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ABSTRACT The random uncertain multi-state system is defined as a multi-state system consisting of
multi-state components whose performance rates and the corresponding state probabilities are presented
as uncertain variables. Reliability assessment of random multi-state systems with enough samples based
on probability theory has been widely investigated. Nevertheless, in some real-world applications, only a
few or even no samples are available to estimate the state probabilities and performance rates of multi-
state components or systems. To overcome the problem, by joint employment of probability theory and
uncertainty theory, the reliability of a random uncertain multi-state system is analyzed in this paper. The state
probabilities and performance rates of multi-state components are considered as uncertain variables. The
uncertain universal generating function is introduced to evaluate the state probabilities and performance rates
of the random uncertain multi-state systems. The uncertainty distributions, inverse uncertainty distributions,
expected values and variances of the state probabilities, and performance rates for the system are discussed.
An assessment technique for system reliability is proposed to compute the system reliability under the crisp
user demand. A numerical example is presented to illustrate how to assess the state probabilities, performance
rates, and reliability of the system.

INDEX TERMS Multi-state system, reliability, uncertainty theory, universal generating function.

I. INTRODUCTION
Reliability assessment is of vital importance in the design
phase of a system. Maintaining high reliability is often an
essential requisite to achieve desired system functions. Many
analysis methods and evaluation techniques [1]–[6] were
developed to facilitate the reliability assessment for com-
plex systems based on probability theory. In recent decades,
multi-state system reliability has received substantial atten-
tion. Based on conventional reliability theory, various reli-
ability models [7]–[9] and optimization problems [10]–[12]
have been studied extensively in many multi-state systems.
However, using conventional reliability theory in reliability
assessment of multi-state systems needs to have two funda-
mental assumptions [13], [14]: (1) the state probability distri-
butions of multi-state components can be fully characterized
by probability measures, and (2) the state performance rates
ofmulti-state components can be precisely determined.When
the sample size is large enough, it is possible for us to believe
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the estimated state probability distribution is close enough to
the long-run cumulative frequency, and the estimated state
performance rate is close enough to the actual performance
behavior. Otherwise, the conventional reliability theory is no
longer applicable.

In many real-world applications, it is very difficult to
estimate precisely state probabilities and performance rates
of some multi-state components. In order to deal with the
reliability of multi-state components/systems with impre-
cise data, Ding and Lisnianski [13] firstly introduced basic
concepts of fuzzy multi-state systems where performance
rates and corresponding state probabilities are presented as
fuzzy values based on fuzzy set theory [16]. Moreover, some
key definitions of fuzzy multi-state systems and a general
fuzzy multi-state system reliability model were provided by
Ding et al. [15]. Afterwards, Liu and Huang [14] investi-
gated a dynamic fuzzy reliability assessment problem for
fuzzy multi-state systems. Recently, Bamrungsetthapong and
Pongpullponsak [17] studied parameter interval estimation of
system reliability for a repairable multi-state series-parallel
systemwith fuzzy data. Hu et al. [18] provided an assessment
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approach for dynamic fuzzy availability of a discrete time
multi-state system under minor failures and repairs.

Each reliability evaluation technique has its advantages and
inherent disadvantages [19]. Although fuzzy theory has been
applied in reliability analysis of multi-state systems, it was
still challenged by some scholars when some kinds of uncer-
tainty was considered. Some surveys showed that human
uncertainty does not behave like fuzziness [20]–[22]. The
uncertainty theory provides a useful tool to study reliability
of multi-state systems with human uncertainty phenomena.
The basic uncertainty theory was presented by Liu [23].
Nowadays uncertainty theory has become a branch of math-
ematics for modeling human uncertainty. Recently, it has
received increasing attention and been widely applied in a
variety of fields. For example, Dipak et al. [24] developed
a three-layer supply chain integrated production-inventory
model in an uncertain environment. Gao et al. [25] pro-
posed an algorithm to determine the distribution function
of the diameter of an uncertain graph. Yao [26] analyzed a
no-arbitrage determinant theorem for Liu’s stock model in
uncertain markets. Zhou et al. [27] studied the minimum
spanning tree problem on a graphwith uncertain edgeweights
which are formulated as uncertain variables. Sheng et al. [28]
investigated a production-inventory problem in an uncertain
environment with bounded production rates and proposed
an uncertain optimal control model with Hurwicz criterion.
Liu and Ralescu [29] proposed a concept of risk index to
quantify the risk of an uncertain random system.

The concept of uncertain system reliability via uncer-
tainty theory was first proposed by Liu [30]. Afterwards,
Wen and Kang [31] investigated system reliability based on
chance theory which is a generalization of both probability
theory and uncertainty theory. Gao et al. [32] proposed a new
concept of order statistics associated with uncertain random
variables and applied it to analyze reliability of k-out-of-n
systems with uncertain random lifetimes. Gao and Yao [33]
investigated importance index for a component and a group
of components in the uncertain random reliability system.
Zeng et al. [34] developed mathematical foundation of belief
reliability for coherent systems based on uncertainty theory.
Zu et al. [35] proposed an optimal model based on max-
imum entropy principle to estimate belief reliability distri-
bution. Zhang et al. [36] investigated some belief reliability
indexes on the basis of the belief reliability metric based on
chance theory to measure reliability of uncertain random sys-
tems. Liu et al. [37] studied the reliability indices redefined
by uncertainty measure for general repairable systems with
uncertain lifetimes and repair times.

The reliability of random multi-state systems based on
probability theory has been discussed widely in many liter-
atures. However, the reliability for a random uncertain multi-
state system via probability theory and uncertainty theory has
been seldom discussed in previous research. For such system,
the state probabilities and performance rates of a component
can be represented by uncertain variables when we have no
samples but belief degree from the experts. In this paper,

we consider a reliability model for a random uncertain multi-
state system based on probability theory and uncertainty the-
ory. The uncertain universal generating function is introduced
to evaluate the state probabilities and performance rates of
the random uncertain multi-state system through aggregat-
ing the uncertain behavior of the system components. Then
we analyze uncertainty distributions and inverse uncertainty
distributions of the state probabilities and the performance
rates for the random uncertain multi-state system. Based on
obtained uncertainty and inverse uncertainty distributions of
these indices, expected values and variances of the state prob-
abilities and the performance rates are calculated. In order to
obtain reliability of the random uncertain multi-state system,
an assessment technique for system reliability is proposed
under the crisp user demand.

The rest of this paper is structured as follows. In Section 2,
some basic concepts and theorems in multi-state system and
uncertainty theory are presented. The definitions of random
uncertain multi-state component and random uncertain multi-
state system are introduced in Section 3. The state prob-
abilities, performance rates and reliability for the random
uncertain multi-state system are also discussed in this section.
Section 4 presents a numerical example to illustrate the
proposed model. Finally, we make concluding remarks in
Section 5.

II. PRELIMINARIES
In this section, we will present some basic concepts and
properties in multi-state system and uncertainty theory.

A. MULTI-STATE SYSTEM
A system that can have a finite number of performance
rates is called a multi-state system. The universal generating
function technique [38] is an primary approach for assessing
multi-state system reliability.

In order to evaluate multi-state system behavior under crisp
value context, one has to recognize the characteristics of
its component. Suppose a multi-state system is consisting
of m independent components, any component j can have
Mj different states corresponding to the performance rates,
represented by the ordering set gj = {gj,1, gj,2, . . . , gj,Mj},
where gj,kj is the performance rate of the component j in the
state kj, kj = 1, 2, . . . ,Mj. The performance rate Gj of the
component j at any time instant is a random variable, taking
value from gj : Gj ∈ gj. The probabilities associated with the
different states (performance rates) for the component j can
be represented by the set pj = {pj,1, pj,2, . . . , pj,Mj}, that is
pj,kj = P{Gj = gj,kj}. The universal generating function of
the component j is defined as [39]:

uj(z) =
Mj∑
kj=1

pj,kj · z
gj,kj ,

where uj(z) can represent the probability distribution of the
performance rates for the component j.
The performance rates and the corresponding state

probabilities of the multi-state system are unambiguously
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determined by the performance rates and the corresponding
state probabilities of its components. Without loss of gen-
erality, assume that the multi-state system has M possible
states, gk and pk denote the system performance rate and
corresponding state probability in state k(k = 1, 2, . . . ,M ),
respectively. The system performance rate G is a random
variable that takes values from the set {g1, g2, . . . , gM }. The
universal generating functionU (z) of themulti-state system is

U (z) =
M∑
k=1

pk · zgk ,

where M =

m∏
j=1

Mj, pk =
m∏
j=1

pj,kj and gk = ϕ
(
g1,k1 ,

g2,k2 , . . . , gm,km
)
. ϕ(·) is the system structure function.

In order to obtain the output probability distribution for
the multi-state system with the arbitrary structure function ϕ,
a general composition operator 2ϕ is used over individual
UGF of m components [38]:

U (z) = 2ϕ (u1(z), u2(z), . . . , um(z))

= 2ϕ

 M1∑
k1=1

p1,k1 · z
g1,k1 ,

M2∑
k2=1

p2,k2 · z
g2,k2 ,

. . . ,

Mm∑
km=1

pm,km · z
gm,km


=

M1∑
k1=1

M2∑
k2=1

· · ·

Mm∑
km=1

 m∏
j=1

pj,kj · z
ϕ
(
g1,k1 ,g2,k2 ,...,gm,km

).
B. UNCERTAINTY THEORY
As a branch of axiomatic mathematics for modeling human
uncertainty, uncertainty theory was founded by Liu [23]
and subsequently investigated by many researchers. Prac-
tically, uncertainty is anything that is described by belief
degrees [31].
Definition 1 [23]: Let 0 be a nonempty set, and L be a

σ -algebra on 0. A set function M: L → [0, 1] is called an
uncertain measure if it satisfies the following axioms:

Axiom 1: (Normality)M {0} = 1.
Axiom 2: (Duality)M {3}+M {3c} = 1 for any3 ∈ L.
Axiom 3: (Subadditivity) For every sequence of {3i, i =

1, 2, . . . , n} ∈ L, we have

M
{
∞⋃
i=1

3i

}
≤

∞∑
i=1

M {3i}.

Then, the triple (0,L,M) is called an uncertainty space.
Besides, a product axiom was given by Liu [40].

Axiom 4: (Product) Let (0k ,Lk ,Mk) be uncertainty
spaces for k = 1, 2, . . .. The product uncertain measure M
is an uncertain measure satisfying

M
{
∞∏
k=1

3k

}
=

∞∧
k=1

Mk {3k} ,

where 3k are arbitrarily chosen events from 0k for k =
1, 2, . . ., respectively.
Definition 2 [23]:An uncertain variable ξ is a measurable

function from an uncertainty space (0,L,M) to the set of
real numbers such that {ξ ∈ B} is an event for any Borel set B.
Definition 3 [23]: The uncertainty distribution of an

uncertain variable ξ is defined by

8(x) =M {ξ ≤ x}

for any real number x.
Definition 4 [23]: Let ξ be an uncertain variable with reg-

ular uncertainty distribution8(x). Then the inverse function
8−1 (α) for α ∈ (0, 1) is called the inverse uncertainty
distribution of ξ .
Definition 5 [41]:The uncertain variables ξ1, ξ2, . . . , ξn

are said to be independent if

M
{

n⋂
i=1

(ξi ∈ Bi)

}
=

n∧
i=1

M {ξi ∈ Bi}

for any Borel sets B1, B2,..., Bn of real numbers.
Theorem 1 [41]: Let ξ1, ξ2, . . . , ξn be independent uncer-

tain variables with regular uncertainty distributions 81, 82,
. . . , 8n, respectively. If the function f (x1, x2, . . . , xn) is
strictly increasing with respect to x1, x2, . . . , xm, and strictly
decreasing with respect to xm+1, xm+2, . . . , xn, then uncertain
variable ξ = f (ξ1, ξ2, . . . , ξn) has an uncertainty distribution

9 (x) =

sup
f (x1,x2,...,xn)=x

(
min
1≤i≤m

8i (xi)
∧

min
m+1≤i≤n

(1−8i (xi))
)
,

and an inverse uncertainty distribution

9−1 (α) = f
(
8−11 (α) , . . . , 8−1m (α) ,8−1m+1 (1− α) . . . ,

8−1n (1− α)
)
.

Definition 6 [23]: Let ξ be an uncertain variable. Then the
expected value of ξ is defined by

E [ξ ] =
∫
+∞

0
M {ξ ≥ x} dx −

∫ 0

−∞

M {ξ ≤ x} dx.

Definition 7 [23]: Let ξ be an uncertain variable with
finite expected value e. Then the variance of ξ is defined by

V [ξ ] = E
[
(ξ − e)2

]
.

Theorem 2 [41]: Let ξ be an uncertain variable with
uncertainty distribution 8. Then

E [ξ ] =
∫
+∞

−∞

xd8(x),

and if E [ξ ] is a finite value e, then

V [ξ ] =
∫
+∞

−∞

(x − e)2 d8(x).

Theorem 3 [42], [43]: Assume ξ1, ξ2, . . . , ξn are indepen-
dent uncertain variables with regular uncertainty distributions
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81,82, . . . ,8n, respectively. If the function f (x1, x2, . . . , xn)
is strictly increasing with respect to x1, x2, . . . , xm and strictly
decreasing with respect to xm+1, xm+2, . . . , xn, then uncertain
variable ξ = f (ξ1, ξ2, . . . , ξn) has an expected value

E [ξ ] =
∫ 1

0
f
(
8−11 (α) , . . . , 8−1m (α) ,8−1m+1 (1− α)

. . . , 8−1n (1− α)
)
dα,

and a variance

V [ξ ] =
∫ 1

0

(
f
(
8−11 (α) , . . . , 8−1m (α) ,8−1m+1 (1− α)

. . . , 8−1n (1− α)
)
− e

)2
dα,

where e is the expected value of ξ .
Definition 8 [23]:An uncertain variable ξ is called zigzag

if it has a zigzag uncertainty distribution

8(x) =


0, if x ≤ a,

(x − a)
/
(2 (b− a)), if a ≤ x ≤ b,

(x + c− 2b)/(2 (c− b)), if b ≤ x ≤ c,
1, if x ≥ c.

and denoted by Z (a, b, c) where a,b,c are real numbers with
a < b < c. The inverse uncertainty distribution of zigzag
uncertain variable Z (a, b, c) is

8−1 (α) =

{
(1− 2α) a+ 2αb, if α < 0.5,

(2− 2α) b+ (2α − 1) c, if α ≥ 0.5.

III. RELIABILITY ANALYSIS FOR RANDOM
UNCERTAIN MULTI-STATE SYSTEM
A. DEFINITION AND DESCRIPTION
Definition 9: A random uncertain multi-state component

is defined as the multi-state component in which the state
performance rates and the corresponding state probabilities
are represented by uncertain variables.
Definition 10: A random uncertain multi-state system is

defined as a multi-state system where one or more of its
components are random uncertain multi-state components.

That is to say, the suggested random uncertain multi-state
system model are based on the following two assumptions:

(1) state probabilities of a multi-state component can be
represented by uncertain variables;

(2) state performance rates of a multi-state component can
be presented as uncertain variables.

It is supposed that the random uncertain multi-state system
we consider here consists of m components, any component j
can haveMj different states with corresponding performance
rates, which can be represented by the ordering uncertain
variables set gj (γ ) = {gj,1 (γ ) , gj,2 (γ ) , . . . , gj,Mj (γ )}, j =
1, 2, . . . ,m. The uncertain variable gj,kj (γ ) (gj,kj (γ ) ≥ 0)
is the performance rate of the component j in the state kj,
kj = 1, 2, . . . ,Mj, which is defined on the uncertainty

space
(
01j,L1j,M1j

)
, γ ∈ 01j. The probabilities associ-

ated with different states for the component j can be rep-
resented by the ordering uncertain variables set pj (υ) =
{pj,1 (υ) , pj,2 (υ) , . . . , pj,Mj (υ)}, and the uncertain variable
pj,kj (υ) (0 ≤ pj,kj (υ) ≤ 1) is defined on the uncertainty
space

(
02j,L2j,M2j

)
, υ ∈ 02j.

Furthermore, other assumptions are given as follows:
(1) The performance rates gj,1 (γ ) , gj,2 (γ ) , . . . , gj,Mj (γ )

of the component j are non-negative uncertain variables
with regular uncertainty distributions. We denote the regular
uncertainty distribution of gj,kj (γ ) by 8gj,kj

(yj,kj ), yj,kj ≥
0 and the inverse uncertainty distribution of gj,kj (γ ) by
8−1gj,kj

(β), β ∈ [0, 1], kj = 1, 2, . . . ,Mj, respectively.
(2) The state probabilities pj,1 (υ) , pj,2 (υ) , . . . , pj,Mj (υ)

of the component j are non-negative uncertain variables
(0 ≤ pj,kj (υ) ≤ 1, kj = 1, 2, . . . ,Mj) with regular uncer-
tainty distributions. We denote the regular uncertainty dis-
tribution and the inverse uncertainty distribution of pj,kj (υ)
by 8pj,kj

(xj,kj ), 0 ≤ xj,kj ≤ 1 and 8−1pj,kj (α), α ∈ [0, 1],
kj = 1, 2, . . . ,Mj, respectively.

(3) All components are independent of each other.
(4) The state probabilities p1,k1 (υ) , p2,k2 (υ) , . . . , pm,km (υ)

of the m different components are independent uncertain
variables.

(5) The state performance rates g1,k1 (γ ) , g2,k2 (γ ) , . . . ,
gm,km (γ ) of the m different components are independent
uncertain variables.

In conventional multi-state system model, the state prob-
abilities and the performance rates of each component are
assumed to be crisp values. The conventional universal gen-
erating function can be directly used to analyze the model.
However, in the suggested multi-state systemmodel, the state
probabilities and the performance rates of each component
are presented as uncertain variables. So, combination of the
uncertainty theory and universal generating function with
uncertain state probabilities and performance rates can be
applied to analyze the suggested multi-state system model
under the random uncertain context.

Based on Definition 9 and the above assumptions, the uni-
versal generating function for the random uncertain compo-
nent j we consider in this paper can be defined as follows:

uj(z, υ, γ ) =
Mj∑
kj=1

pj,kj (υ) · z
gj,kj (γ ), (1)

where the state probability pj,kj (υ) and the performance
rate gj,kj (γ ) of the component j are uncertain variables on
the uncertainty spaces

(
01j,L1j,M1j

)
and

(
02j,L2j,M2j

)
,

respectively. Following the concept of the universal gener-
ating function for the random component, Eq. (1) is named
as the uncertain universal generating function for the random
uncertain component j.
To obtain the state probabilities and the state performance

rates of the random uncertain multi-state system with the
arbitrary structure, a general composition operator 2ϕ is
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introduced as

2ϕ (u1(z, υ, γ ), u2(z, υ, γ ), . . . , um(z, υ, γ ))

= 2ϕ

 M1∑
k1=1

p1,k1 (υ) · z
g1,k1 (γ ),

M2∑
k2=1

p2,k2 (υ) · z
g2,k2 (γ ),

. . . ,

Mm∑
km=1

pm,km (υ) · z
gm,km (γ )


=

M1∑
k1=1

M2∑
k2=1

· · ·

Mm∑
km=1

 m∏
j=1

pj,kj(υ)·z
ϕ
(
g1,k1 (γ ),g2,k2 (γ ),...,gm,km (γ )

),
(2)

where ϕ(·) is ameasurable system structure function. Accord-
ing to (2), the uncertain universal generating function of the
system can be written as

U (z, γ, υ) =
M∑
k=1

ps,k (υ) · zgs,k (γ ), (3)

where M is the highest possible state for the multi-state

system. ps,k (υ)=
m∏
j=1

pj,kj (υ) and gs,k (γ ) = ϕ
(
g1,k1 (γ ) ,

g2,k2 (γ ) , . . . , gm,km (γ )
)
denote the probability and perfor-

mance rate in the system state k , respectively. When the
performance rate of the system is equal to the sum of that of
components, gs,k (γ ) = g1,k1 (γ )+g2,k2 (γ )+· · ·+gm,km (γ ),
the operator 2ϕ is denoted as 2ϕP . When the performance
rate of the system is equal to the minimum of that of compo-
nents, gs,k (γ ) = min

{
g1,k1 (γ ) , g2,k2 (γ ) , . . . , gm,km (γ )

}
,

the operator 2ϕ is denoted as 2ϕS .
Since the state probability pj,kj (υ) and performance

rate gj,kj (γ ) of the component j are uncertain variables,

the state probability ps,k (υ)=
m∏
j=1

pj,kj (υ) and performance

rate gs,k (γ ) = ϕ
(
g1,k1 (γ ) , . . . , gm,km (γ )

)
of the random

uncertain multi-state system are also uncertain variables.
By using the operational law of uncertain variables, we can
obtain the uncertainty distributions and inverse uncertainty
distributions of ps,k (υ) and gs,k (γ ).

B. SYSTEM STATE PROBABILITY ANALYSIS
Since the uncertain variables p1,k1 (υ), p2,k2 (υ) , . . . ,
pm,km (υ) are independent, by Theorem 1, the uncertainty
distribution function of the state probability ps,k (υ) =
m∏
j=1

pj,kj (υ) can be determined by

9ps,k (x) = sup
m∏
j=1

xj,kj=x

min
1≤kj≤Mj,1≤j≤m

8pj,kj

(
xj,kj

)
. (4)

The inverse uncertainty distribution of ps,k (υ) =
m∏
j=1

pj,kj (υ)

can be obtained as

9−1ps,k (α) =

m∏
j=1

8−1pj,kj
(α). (5)

According to the theory of expected value and variance for
uncertain variable (See Theorems 2 and 3), the expected value
ps,k and variance p̂s,k of the probability ps,k (υ) in the system
state k can be determined respectively by

ps,k = E
[
ps,k (υ)

]
=

∫ 1

0
xd9ps,k (x), (6)

and

p̂s,k = V
[
ps,k (υ)

]
=

∫ 1

0

(
x − ps,k

)2 d9ps,k (x). (7)

Moreover, the expected value ps,k and variance p̂s,k of the
state probability ps,k (υ) can also be calculated by the inverse
uncertainty distribution 9−1ps,k (α) of ps,k (υ). We have

ps,k = E
[
ps,k (υ)

]
=

∫ 1

0
9−1ps,k (α) dα

=

∫ 1

0

m∏
j=1

8−1pj,kj
(α)dα, (8)

and

p̂s,k = V
[
ps,k (υ)

]
=

∫ 1

0

(
9−1ps,k (α)− ps,k

)2
dα

=

∫ 1

0

 m∏
j=1

8−1pj,kj
(α)− ps,k

2

dα. (9)

Remark 1: If the system degenerates to a random multi-
state system with crisp state probabilities p1,k1 , p2,k2 ,
. . . , pm,km , then

ps,k =
m∏
j=1

pj,kj , p̂s,k = 0.

C. SYSTEM STATE PERFORMANCE RATE ANALYSIS
Since g1,k1 (γ ) , g2,k2 (γ ) , . . ., gm,km (γ ) are independent
uncertain variables, then system structure function gs,k (γ )=
ϕ
(
g1,k1 (γ ) , g2,k2 (γ ) , . . . , gm,km (γ )

)
is an uncertain vari-

able, too. If the function ϕ(y1,k1 , y2,k2 , . . . , ym,km ) is
strictly increasing with respect to y1,k1 , y2,k2 , . . . , yr,kr
and strictly decreasing with respect to yr+1,kr+1 , yr+2,kr+2 ,
. . . , ym,km , the uncertainty distribution function of gs,k (γ ) =
ϕ
(
g1,k1 (γ ) , g2,k2 (γ ) , . . . , gm,km (γ )

)
can be determined by

9gs,k (y)

= sup
ϕ
(
y1,k1 ,y2,k2 ,...,ym,km

)
=y

(
min

1≤kj≤Mj,1≤j≤r
8gj,kj

(yj,kj )
∧

min
1≤kj≤Mj,r+1≤j≤m

(1−8gj,kj
(yj,kj ))

)
. (10)

The inverse uncertainty distribution of gs,k (γ ) can be
obtained as

9−1gs,k (β) = ϕ
(
8−1g1,k1

(β) , . . . , 8−1gr,kr
(β) ,

8−1gr+1,kr+1
(1− β) , . . . , 8−1gm,km (1− β)

)
. (11)
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Two cases (Liu [14]) are given in the random uncertain
context as follows:
Case 1: Random uncertain flow transmission system with

two components
Assume that the independent uncertain variables g1,k1 (γ )

and g2,k2 (γ ) denote the transmission capacities of the two
components at their states k1 and k2, respectively.
(1) If any two components are connected in parallel,

we have

gs,k (γ ) = ϕ
(
g1,k1 (γ ) , g2,k2 (γ )

)
= g1,k1 (γ )+ g2,k2 (γ ) ,

k1 = 1, 2, . . . ,M1, k2 = 1, 2, . . . ,M2. (12)

The uncertainty distribution function of gs,k (γ ) =

g1,k1 (γ )+ g2,k2 (γ ) is

9gs,k (y) = sup
y1,k1+y2,k2=y

8g1,k1

(
y1,k1

)∧
8g2,k2

(
y2,k2

)
. (13)

The inverse uncertainty distribution of gs,k (γ ) = g1,k1 (γ )+
g2,k2 (γ ) is

9−1gs,k (β) = 8
−1
g1,k1

(β)+8−1g2,k2
(β) . (14)

(2) If any two components are connected in series, we have

gs,k(γ )= ϕ
(
g1,k1(γ ) , g2,k2(γ )

)
=min

{
g1,k1(γ ) , g2,k2(γ )

}
,

k1 = 1, 2, . . . ,M1, k2 = 1, 2, . . . ,M2. (15)

The uncertainty distribution function of gs,k (γ ) =

min
{
g1,k1 (γ ) , g2,k2 (γ )

}
is

9gs,k (y) = 8g1,k1
(y)
∨
8g2,k2

(y) . (16)

The inverse uncertainty distribution of gs,k (γ ) =

min
{
g1,k1 (γ ) , g2,k2 (γ )

}
is

9−1gs,k (β) = 8
−1
g1,k1

(β)
∧
8−1g2,k2

(β) . (17)

Case 2:Randomuncertain task processing systemwith two
components

Assume that the independent uncertain variables g1,k1 (γ )
and g2,k2 (γ ) denote the task processing speeds of the two
components at their states k1 and k2, respectively.
(1) If any two components are connected in parallel,

we have

gs,k (γ ) = ϕ
(
g1,k1 (γ ) , g2,k2 (γ )

)
= g1,k1 (γ )+ g2,k2 (γ ) ,

k1 = 1, 2, . . . ,M1, k2 = 1, 2, . . . ,M2. (18)

Eqs. (18) and (12) are the same. Thus, the uncertainty dis-
tribution function and the inverse uncertainty distribution of
gs,k (γ ) = g1,k1 (γ )+g2,k2 (γ ) can be determined in the same
manners as Eqs. (13) and (14), respectively.

(2) If any two components are connected in series, we have

gs,k (γ ) = ϕ
(
g1,k1 (γ ) , g2,k2 (γ )

)
=

g1,k1 (γ ) · g2,k2 (γ )
g1,k1 (γ )+ g2,k2 (γ )

,

k1 = 1, 2, . . . ,M1, k2 = 1, 2, . . . ,M2. (19)

The function y =
y1,k1 ·y2,k2
y1,k1+y2,k2

is strictly increasing with respect
to y1,k1 and y2,k2 , So the uncertainty distribution function of
gs,k (γ ) =

g1,k1 (γ )·g2,k2 (γ )
g1,k1 (γ )+g2,k2 (γ )

can be given as

9gs,k (y) = sup
y1,k1

·y2,k2
y1,k1

+y2,k2
=y

8g1,k1

(
y1,k1

)∧
8g2,k2

(
y2,k2

)
. (20)

The inverse uncertainty distribution of gs,k (γ ) =
g1,k1 (γ )·g2,k2 (γ )
g1,k1 (γ )+g2,k2 (γ )

can be given as

9−1gs,k (β) =
8−1g1,k1

(β) ·8−1g2,k2
(β)

8−1g1,k1
(β)+8−1g2,k2

(β)
. (21)

According to Theorems 2 and 3, the expected value gs,k and
variance ĝs,k of the performance rate gs,k (γ ) in the system
state k can be determined by

gs,k = E
[
gs,k (γ )

]
=

∫
+∞

0
yd9gs,k (y), (22)

and

ĝs,k = V
[
gs,k (γ )

]
=

∫
+∞

0

(
y− gs,k

)2 d9gs,k (y), (23)

respectively.
Moreover, the expected value gs,k and variance ĝs,k of the

performance rate gs,k (γ ) can also be calculated by the inverse
uncertainty distribution 9−1gs,k (β) of gs,k (γ ). We have

gs,k = E
[
gs,k (γ )

]
=

∫ 1

0
9−1gs,k (β) dβ

=

∫ 1

0
ϕ
(
8−1g1,k1

(β) , . . . , 8−1gr,kr
(β) ,

8−1gr+1,kr+1
(1− β) , . . . , 8−1gm,km (1− β)

)
dβ, (24)

and

ĝs,k = V
[
gs,k (γ )

]
=

∫ 1

0

(
9−1gs,k (β)− gs,k

)2
dβ

=

∫ 1

0

(
ϕ
(
8−1g1,k1

(β) , . . . , 8−1gr,kr
(β) ,

8−1gr+1,kr+1
(1− β) , . . . , 8−1gm,km (1− β)

)
−gs,k

)2
dβ.

(25)

Remark 2: If the system degenerates to a random
multi-state system with crisp state performance rates
g1,k1 , g2,k2 , . . . , gm,km , then

gs,k = ϕ(g1,k1 , g2,k2 , . . . , gm,km ), ĝs,k = 0.

D. RELIABILITY ASSESSMENT
To evaluate the reliability of the random uncertain multi-state
system for the required crisp performance rate ω, we intro-
duce the following δ operator over the uncertain universal
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FIGURE 1. Flow transmission multi-state system structure.

generating function U (z, γ, υ) of the system

δ (U (z, γ, υ), ω) = δ

(
M∑
k=0

ps,k (υ) · zgs,k (γ ), ω

)

=

M∑
k=0

δ
(
ps,k (υ) · zgs,k (γ ), ω

)
, (26)

where

δ
(
ps,k (υ) · zgs,k (γ ), ω

)
=

{
ps,k , gs,k ≥ ω,
0, gs,k < ω.

ps,k can be obtained by Eqs. (6) or (8), and gs,k can be
obtained by Eqs. (22) or (24).

The reliability of the random uncertain multi-state system,
denoted by Rω, is defined as the expected value of the proba-
bility that the expected value of the system performance rate
greater than the user demand ω, and is written as

Rω = δ (U (z, γ, υ), ω) =
∑
gs,k≥ω

ps,k . (27)

IV. ILLUSTRATIVE EXAMPLE
In this section, a numerical example is provided to illus-
trate how to compute the state probabilities, performance
rates and reliability of random uncertain multi-state sys-
tems. Consider a random uncertain flow transmission multi-
state series-parallel system with two parallel subsystems
connected in series, as shown in Fig. 1. For subsystem 1,
there is only one component, and the component has two
possible states 1 and 2. For subsystem 2, there are two dif-
ferent components, and each component has three possible
states 1, 2 and 3. For each component j (j = 1, 2, 3),
the state probability pj,kj (υ) and performance rate gj,kj (γ )
are treated as uncertain variables with zigzag uncertainty
distributions from the uncertainty space

(
R1j,L1j,M1j

)
to

R1j
(
R1j = {x |x ∈ [0, 1] }

)
and from the uncertainty space(

R2j,L2j,M2j
)
to R2j

(
R2j = {x |x ≥ 0 }

)
, respectively. They

are listed in Table 1.

According to Eq. (1), the uncertain universal generating
functions of the system components are given as

u1(z, υ, γ ) = p1,1(υ) · zg1,1(γ ) + p1,2(υ) · zg1,2(γ ),

u2(z, υ, γ ) = p2,1(υ) · zg2,1(γ ) + p2,2(υ) · zg2,2(γ )

+ p2,3(υ) · zg2,3(γ ),

u3(z, υ, γ ) = p3,1(υ) · zg3,1(γ ) + p3,2(υ) · zg3,2(γ )

+ p3,3(υ) · zg3,3(γ ).

According to Eqs. (2) and (3), we can obtain the uncer-
tain universal generating function of the random uncertain
flow transmission multi-state series-parallel system. There
are eight different states corresponding to performance rates
greater than zero in the system. The performance rates and
state probabilities corresponding to these states are

State 1: min{g1,2(γ ), g2,2(γ )} and p1,2(υ)p2,2(υ)p3,1(υ).
State 2: min{g1,2(γ ), g2,3(γ )} and p1,2(υ)p2,3(υ)p3,1(υ).
State 3: min{g1,2(γ ), g3,2(γ )} and p1,2(υ)p2,1(υ)p3,2(υ).
State 4: min{g1,2(γ ), g3,3(γ )} and p1,2(υ)p2,1(υ)p3,3(υ).
State 5:min{g1,2(γ ), g2,2(γ )+ g3,2(γ )} and p1,2(υ)p2,2(υ)

p3,2(υ).
State 6:min{g1,2(γ ), g2,3(γ )+ g3,2(γ )} and p1,2(υ)p2,3(υ)

p3,2(υ).
State 7:min{g1,2(γ ), g2,2(γ )+ g3,3(γ )} and p1,2(υ)p2,2(υ)

p3,3(υ).
State 8:min{g1,2(γ ), g2,3(γ )+ g3,3(γ )} and p1,2(υ)p2,3(υ)

p3,3(υ).
According to Eqs. (5) and (11), the inverse uncertainty

distributions of the performance rates and corresponding state
probabilities of the system when the performance rates are
greater than zero can be given as:

State 1: 9−1gs1 (β) = 1.2+ 0.6β, 0 < β < 1,

9−1ps1 (α)

=


(0.946+0.008α) · (0.145+0.01α) · (0.047+0.006α),

0<α < 0.5,

(0.947+0.006α) · (0.145+0.01α) · (0.047+0.006α),
0.5≤α < 1.

State 2: 9−1gs2 (β) = 1.6+ 0.8β, 0 < β < 1,

9−1ps2 (α)

=


(0.946+0.008α) · (0.745+0.01α) · (0.047+0.006α),

0 < α < 0.5,

(0.947+0.006α) · (0.745+0.01α) · (0.047+0.006α),
0.5 ≤ α < 1.

TABLE 1. Characteristics of the components for the random uncertain multi-state system.
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TABLE 2. Expected values and variances of the uncertain performance rates and state probabilities for the random uncertain multi-state system.

State 3: 9−1gs3 (β) = 1.8+ 0.4β, 0 < β < 1,

9−1ps3 (α)

=


(0.946+0.008α) · (0.095+0.01α) · (0.094+0.012α),

0<α < 0.5,

(0.947+0.006α) · (0.095+0.01α) · (0.094+0.012α),

0.5 ≤ α < 1.

State 4: 9−1gs4 (β) = 2.5+ β, 0 < β < 1,

9−1ps4 (α)

=


(0.946+0.008α) · (0.095+0.01α) · (0.846+0.008α),

0 < α < 0.5,

(0.947+0.006α) · (0.095+0.01α) · (0.846+0.008α),

0.5 ≤ α < 1.

State 5: 9−1gs5 (β) = 3+ β, 0 < β < 1,

9−1ps5 (α)

=


(0.946+0.008α) · (0.145+ 0.01α) · (0.094+0.012α),

0 < α < 0.5,

(0.947+0.006α) · (0.145+ 0.01α) · (0.094+0.012α),

0.5 ≤ α < 1.

State 6: 9−1gs6 (β) = 3.4+ 1.2β, 0 < β < 1,

9−1ps6 (α)

=


(0.946+0.008α) · (0.745+0.01α) · (0.094+0.012α),

0 < α < 0.5,

(0.947+0.006α) · (0.745+0.01α) · (0.094+0.012α),

0.5 ≤ α < 1.

State 7: 9−1gs7 (β) = 3.7+ 1.6β, 0 < β < 1,

9−1ps7 (α)

=


(0.946+0.008α) · (0.145+0.01α) · (0.846+0.008α),

0 < α < 0.5,

(0.947+0.006α) · (0.145+0.01α) · (0.846+0.008α),

0.5 ≤ α < 1.

TABLE 3. Reliability for the random uncertain multi-state system at four
distinct ω values.

State 8: 9−1gs8 (β) =

{
4.0+ 2.4β, 0 < β < 1

/
6,

4.1+ 1.8β, 1
/
6 < β < 1,

9−1ps8 (α)

=


(0.946+0.008α) · (0.745+0.01α) · (0.846+0.008α),

0 < α < 0.5,
(0.947+0.006α) · (0.745+0.01α) · (0.846+0.008α),

0.5 ≤ α < 1.

Table 2 shows the expected values and variances of the
performance rates and state probabilities of the system when
the performance rates are greater than zero by using Eqs.(8),
(9), (24) and (25). According to Eq. (27), the reliability for
the random uncertain multi-state system can be obtained.
Table 3 shows that the obtained results at four distinct ω
values: 3.0, 3.5, 4.0 and 4.5.

V. CONCLUDING REMARKS
This paper proposed the definition of random uncertainmulti-
state system model based on probability theory and uncer-
tainty theory. The state probabilities and performance rates of
the system components are presented as uncertain variables.
The uncertain universal generating function was introduced
to evaluate the reliability of random uncertain multi-state
system. The uncertainty distributions and inverse uncertainty
distributions of some indices for the system were analyzed.
The expected values and variances of these uncertain indices
were calculated based on obtained uncertainty and inverse
uncertainty distributions. To illustrate how to compute the
expected values and variances of these uncertain indices,
a numerical example was given in the end. The proposed
model is applicable for the reliability and performance eval-
uation of multi-state systems when we have no samples but
belief degree from the experts.

REFERENCES
[1] J. K. Vaurio, ‘‘The probabilistic modeling of external common cause

failure shocks in redundant systems,’’ Rel. Eng. Syst. Saf., vol. 50, no. 1,
pp. 97–107, 1995.

[2] C. Ebeling, An Introduction to Reliability and Maintainability Engineer-
ing. New York, NY, USA: McGraw-Hill, 1997.

[3] L. Mkrtchyan, L. Podofillini, and V. N. Dang, ‘‘Methods for building
conditional probability tables of Bayesian belief networks from limited
judgment: An evaluation for human reliability application,’’ Rel. Eng. Syst.
Saf., vol. 151, pp. 93–112, Jul. 2016.

22788 VOLUME 7, 2019



L. Hu et al.: Reliability Assessment of Random Uncertain Multi-State Systems

[4] Y. Ren, C. Zeng, D. Fan, L. Liu, and Q. Feng, ‘‘Multi-state reliability
assessment method based on the MDD-GO model,’’ IEEE Access, vol. 6,
pp. 5151–5161, Jan. 2018.

[5] A. Amrin, V. Zarikas, and C. Spitas, ‘‘Reliability analysis and functional
design using Bayesian networks generated automatically by an ‘idea alge-
bra’ framework,’’ Rel. Eng. Syst. Saf., vol. 180, pp. 211–225, Dec. 2018.

[6] B. Cai, M. Xie, Y. Liu, Y. Liu, and Q. Feng, ‘‘Availability-based engineer-
ing resilience metric and its corresponding evaluation methodology,’’ Rel.
Eng. Syst. Saf., vol. 172, pp. 216–224, Apr. 2018.

[7] Y. Ding, M. J. Zuo, Z. Tian, and W. Li, ‘‘The hierarchical weighted
multi-state k-out-of- n system model and its application for infrastructure
management,’’ IEEE Trans. Rel., vol. 59, no. 3, pp. 593–603, Sep. 2010.

[8] Y.-F. Li, E. Zio, and Y.-H. Lin, ‘‘A multistate physics model of component
degradation based on stochastic Petri nets and simulation,’’ IEEE Trans.
Rel., vol. 61, no. 4, pp. 921–931, Dec. 2012.

[9] A. Lisnianski, D. Elmakias, D. Laredo, and H. B. Haim, ‘‘A multi-state
Markov model for a short-term reliability analysis of a power generating
unit,’’ Rel. Eng. Syst. Saf., vol. 98, no. 1, pp. 1–6, Feb. 2012.

[10] Y. Massim, A. Zeblah, R. Meziane, M. Benguediab, and A. Ghouraf,
‘‘Optimal design and reliability evaluation of multi-state series-parallel
power systems,’’ Nonlinear Dyn., vol. 40, no. 4, pp. 309–321, 2005.

[11] A. Attar, S. Raissi, and K. Khalili-Damghani, ‘‘A simulation-based opti-
mization approach for free distributed repairable multi-state availability-
redundancy allocation problems,’’ Rel. Eng. Syst. Saf., vol. 157,
pp. 177–191, Jan. 2017.

[12] Y. Liu and H.-Z. Huang, ‘‘Optimal replacement policy for multi-state
system under imperfect maintenance,’’ IEEE Trans. Rel., vol. 59, no. 3,
pp. 483–495, Sep. 2010.

[13] Y. Ding and A. Lisnianski, ‘‘Fuzzy universal generating functions for
multi-state system reliability assessment,’’ Fuzzy Sets Syst., vol. 159, no. 3,
pp. 307–324, Feb. 2008.

[14] Y. Liu and H.-Z. Huang, ‘‘Reliability assessment for fuzzy multi-state
systems,’’ Int. J. Syst. Sci., vol. 41, no. 4, pp. 365–379, Mar. 2010.

[15] Y. Ding, M. J. Zuo, A. Lisnianski, and Z. Tian, ‘‘Fuzzy multi-state sys-
tems: General definitions, and performance assessment,’’ IEEE Trans. Rel.,
vol. 57, no. 4, pp. 589–594, Dec. 2008.

[16] L. A. Zadeh, ‘‘Fuzzy sets,’’ Inf. Control, vol. 8, no. 3, pp. 338–353,
Jun. 1965.

[17] W. Bamrungsetthapong and A. Pongpullponsak, ‘‘Parameter interval esti-
mation of system reliability for repairable multistate series-parallel system
with fuzzy data,’’ Sci. World J., vol. 2014, May 2014, Art. no. 275374.

[18] L. Hu, Z. Zhang, P. Su, and R. Peng, ‘‘Fuzzy availability assessment
for discrete time multi-state system under minor failures and repairs by
using fuzzy Lz-transform,’’ Eksploatacja i Niezawodność, vol. 19, no. 2,
pp. 179–190, Feb. 2017.

[19] B. Cai et al., ‘‘Application of Bayesian networks in reliability evaluation,’’
IEEE Trans. Ind. Inform., to be published. doi: 10.1109/TII.2018.2858281.

[20] B. Liu, ‘‘Why is there a need for uncertainty theory,’’ J. Uncertain Syst.,
vol. 6, no. 1, pp. 3–10, Aug. 2012.

[21] Y. Liu, ‘‘Uncertain random programming with applications,’’ Fuzzy Optim.
Decis. Making, vol. 12, pp. 153–169, Jun. 2013.

[22] Y. Liu, ‘‘Uncertain random variables: A mixture of uncertainty and ran-
domness,’’ Soft Comput., vol. 17, pp. 625–634, Apr. 2013.

[23] B. Liu, Uncertainty Theory, 2nd ed. Berlin, Germany: Springer, 2007.
[24] K. J. Dipak, M. Kalipada, and K. R. Tapan, ‘‘A three-layer supply chain

integrated production-inventory model under permissible delay in pay-
ments in uncertain environments,’’ J. Uncertainty Anal. Appl., vol. 1, no. 6,
pp. 1–17, Apr. 2013.

[25] Y.Gao, L. Yang, S. Li, and S. Kar, ‘‘On distribution function of the diameter
in uncertain graph,’’ Inf. Sci., vol. 296, pp. 61–74, Mar. 2015.

[26] K. Yao, ‘‘A no-arbitrage theorem for uncertain stock model,’’ Fuzzy Optim.
Decis. Making, vol. 14, pp. 227–242, Jun. 2015.

[27] J. Zhou, X. Yi, K. Wang, and J. Liu, ‘‘Uncertain distribution-minimum
spanning tree problem,’’ Int. J. Uncertainty, Fuzziness Knowl.-Based Syst.,
vol. 24, pp. 537–560, Aug. 2016.

[28] L. Sheng, Y. Zhu, and K. Wang, ‘‘Uncertain dynamical system-based deci-
sion making with application to production-inventory problems,’’ Appl.
Math. Model., vol. 56, pp. 275–288, Apr. 2018.

[29] Y. Liu and D. Ralescu, ‘‘Risk index in uncertain random risk analysis,’’ Int.
J. Uncertainty, Fuzziness Knowl.-Based Syst., vol. 22, no. 4, pp. 491–504,
Aug. 2014.

[30] B. Liu, ‘‘Uncertain risk analysis and uncertain reliability analysis,’’
J. Uncertain Syst., vol. 4, no. 3, pp. 163–170, Oct. 2010.

[31] M. Wen and R. Kang, ‘‘Reliability analysis in uncertain random system,’’
Fuzzy Optim. Decis. Making, vol. 15, no. 4, pp. 491–506, Dec. 2016.

[32] R. Gao, Y. Sun, and D. A. Ralescu, ‘‘Order statistics of uncertain random
variables with application to K -out-of-n system,’’ Fuzzy Optim. Decis.
Making, vol. 16, no. 2, pp. 159–181, Jun. 2017.

[33] R. Gao and K. Yao, ‘‘Importance index of components in uncertain random
systems,’’ Knowl. Based Syst., vol. 109, pp. 208–217, Oct. 2016.

[34] Z. Zeng, R. Kang, M. Wen, and E. Zio, ‘‘Uncertainty theory as a basis for
belief reliability,’’ Inf. Sci., vol. 429, pp. 26–36, Mar. 2018.

[35] T. Zu, R. Kang, M. Wen, and Q. Zhang, ‘‘Belief reliability distri-
bution based on maximum entropy principle,’’ IEEE Access, vol. 6,
pp. 1577–1582, Feb. 2018.

[36] Q. Zhang, R. Kang, and M. Wen, ‘‘Belief reliability for uncertain ran-
dom systems,’’ IEEE Trans. Fuzzy Syst., vol. 26, no. 6, pp. 3605–3614,
Dec. 2018.

[37] Y. Liu, Y. Ma, Z. Qu, and X. Li, ‘‘Reliability mathematical models
of repairable systems with uncertain lifetimes and repair times,’’ IEEE
Access, vol. 6, pp. 71285–71295, Nov. 2018.

[38] I. Ushakov, ‘‘A universal generating function,’’ Sov. J. Comput. Syst. Sci.,
vol. 24, no. 5, pp. 118–129, 1986.

[39] G. Levitin, The Universal Generating Function in Reliability Analysis and
Optimization. London, U.K.: Springer, 2005.

[40] B. Liu, ‘‘Some research problems in uncertainty theory,’’ J. Uncertain
Syst., vol. 3, no. 1, pp. 3–10, Jan. 2009.

[41] B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling
Human Uncertainty. Berlin, Germany: Springer, 2010.

[42] Y. H. Liu and M. Ha, ‘‘Expected value of function of uncertain variables,’’
J. Uncertain Syst., vol. 4, no. 3, pp. 181–186, Sep. 2010.

[43] K. Yao, ‘‘A formula to calculate the variance of uncertain variable,’’ Soft
Comput., vol. 19, no. 10, pp. 2947–2953, Oct. 2015.

LINMIN HU received the Ph.D. degree in opera-
tions research and management science from the
School of Economics and Management, Yanshan
University, China, in 2014, where he is currently
an Associate Professor with the Department of
AppliedMathematics. He has published more than
30 papers in journals, including Applied Mathe-
matical Modelling, the Journal of Intelligent and
Fuzzy Systems, the Journal of Systems Science
and Complexity, Eksploatacja i Niezawodnosc-

Maintenance and Reliability, and other journals. His research interests
include system reliability, operations research, and stochastic models.

DEQUAN YUE received the Ph.D. degree in oper-
ations research and cybernetics from the Insti-
tute of Applied Mathematics, Chinese Academy
of Sciences, Beijing, China, in 1998. He is
currently a Professor with the Department of
Statistics, School of Science, Yanshan Univer-
sity, Qinhuangdao, China. He has published more
than 100 papers in journals, including Naval
Research Logistics, Operations Research Letters,
Computer Communications, Applied Mathemati-

cal Modelling, the Journal of Industrial and Management Optimization,
Optimization and Engineering, and other journals. His main research areas
include performance analysis of queuing systems, optimization and inven-
tory control of queuing-inventory systems, analysis of reliability models,
stochastic order, and its applications.

GUOXI ZHAO received the Ph.D. degree in oper-
ations research and management science from the
School of Economics and Management, Yanshan
University, China, in 2017. He is currently a Pro-
fessor with the School of Mathematics and Infor-
mation Science, Xinxiang University, China. His
research interests include equilibrium strategies of
queuing systems and stochastic models.

VOLUME 7, 2019 22789

http://dx.doi.org/10.1109/TII.2018.2858281

	INTRODUCTION
	PRELIMINARIES
	MULTI-STATE SYSTEM
	UNCERTAINTY THEORY

	RELIABILITY ANALYSIS FOR RANDOM UNCERTAIN MULTI-STATE SYSTEM 
	DEFINITION AND DESCRIPTION
	SYSTEM STATE PROBABILITY ANALYSIS
	SYSTEM STATE PERFORMANCE RATE ANALYSIS
	RELIABILITY ASSESSMENT

	ILLUSTRATIVE EXAMPLE
	CONCLUDING REMARKS
	REFERENCES
	Biographies
	LINMIN HU
	DEQUAN YUE
	GUOXI ZHAO


