, K. S. Ettabaa, B. Solaiman, and H. Ben Ghézala,
‘‘Improving spatiotemporal change detection: A high level fusion approach
for discovering uncertain knowledge from satellite image databases,’’ in
Proc. Int. Conf. Data Mining, vol. 9, Oct. 2009, pp. 222–227.

[25] T. Denœux, S. Li, and S. Sriboonchitta, ‘‘Evaluating and comparing soft
partitions: An approach based on Dempster–Shafer theory,’’ IEEE Trans.
Fuzzy Syst., vol. 26, no. 3, pp. 1231–1244, Jun. 2018.

[26] I. Bloch, ‘‘Information combination operators for data fusion: A compara-
tive review with classification,’’ IEEE Trans. Syst., Man, Cybern. A, Syst.
Humans, vol. 26, no. 1, pp. 52–67, Jan. 1996.

[27] A. Ferchichi, W. Boulila, and I. R. Farah, ‘‘Towards an uncertainty reduc-
tion framework for land-cover change prediction using possibility theory,’’
Vietnam J. Comput. Sci., vol. 4, no. 3, pp. 195–209, Aug. 2017.

[28] A. Ferchichi, W. Boulila, and I. R. Farah, ‘‘Propagating aleatory and epis-
temic uncertainty in land cover change prediction process,’’ Ecol. Inform.,
vol. 37, pp. 24–37, Jan. 2017.

[29] W. Boulila, Z. Ayadi, and I. R. Farah, ‘‘Sensitivity analysis approach
to model epistemic and aleatory imperfection: Application to land cover
change prediction model,’’ J. Comput. Sci., vol. 23, pp. 58–70, Nov. 2017.

MUHAMED WAEL FAROUQ received the M.Sc.
and Ph.D. degrees in applied statistics from the
Faculty of Commerce, Ain Shams University,
in 2010 and 2018, respectively, where he has been
an Assistant Lecturer of statistics, since 2010.
He has been a Visiting Researcher with the Uni-
versity of Stirling, U.K., from 2015 to 2017. His
research interests include computational statis-
tics, biostatistics, mathematical biology, popula-
tion dynamics, multivariate analysis, and data min-

ing. He has published papers in refereed journals and conference proceedings
in these areas. During this period, he was jointly conducting his Ph.D.
research with the Cognitive Big Data Informatics (CogBID) Lab (led by
Prof. A. Hussain), and acted as a Manager of the Lab for the same period.
In addition, he has been acting as the Chair of the IEEE University of Stirling
Student Branch, from 2015 to 2017.

VOLUME 7, 2019 37149



M. W. Farouq et al.: A Novel Multi-Stage Fusion based Approach for Gene Expression Profiling in Non-Small Cell Lung Cancer

WADII BOULILA received the Engineering
degree (Hons.) in computer science from the
Aviation School of Borj El Amri, in 2005,
the M.Sc. degree from the National School
of Computer Science (ENSI), University of
Manouba, Tunisia, in 2007, and the Ph.D. degree
conjointly from ENSI and Telecom Bretagne, Uni-
versity of Rennes 1, France, in 2012. From 2012 to
2015, he was an Assistant Professor in computer
science with the Higher Institute of Multimedia

Arts of Manouba, Manouba University, Tunisia. He is currently an Assis-
tant Professor of computer science with the IS Department, College of
Computer Science and Engineering, Taibah University, Saudi Arabia. He is
also a Permanent Researcher with the RIADI Laboratory, University of
Manouba, and an Associate Researcher with the ITI Department, University
of Rennes 1, France. His primary research interests include big data analytics,
deep learning, data mining, artificial intelligence, uncertainty modeling, and
remote sensing images. He has served as the Chair, Reviewer, and a TPC
Member for many leading international conferences and journals.

MEDHAT ABDEL-AAL was the Former Head of
the Statistics, Mathematics and Insurance Depart-
ment, Faculty of Commerce, from 2014 to 2015.
He is currently a Professor of statistics with the
Faculty of Commerce, Ain Shams University,
Egypt. His research interests include data mining
and knowledge discovery, machine learning, and
pattern classification. He has published papers in
refereed journals and conference proceedings in
these areas. He has authored and co-authored of

many books in English and Arabic Languages.

AMIR HUSSAIN (SM’97) received the B.Eng.
(Hons.) and Ph.D. degrees in electronic and
electrical engineering from the University of
Strathclyde, Glasgow, U.K., in 1992 and 1997,
respectively.

Following the postdoctoral and academic
positions held at the Universities of West of
Scotland (1996–1998), Dundee (1998–2000), and
Stirling (2000–2018), respectively, he joined Edin-
burgh Napier University, U.K., in 2018, as the

founding Director of the Cognitive Big Data and Cybersecurity (CogBiD)
Research Lab. His research interests are cross-disciplinary and industry-
focused, aimed at pioneering brain-inspired, cognitive Big Data technology
for solving complex real-world problems. He has co-authored nearly 400
publications, with around 150 journal papers and over a dozen Books. He
has ledmajor multi-disciplinary research projects, as a Principal Investigator,
funded by the national and European research councils, local and interna-
tional charities, and industry. Until now, he has supervised more than 30
PhDs. He is a Senior Fellow of the Brain Sciences Foundation, Wellesley,
MA, USA. In 2017, he was ranked, in an independent survey (published
in the Information Processing and Management Journal (Elsevier)), as one
of the world’s top two most productive researchers in sentiment analytics,
since 2000. Amongst other distinguished roles, he is the General Chair of
the IEEE WCCI 2020 (the world’s largest and top IEEE Technical Event in
Computational Intelligence, comprising IJCNN, FUZZ-IEEE, and the IEEE
CE), and the Vice-Chair of the Emergent Technologies Technical Committee
of the IEEE Computational Intelligence Society. He is the Chapter Chair of
the IEEEUK&RI Industry Applications Society Chapter. He is the founding
Editor-in-Chief of the Cognitive Computation journal (Springer Nature) and
the BMC Big Data Analytics journal (BioMed Central (BMC) – part of
Springer Nature). He has been appointed as an Associate Editor of several
other world-leading journals including, the IEEE TRANSACTIONS ON NEURAL

NETWORKS AND LEARNING SYSTEMS, the Information Fusion journal (Elsevier),
the IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE,
and the IEEE Computational Intelligence Magazine.

ABDEL-BADEEH SALEM was a Director of the
Scientific Computing Center, Ain Shams Univer-
sity, Cairo, Egypt, from 1984 to 1990, where he
was a Professor of computer science with the Fac-
ulty of Science, from 1989 to 1996, a former Vice
Dean of the Faculty of Computer and Information
Sciences, from 1996 to 2007, and has been a Pro-
fessor Emeritus of Computer Science, since 2007.
His research interests include intelligent comput-
ing, expert systems,medical informatics, and intel-

ligent e-learning technologies. He has published around 200 papers in refer-
eed journals and conference proceedings in these areas. He has been involved
in more than 200 conferences and workshops as an Int. Program Committee,
Organizer, and Session Chair. He has authored and co-authored of 15 books
in English and Arabic Languages. He also served as a Member of many
scientific societies. He is a member of the Editorial Board of many leading
international conferences and journals.

37150 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORKS
	DATASET
	PROPOSED FRAMEWORK
	EVIDENCE FUSION PROCESS
	FUZZY C-MEANS-WITH-RANGE CLUSTERING

	EXPERIMENTS
	CLUSTERING TENDENCY AND CARDINALITY
	NT DATA CLUSTERING AND EVIDENCE FUSION
	GENERALIZATION OF CLUSTERING AND FUSION
	VALIDATION AND INTERPRETATION

	CONCLUSION
	REFERENCES
	Biographies
	MUHAMED WAEL FAROUQ
	WADII BOULILA
	MEDHAT ABDEL-AAL
	AMIR HUSSAIN
	ABDEL-BADEEH SALEM


