
Received December 6, 2018, accepted February 6, 2019, date of publication February 12, 2019, date of current version March 1, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2898905

Scheduling Jobs on a Single Machine With
Dirt Cleaning Consideration to Minimize
Total Completion Time
YARONG CHEN1, LING-HUEY SU2, YA-CHIH TSAI3, SHENQUAN HUANG1,
AND FUH-DER CHOU 1
1College of Mechanical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
2Industrial Engineering Department, Chung Yuan Christian University, Taoyuan 32023, Taiwan
3Department of Hotel Management, Vanung University, Taoyuan 32061, Taiwan

Corresponding author: Fuh-Der Chou (fdchou@tpts7.seed.net.tw)

This work was supported in part by the National Natural Science Foundation of China under Grant 51705370, and in part by the
Zhejiang Province Natural Science Foundation of China under Grant LY18G010012 and Grant LY19G010007.

ABSTRACT This paper studies a single-machine scheduling problem observed in the wafer manufacturing
process, where the machine must receive periodical maintenance so that the dirt generated in the process
does not exceed the limit. The objective is to minimize the total completion times. A mixed binary integer
programming model is formulated, and, due to its computational intractability for large problems, three
effective heuristics are proposed based on our developed properties. The proposed heuristics are evaluated
by comparison with exact solutions on small problems and with lower bounds on large problems. The
experimental results show that the INDEX-LOE heuristic yields high-quality solutions in comparison with
those obtained from the other two heuristics. Furthermore, the impacts of dirt accumulation and cleaning
time are discussed in detail.

INDEX TERMS Scheduling, total completion time, machine unavailability, mixed binary integer program-
ming, heuristic algorithms.

I. INTRODUCTION
Many researchers that have investigated single-machine
scheduling problems, assumed that the machines are avail-
able all the time. However, in practical cases, machine oper-
ations have to be interrupted for some engineering needs,
such as repairing, changing kits, or cleaning. This paper is
motivated by a wafer fabrication process, where dirt, such as
particles, organic materials, and metal-salts, on the surface of
the wafer will be left in the machine during wafer processing.
Once the accumulation of dirt reaches a threshold value,
the wafer will be damaged. Thus, the machine has to be
stopped to remove the accumulated dirt with a cleaning agent.
That is, the cleaning agent cleans the machine so that the
accumulated dirt does not exceed the threshold value. In the
cleaning period, the machine cannot process any jobs.

This paper studies a single-machine scheduling problem
with flexible maintenance; the flexible maintenance in this
paper specifies that the starting time of maintenance activity
is determined by the amount of dirt accumulated and the
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threshold value. This situation is commonly encountered in a
wafer manufacturing company, and these non-available peri-
ods of a machine will affect the scheduling and the system’s
performance. For the problem, we consider the objective of
minimizing the total completion times. This objective implies
minimizing the work-in-process (WIP) inventory, which is
an important internal managerial performance measure for
a company. According to the notation [1], the problem is
denoted 1 |cleaning|

∑
Cj, where the first field denotes a sin-

gle machine, the second field denotes the cleaning activities
and the third field denotes the total completion time.

In the literature, many studies assumed that mainte-
nance is required in fixed intervals or during some win-
dow times. Among them, the first study related to our
study was conducted by Yang et al. [2]. Other related
articles include the following (Schmidt and Sanlaville [3],
Qi et al. [4], Schmidt [5], Liao and Chen [6], Chen [7],
Chen [8], Ji et al. [9], Chen [10], Mosheiov and Sarig [11],
Low et al. [12], Ma et al. [13], Yang et al. [14],
Zammori et al. [15], Xu et al. [16], Yin et al. [17], and
Yin et al. [18]).
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The variable maintenance defines that the duration of
maintenance depends on its start time. That is, the sooner the
maintenance is started, the shorter the length of the mainte-
nance time is, which is also called deteriorating maintenance.
Kubzin and Strusevich [19] added the variable maintenance
restriction into the two-machine flow shop and two-machine
open shop problems, where the objective is to minimize
the makespan. They showed that the open-shop problem is
polynomially solvable, while the flow shop problem is binary
NP-hard and pseudo-polynomially solvable with dynamic
programming. Mosheiov and Sidney [20] also considered the
deteriorating maintenance activity. The difference is that
the processing time of jobs is affected by the maintenance
activity, that is, the processing time of job j will decrease
if job j is processed after the maintenance activity. For the
problem, they proposed polynomial time solutions for the
problems with different objectives. Yin et al. [21] consid-
ered position-dependent deteriorating jobs and deteriorating
maintenance activities simultaneously on a single-machine
scheduling problem, and their objective is to jointly mini-
mize the cost of due-date assignment, and the cost of dis-
carding jobs. The study of Luo et al. [22] is inspired by
the above two works by Kubzin and Strusevich [19] and
Mosheiov and Sidney [20], and proposed two approximation
algorithms to minimize the total weighted completion time.
Xu et al. [23] considered two scheduling problems with a
single machine and parallel machine where the maintenance
is an increasing linear function and the maintenance activ-
ity has to be implemented within a prefixed interval. The
objective is to minimize the makespan. They developed two
approximation algorithms for the problems. Motivated by
the request serving process in a wireless sensor network,
Gu et al. [24] considered single-machine problems with the
machine aging effect, where maintenance is implemented
once to recover the service ability. For the problem, they
adopted two objectives of minimizing the makespan and
the total completion time, respectively, and proposed two
dynamic programming algorithms. Luo et al. [25] investi-
gated scheduling jobs and variable maintenance activity on
a single machine and provided polynomial-time algorithms
to solve the problems while minimizing the makespan, total
completion time, maximum lateness, and number of tardy
jobs. Zhu et al. [26] added resources into the maintenance
activity in the problem with deteriorating processing time,
where the greater the amount of resources allocated to the
maintenance activity, the shorter the duration of mainte-
nance. For the problem, they considered different objective
functions and proved that the problems are polynomially
solvable. Recently, Luo and Liu [27] extended the study of
Xu et al. [23], where the objective is to minimize the total
weighted completion, and they proposed two approximation
algorithms for the problem. Ying et al. [28] extended the
problem studied by Luo et al. [25] to consider four dif-
ferent objective functions and proposed an exact algorithm
with the computational complexity O(n2) for each problem.
Su and Wang [29] studied a single machine problem with

multiple unavailability periods, where the machine has to be
interrupted to remove dirt. Their objective is to minimize the
total absolute deviation of job completion time (TADC).

Some researches attempted to consider uncertain mainte-
nance activities in production scheduling with different opti-
mization objectives in different manufacturing shop floors
[30], [31]. Xiong et al. [32] consider the machine disruption
may occur at a particular time in a single machine, and
the maintenance time will last for a period of time with a
certain probability. For the problem, they proposed different
approximation approaches to minimize the expected inte-
grated cost function including the earliness, tardiness and
due date assignment cost. Yin et al. [33] extended the study
of Xiong et al. [32] to consider parallel-machine schedul-
ing problem, and provide polynomial-time approximation
schemes to solve the problem of minimizing the expected
total completion time.

In this work, we considered the same problem studied
by Su and Wang [29]; the difference is that our objective
is to minimize the total completion time. Many dominance
properties are explored and used in the lower bound cal-
culation and heuristic algorithms. The rest of this paper is
organized as follows. Section 2 defines the problem, presents
many properties to optimally solve the problem and proposes
two lower bounds. A mixed binary integer programming
model is developed in Section 3. In Section 4, we present
additional properties for the heuristic algorithms and propose
three heuristic algorithms. Section 5 gives the computational
experiments, and finally, in Section 6, the conclusions are
provided along with some future research directions.

II. PROBLEM DEFINITION
This paper considers a nonresumable single-machine
scheduling problem; i.e., once a job is started, it cannot be
interrupted until its completion. The setup time of the job is
sequence independent and included in the processing time.
There are n jobs to be processed at time zero. Each job has a
processing time pi and an amount of dirt ti left on the machine
where i = 1, 2, . . . , n. A cleaning activity with time w is
carried out before the accumulation of dirt reaches a threshold
value T , where ti ≤ T . The objective is to minimize the total
completion time.

A. NOTATION AND PROBLEM SETTING
The following notations will be used throughout the study:
Ji job number i(i = 1, 2, . . . , n);
Cj completion time of the job at the jth position in a given

sequence (j = 1, 2, . . . , n);
kj1, if the cleaning activity is taken immediately following

the jth position job; 0, otherwise
xij1, if Ji is scheduled at position j; 0, otherwise.
In addition, J[j] denotes the job in sequence position j, and

p[j] and t[j] are defined accordingly.
The objective is to find a schedule that minimizes the total

completion time (TC), represented as TC =
∑n

j=1 Cj Denote
a schedule π containing a sequence of jobs and several
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cleaning activities inserted in the job sequence. In the sched-
ule, those jobs processed between two adjacent cleaning
activities form a batch, denoted Bl where l = 1, ..,L. Thus,
a schedule π can be denoted π = (B1,w,B2,w, . . . ,BL).
Note that L denotes the number of batches and is a decision
variable in our problem.
Theorem 1: The problem 1| cleaning |

∑
Cj is strongly

NP-hard.
Proof: The problem 1|cleaning|

∑
Cj is strongly

NP-hard because the special case, where each dirt is equal
to its corresponding processing time, and the machine must
be implemented cleaning activity after a maximum allowed
dirt, i.e., 1|cleaning, tj = pj|

∑
Cj, is NP-hard. (Qi et al. [4]).

Obviously, there are at least (L
′

-1) cleaning activities
in an optimal schedule. It is worth mentioning that the
1|cleaning|

∑
Cj problemwith agreeable processing time and

dirt, i.e., pi ≤ pj implies that ti ≤ tj is also NP-hard because
the special case of 1|cleaning, tj = pj|

∑
Cj is NP-hard.

For the problem 1|cleaning |
∑
Cj, the optimal schedule

may have a larger number of batches than the schedule
that contains the minimum number of batches. Therefore,
the optimal schedule may need more cleaning activities to
achieve a lower total completion time. The following is a
simple example.
Numerical Example 1: Let n = 4, p1 = 1, p2 = 3, p3 = 1,

p4 = 3, t1 = 1, t2 = 2, t3 = 1, t4 = 2, and T = 3.
The schedule π1 with the minimum number of batches is
π1 = (J1, J2,w, J3, J4) with L = 2 and TC = 18+ 2w.
Consider the schedule π2 = (J1, J3,w, J2,w, J4) with L = 3
and TC= 16+ 3w. Then we can see that the second schedule
that encounters two cleaning activities is better than the first
schedule with one cleaning activity when w < 2.
Therefore, in the optimal schedule, the cleaning activity

may be carried out even if the machine can process more jobs
within the batch.

In the following Theorem, we show that the total comple-
tion time in a schedule π containing both jobs and cleaning
activities can be calculated in a more efficient way.
Lemma 1: The TC value of a given schedule π containing

jobs and cleaning activities can be calculated as
TC =

∑n
j=1 (n− j+ 1)p[j] + w

∑n−1
j=1 (n− j)kj, where the

value of kj equals 1 if the cleaning activity is conducted imme-
diately following the jth position job; otherwise, it equals 0.

Proof: Let the number of jobs in the kth batch be βk .

TC =
∑n

j=1
Cj

=

∑n

j=1
(n− j+ 1)p[j] +

∑BL−1

k=1
(n−

∑k

i=1
βi)w

=

∑n

j=1
(n− j+ 1)p[j] + w

∑n−1

j=1
(n− j)kj, (1)

where the former factor (n-j + 1) is the positional weight
independent of pj and the latter factor (n− j)× kj is the posi-
tional weight of the cleaning activity immediately following
job sequence j.
Numerical Example 2:The data in example 1 is considered.

The job sequence π = (J1, J3,w, J2,w, J4) can be scheduled

as follows.

TC = 4× p1 + 3× p3 + 2× p2
+ 1× p4 + (4− 2)w+ (4− 3)w

= 16+ 3w

According to Lemma 1, the positional weight of the clean-
ing activity is equal to that of the job immediately following
it and thus the problem can be solved polynomially when
each cleaning activity is carried out after a fixed number
of jobs.

B. CALCULATION OF LOWER BOUND
Two lower bounds are proposed as benchmarks to evaluate
the heuristics. Based on the fact that the SPT rule gives
an optimal solution to the problem 1

∥∥∑Cj and that the
positional index of the cleaning activity’s contribution to the
total completion time is in descending order due to Lemma 1,
we now combine these properties with the assumption that
the dirt accumulation is resumable, i.e., the dirt accumulation
interrupted by a cleaning activity can resume, in order to
obtain the lower bound of the total completion time LB(TC).

Denote e as the elapsed time between the end time of the
last cleaning activity and the completion of the incumbent job.
Additionally, let Z be the lower bound of the cleaning activ-
ity’s contribution to the total completion time. The procedure
to obtain LB(TC) is as follows.
Step 1. Sequence the processing time pi in ascending order

and the dirt ti in descending order of all n jobs, where i = 1,
2,..,n. Set i = 1, e = 0, Z = 0.
Step 2. If i > n, then set LB(TC)=

∑n
j=1 (n− j+ 1) pj + Z

and Stop; else, go to Step 3.
Step 3. If (e + ti) > T , then Z = Z + w (n - i) and

e = e + ti – T ; else, e = e + ti. Set i = i + 1 and return
to Step 2.

The lower bound LB(TC) obtained with complexity O(2n ·
log n) is very efficient but may not be so tight. It is proposed
as a benchmark when evaluation of our heuristics in a very
short time is essential. To evaluate the effectiveness of our
heuristics precisely, a tighter lower bound obtained using
IBM ILOG CPLEX Optimization Studio Ver. 12.6.1 is pro-
posed. First, the global time limit is changed from the default
value of infinity to the specified value (we set 600 seconds
in our case). Then, the script code based on ILOG Script
is developed to obtain the upper and the lower bounds of
the objective function value, as well as the CPU time. If the
CPU time does not exceed the time limit, then the upper
bound obtained is the optimal solution. Otherwise, the lower
bound obtained is used for evaluating the effectiveness of the
proposed heuristics.

III. MIXED BINARY INTEGER PROGRAMMING (MBIP)
MODEL
In this section, an MBIP model for optimally solving
the problem 1 |cleaning|

∑
Cj is formulated
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as follows:

Minimize
∑n

j=1
(n− j+ 1)p[j] + w

∑n−1

j=1
(n− j)kj (2)

Subject to :
∑n

j=1
xij = 1 ∀ i = 1, 2, 3, . . . , n (3)∑n

i=1
xij = 1 ∀ j = 1, 2, 3, . . . , n (4)

p[j] =
∑n

i=1

(
pi . . . xij

)
∀ j = 1, 2, 3, . . . , n

(5)

C1 =
∑n

i=1
(pi . . . xi1) (6)

Cj−1 +
∑n

i=1

(
pi . . . xij

)
+ w ≤ Cj

+ M
(
1− kj−1

)
∀ j = 2, 3, 4, . . . , n (7)

Cj−1 +
∑n

i=1

(
pi . . . xij

)
≤ Cj

+ M . . . kj−1 ∀ j = 2, 3, 4, . . . , n (8)

t[1] =
∑n

i=1
(ti . . . xi1) (9)

t[j−1] +
∑n

i=1

(
ti . . . xij

)
≤ t[j] +M . . . kj−1

∀ j = 2, 3, 4, . . . , n (10)∑n

i=1

(
ti . . . xij

)
≤ t[j] +M . . .

(
1− kj−1

)
∀ j = 2, 3, 4, . . . , n (11)

T ≥ t[j] −M . . .
(
1− kj

)
∀ j = 1, 2, 3, . . . , n− 1 (12)

T ≥ t[j] −M . . . kj ∀ j = 1, 2, 3, . . . , n− 1

(13)

t[j] ≥ 0, Cj ≥ 0 ∀ j = 1, 2, 3, . . . , n (14)

xij is binary, ∀i = 1, 2, 3, . . . , n;

j = 1, 2, 3, . . . , n (15)

kj is binary, ∀ j = 1, 2, 3, . . . , n− 1 (16)

The model mentioned above is modified from the one
proposed by Su and Wang [29], in which their objective
function minimizes the total absolute deviation of the job
completion time, whereas in our model, the objective func-
tion (2) describes the minimum TC according to Lemma 1.
Constraints (3) and (4) dictate that each job must be placed
at one position, and that each position can only perform
one job. Constraint (5) defines the processing time of J[j].
Constraint (6) specifies the completion time of the job at the
first position. If a cleaning activity is performed immediately
after the (j-1)th job, then the cleaning time w is added to
the completion time of the jth job. Constraints (7) and (8)
together define the completion times of the jobs processed
after the first one by combining the binary variable kj−1 with
an extremely large positive number M . Constraints (9-11)
define the dirt accumulation between the completion of the
last cleaning activity and the completion of the jth job.
Constraints (12-13) ensure that the accumulation of dirt in
each batch cannot exceed the threshold value. Finally, con-
straints (14-16) define the nonnegativity of t[j] and Cj, and
the binary restrictions for xij and kj.

IV. HEURISTIC ALGORITHMS
Since our considered problem is strongly NP-hard, it is
difficult to apply the mixed BIP to optimally solve large-
scale problems due to the considerable computational burden.
Therefore, three heuristics are proposed. We first introduce
some properties of the optimal schedule for the heuristics.

A. SOLUTION PROPERTIES
Recall that the shortest processing time (SPT) rule solves
the problem 1|

∣∣∑Cj . For the 1 |cleaning|
∑
Cj problem,

we derive the following property to solve it.
Property 1: There exists an optimal schedule in which jobs

in each batch are sequenced in SPT order.
Property 2: Consider a sequence where J[j] is to be shifted

to the position immediately preceding J[i], where i < j,
without violating the dirt constraint and suppose that there are
k cleaning activities between J[i] and J[j]. If1 = (j− i) p[j]−∑j−1

u=i p[u]kw < 0, then TC is decreased by this shift.
Proof:When J[j] is to be moved immediately before J[i],

the change in the cost is

11 = (n− i+ 1) p[j] − (n− j+ 1)p[j]
= (j− i)p[j]

The jobs from the ith position to the (j− 1)thposition are
moved backward one position as 12 =

∑j−1
u=1[(n− u) −

(n− u+ 1)]p[u] = −
∑j−1

u=i p[u]
Each cleaning activity in between is moved backward one

position as

13 = −kw

1 = 11 +12 +13

This completes the proof.
Property 3: Given σ the list of the remaining unscheduled

jobs in SPT order are indexed as Jσ1,Jσ2,.., Jσr . If Jσ1 cannot
be scheduled at the ith job sequence position in the current
batch Bl due to

∑
k∈Bl tk+ tσ1 > T , then job Jσi , i= 2,3,. . . , r

where
∑

k∈Bl tk+tσ1 ≤ T and (i− 1) pσi−
∑i−1

k=1 pσk−w ≤ 0
should be scheduled in Bl .

Proof: If Jσi is available to be scheduled in the current
batch Bl at the ith sequence position, then job Jσi contributes
11 = (i− 1)pσi to TC.
The jobs from Jσ1 to Jσi−1 in σ are moved backward one

position and the total completion time is changed as

12 = -
∑i−1

k=1
pσk

The cleaning activity is moved backward one position and
the total completion time is changed as

13 ≥ −w

1 = 11 +12 +13

This completes the proof.
Numerical Example 3: Suppose that there are four

unscheduled jobs in SPT order. Their processing times are
p1 = 6, p2 = 7, p3 = 7, and p4 = 8, and their dirt amounts
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are t1 = 2, t2 = 2, t3 = 2, and t4 = 1. Suppose the current
batch is Bl and T −

∑
k∈Bl tk = 1. To schedule with the SPT

rule, the unscheduled jobs will be processed as schedule I in
Figure 1, but it could be better in schedule II. With w = 5,
the total completion time is 67 + 4w in schedule I, which
equals 87. Meanwhile, in schedule II, the total completion
time is 71+ 3w, which equals 86.

FIGURE 1. Illustration of property 3.

The LOE (last-only-empty) approach, a well-known and
commonly encountered approach in practice, is introduced.
LOE: batching in which the accumulated dirt of each batch

is kept full whenever possible except for the last one.
Property 4: If the sequence of all jobs is fixed, then the

LOE rule gives an optimal solution.
Proof: According to Lemma 1, the TC value of a given

schedule π containing jobs and cleaning activities can be
calculated as
TC =

∑n
j=1 (n− j+ 1)p[j] + w

∑n−1
j=1 (n− j)kj, where the

value of kj equals 1 if a cleaning activity occurs immediately
following the jth position job; otherwise, it equals 0. Since the
sequence of all jobs is fixed, the term

∑n
j=1 (n− j+ 1)p[j] is

constant. Another term
∑n−1

j=1 (n− j)kj can be recalculated as∑n−1
j=1 (n− j)kj = (n− 1)k1 + (n− 2)k2 + (n− 3)k3 + . . .+

kn−1 = n
∑n−1

i=1 ki −
∑n−1

i=1 iki
To minimize the value of n

∑n−1
i=1 ki, the number of batches

is as small as possible; and in order to maximize
∑n−1

i=1 iki,
the cleaning activity is taken as late as possible. Therefore,
the LOE rule gives an optimal solution.

B. HEURISTC ALGORITHMS
We develop three heuristics, SPT-LOE, SPCT-LOE, and
INDEX-LOE, to solve the 1 |cleaning|

∑
Cj problem.

Initially, in each heuristic, a greedy algorithm is applied to
sequence both the jobs and cleaning activities. An improve-
ment algorithm is then applied. If, at any time, the processing
time of a job is greater than that of the job in the following
batches and the interchange these two jobs does not violate
the dirt capacity constraint, then the interchange is performed.
The detailed steps of the three heuristics are outlined as
follows:

1) HEURISTIC SPT-LOE
The algorithm commonly used in the real world applies the
SPT rule to sort the job and follows the SPT order to form the

batch using the LOE rule. If a job is added to batch Bl , result-
ing in the total amount of dirt accumulation exceeding T ,
then the job is added to the next batch Bl+1. An improvement
algorithm as previously described is then applied. The steps
of the heuristic algorithm are as follows.
Step 1. Sequence all n jobs in SPT order and break any ties

in favor of less dirt.
Step 2. Use the LOE rule to insert the cleaning activities.
Step 3. Apply the improvement algorithm to interchange

the jobs in each batch with the job having the larger process-
ing time being placed in the following batches provided that
the interchange does not violate the dirt constraint. The pro-
cedure is continued until the last batch has been considered.
Step 4.Apply Property 1 to sequence the jobs in each batch

in SPT order.

2) HEURISTIC SPCT-LOE
Since the processing time of a job and the dirt left on a
machine do not agreeable, the processing time of a job is
adapted by adding the estimated cleaning time proportional
to the amount of dirt. The heuristic SPCT-LOE is outlined as
follows.
Step 1:Calculate the modified processing time for each job

as p
′

j = pj +
(
tj
/
T
)
w,wherej = 1, . . . , n

Step 2: Find a job sequence by ordering all jobs in nonde-
creasing order of the modified processing time, p

′

j, and break
any ties in favor of the smaller processing time.
Step 3:Assign unscheduled jobs one by one to the machine

until a job cannot be scheduled to the current batch due to the
dirt constraint. In this case, assign a job that has not scheduled
yet according to Property 3 to the last position of the current
batch. If no such job is found, arrange a cleaning activity and
build a new batch as the current batch. The step is continued
until all jobs have been scheduled.
Step 4. Use Property 1 to sequence the jobs in each batch

based on the SPT rule.

3) HEURISTIC INDEX-LOE
An index for each job j in each iteration is developed by the
following expression:

Ij = (n− iteration+ 1)× pj + (n− iteration)× w

×

(
e+ tj
T
+ b

)
,

where the value of e denotes the amount of accumulated dirt
in the current batch before job Jj and b equals 1 if e+ tj > T ;
otherwise, it equals 0. The job with the smallest Ij is selected
to be scheduled to the machine. If the selected job cannot be
scheduled to the current batch due to the dirt constraint, then
a cleaning activity is inserted. The steps of the INDEX-LOE
heuristic are outlined as follows.
Step 1: Set e = 0, Iteration = 1. Let S denote the set of all

scheduled jobs andU the set of all unscheduled jobs. Initially,
S = ∅ and U = {J1, J2, .., Jn.
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Step 2: If U = ∅, go to Step 5. Otherwise, calculate the
index of all jobs in U and find the smallest one, denoted Ij.
If e+ tj ≤ T , go to Step 3; otherwise, go to Step 4.
Step3: Schedule Jj to the last position of the current

batch. Let S ← S ∪ Jj, U ← U\Jj, e = e + tj, Iteration
= Iteration + 1 and go to Step 2.
Step 4: Schedule a cleaning activity after the current batch

and assign job Jj to a new batch. Let S ← S ∪ Jj, U ←
U\Jj, e = tj, Iteration = Iteration + 1 and go to Step 2.
Steps 5 and 6 are the same as Steps 3 and 4 in the SPT-LOE

heuristic.
Numerical Example 4:The data in example 1 is considered.

Let w = 1.
Iteration 1: e = 0, S = ∅, and U = {J1, J2, J3, J4}.
I1 = 4×1+3×1×(1

/
3) = 5, I2 = 4×3+3×1×(2

/
3) =

14, I3 = 4×1+3×1×(1
/
3)= 5, I4 = 4×3+3×1×(2

/
3) =

14. The smallest index is that with J1 and J3. Job J1 is selected
arbitrarily and is placed in position 1.
Iteration 2: e = 1, S = {J1, U = {J2, J3, J4}.
I2 = 3×3+2×1×(3

/
3) = 11, I3 = 3×1+2×1×(2

/
3) =

4.3, I4 = 3 × 3 + 2 × 1 × (3
/
3) = 11. Job J3 is placed in

position 2.
Iteration 3: e = 2, S = {J1, J3, U = {J2, J4}.
I2 = 2 × 3 + 1 × 1 × {[(2+ 2)

/
3]+ 1} = 8.3,

I4 = 2 × 3 + 1 × 1 × {[(2+ 2)
/
3]+ 1} = 8.3. Job J2

is selected arbitrarily and is placed in position 3, and the
remaining job, J4, is placed in position 4. This results in the
sequence π = (J1, J3,w, J2,w, J4) , which is the optimal
schedule.

V. COMPUTATIONAL EXPERIMENTS
The computational experiments aim to examine the perfor-
mances of the proposed algorithms, including the Mixed
Binary Integer Programming (MBIP) model and the heuristic
algorithm. The proposed MBIP model is implemented by
IBM ILOGCPLEXOptimization Studio Ver. 12.6.1 software
and the heuristics as well as the lower bound are coded in
C++. All experiments are run on a PC with an i3-530 CPU.
Two sets of experiments are carried out. The first set aims to
evaluate the efficiency of the MBIP model and the effective-
ness of the heuristic algorithm for small problems. Another
set evaluates the performances of the heuristics using the
lower bound as a benchmark for large problems.

The parameter settings n, pi, ti,T , and w for small and
large problems are shown in Table 1, in which the parame-
ters α, β and γ control the amount of dirt left by each job,
the length of the cleaning time, and the dirt threshold, respec-
tively. The experimental procedure consists of a design of dirt
with two settings of α (α = 0.2 and 0.4) and two settings of
γ (γ = 2 and 4). The two settings of β(β = 1.5 and 2.5),
which controls the cleaning times, refer to the maintenance
times of Liao and Chen [6].

For each combination of n, pi, ti,T , and w, ten instances
are generated, yielding 1440 instances for the problem.
The formula, dev(%) = (heuristic− optimum)

/
optimum,

is used to determine the deviation of our heuristic

TABLE 1. Data for computational experiments.

solution over the optimal solution for small problem
instances. On the other hand, the formula dev(%)=
(heurisitc− LowerBound)

/
LowerBound is employed to

determine the deviation of our heuristics over the Lower
Bound.

A. COMPARISON OF OUR HEURISTIC WITH BIP FOR
SMALL PROBLEMS
For small problems with n = 8, 10, 15, 20, 30, 40 and 50,
the computational results are shown in Tables 2 and 3 for the
processing time distributions U (1,10) and U (1,100), respec-
tively. Both tables show the average CPU time in seconds for
the MBIP model and the heuristic algorithm, as well as the
average deviation of the heuristic solution over the optimal
solution. Table 4 further summarized the average deviation
of each heuristic over the optimal solution.

The results in Tables 2 and 3 show that the MBIP model
solves all the instances within four seconds when the number
of jobs n is not larger than 20. However, the required compu-
tational time increases drastically when n increases to 50. The
instance of widely dispersed job processing times U (1,100)
needs much more execution time than that of U (1,10). For
example, when n = 50, the average execution time for the
job processing time distribution U (1,10) is 371.553 seconds,
while it is 4852.296 seconds for U (1,100). The execution
times of all three heuristics are almost zero when n ≤ 50.
With regard to the quality of the heuristics, the summary
results are given in Table 4. The average deviations of the
three heuristics, SPT-LOE, SPCT-LOE and INDEX-LOE,
from the optimal solution are 2.308%, 0.317%, and 0.281%,
respectively, for the processing time distributions U (1,10).
For the processing time distributionsU (1,100), the deviations
of SPT-LOE, SPCT-LOE and INDEX-LOE from the optimal
solution are 5.252%, 0.741%, and 0.669%on average, respec-
tively. The influences of the two processing time distributions
associated with the three heuristics on the solution quality are
shown in Figure 2. The heuristic solutions perform slightly
worse as the dispersion of the job processing times widens.
From Figure 2 or Table 4, it is clear that INDEX-LOE
outperforms the other two heuristics, especially SPT-LOE,
which is commonly used in practice. The impacts of the
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TABLE 2. The results of pi = U [1,10] for small problems.

FIGURE 2. The influences of processing time distribution, α, β and γ on the solution quality for
small problems.

parameters α, β and γ on the solution quality are analyzed
and depicted in Figure 2.

The parameter α controls the amount of dirt left by a
job on the machine. The larger the value of α is, the more

dirt left by a job. Figure 2 shows that the deviation of the
heuristic from the optimal solution increases as the value of
α increases. The parameter β represents the influence of the
cleaning time on solution quality. The larger the value of β is,
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TABLE 3. The results of pi = U [1,100] for small problems.

TABLE 4. The summary of each scenario in average.

the slightly smaller the deviation of the heuristic over the
optimum. Finally, γ controls the value of the dirt threshold.
Figure 2 shows that the smaller the value of γ is, the slightly
better the quality of the heuristic.

B. COMPARISON OF THE HEURISTICS WITH LOWER
BOUND FOR LARGE PROBLEMS
We compare the three heuristics with the Lower Bound
obtained by the IBM ILOG CPLEX Optimization Studio

Ver. 12.6.1 for large instances with n = 100 and 200. The
computational results are shown in Tables 5 and 6 for the
processing time distributions U (1,10) and U (1,100), respec-
tively. The deviations of the three heuristics over the lower
bound are also summarized in Table 4.

The results in Tables 5 and 6 indicate that the average
CPU times for IBM ILOG CPLEX Optimization Studio
Ver. 12.6.1 to obtain the lower bound are 472.122 seconds
and 573.373 seconds when n = 100 and 200, respectively.
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TABLE 5. The results of pi = U [1,10] for large problems.

TABLE 6. The results of pi= U[1,100] for large problems.

The instance of the widely dispersed job processing time
distribution U (1,100) needs more execution time and incurs
greater solution deviation. The execution times of all three
heuristics are less than 0.039 seconds and 0.083 seconds
for the processing time distributions U (1,10) and U (1,100),
respectively, when n = 200. With regard to the qualities
of the heuristics, the average deviations of three heuristics,
SPT-LOE, SPCT-LOE and INDEX-LOE, over the lower
bound are 1.671%, 0.183%, and 0.296%, respectively, for the
processing time distributionU (1,10). For the processing time
distribution U (1,100), the deviations of SPT-LOE, SPCT-
LOE and INDEX-LOE, over the optimal solution are 6.385%,
1.330%, and 1.088%on average, respectively. Since the lower
bound value instead of the optimal solution is used to evaluate
the performances of the heuristics, the actual values of the

deviation of the heuristics from the optimal solution will be
lower than those shown in Tables 4, 5 and 6.

The influences of the two processing time distributions
associated with the three heuristics on the solution quality are
shown in Figure 3. From Figure 3 and Table 4, it is clear that
INDEX-LOE outperforms the other two heuristics, especially
SPT-LOE, which is commonly used in practice. The impacts
of the parameters α, β and γ on the solution quality are
analyzed and depicted in Figure 3.

The influences of the parameters α, β, and γ on the solu-
tion quality are shown in Figure 3. From Figure 3, we observe
that the deviation of the heuristic from the lower bound
increases as the value of α increases, and the larger the value
ofβ is, the smaller the deviation of the heuristic over the lower
bound. Finally, the smaller the value of γ is, the slightly better
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FIGURE 3. The influences of processing time distribution, α, β, and γ on the solution
quality for large problems.

the quality of the heuristic. Although the three parameters α,
β, and γ have impacts on the solution quality of the heuris-
tics, the influence is rather small. Therefore, we can assure
that the heuristics are robust and pragmatic.

VI. CONCLUSION
This study focuses on the problem of minimizing the total
completion time on a single machine with nonresumable jobs
and machine unavailability. This problem is motivated by
a wafer fabrication process, where the machine has to be
stopped to remove the accumulated dirt with a cleaning agent
avoiding damage to the quality of a wafer. The objective is to
minimize the total completion times.

The considered problem is NP-hard. Many properties for
optimally solving the problem are developed. Based on these
properties, an MBIP model is implemented to find optimal
solutions with the commercial solver of IBM ILOG CPLEX
Optimization Studio Ver. 12.6.1, and a lower bound and three
simple and effective heuristics are also proposed. From the
computational results with problem sizes n ≤ 50, the best
heuristic INDEX-LOE is 0.281% and 0.669% on average
over the optimal solution for the processing time distributions
U (1,10) and U (1,100), respectively. When n = 100 and
200, the INDEX-LOE is 0.30% and 1.088% on average over
the lower bound for the processing time distributions with
U (1,10) and U (1,100), respectively. The complexities of the
heuristic are very low, but the algorithms can quickly obtain a
near-optimal or optimal schedule to satisfy the quick response
requirement in a real world environment.

The main contribution of this paper is that another type of
machine unavailability that stems from a common practice
in IC manufacturing industry, which has seldom been dis-
cussed in the scheduling literature, is considered. Another
direction for future research is to extend the problem to
other machine environments, such as identical or unrelated
parallel machines. Otherwise, considering a due date related
objective function is important because meeting due dates are
also a concern in practical situations. Finally, developing a

meta-heuristic to solve the multiple machine problem will be
worthwhile.
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