
Received January 13, 2019, accepted February 4, 2019, date of publication February 12, 2019, date of current version March 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2898705

Face Depth Estimation With Conditional
Generative Adversarial Networks
ABDULLAH TAHA ARSLAN AND EROL SEKE
Department of Electrical and Electronics Engineering, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey

Corresponding author: Abdullah Taha Arslan (atarslan@ogu.edu.tr)

ABSTRACT Depthmap estimation and 3-D reconstruction from a single or a few face images is an important
research field in computer vision. Many approaches have been proposed and developed over the last decade.
However, issues like robustness are still to be resolved through additional research. With the advent of the
GPU computational methods, convolutional neural networks are being applied to many computer vision
problems. Later, conditional generative adversarial networks (CGAN) have attracted attention for its easy
adaptation for many picture-to-picture problems. CGANs have been applied for a wide variety of tasks,
such as background masking, segmentation, medical image processing, and superresolution. In this work,
we developed a GAN-based method for depth map estimation from any given single face image. Many
variants of GANs have been tested for the depth estimation task for this work. We conclude that conditional
Wasserstein GAN structure offers the most robust approach. We have also compared the method with other
two state-of-the-art methods based on deep learning and traditional approaches and experimentally shown
that the proposed method offers great opportunities for estimation of face depth maps from face images.

INDEX TERMS 3D face reconstruction, generative adversarial networks, deep learning.

I. INTRODUCTION
Human face depth estimation and 3D reconstruction is an
important field of research in computer vision. 3D infor-
mation provides additional benefits in overcoming hurdles
related with 2D images in vision tasks such as detection and
recognition, especially under varying pose, illumination, and
expression (PIE) [1]. Pose variations, estimating lighting con-
ditions and occlusions are some examples to these problems.
However, constructing 3D models or reconstructing from
2D images have been a major challenge for the researchers.
Many approaches have been proposed and developed over the
last few decades to this end, with each one having its own
complications. With the advent of the GPU computational
methods, convolutional neural networks are being applied to
many computer vision problems. Lately, a specific kind of
network structure, called conditional generative adversarial
networks, has attracted attention for its easy adaptation for
many picture-to-picture problems. Segmentation, superres-
olution, background masking are some of the examples to
these solutions among many. In this work, we developed a
CNN-based method for depth estimation from any single face
image.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaochun Cheng.

3D reconstruction and depth estimation techniques devel-
oped in the last decades fall into several categories. One
prominent one is called shape-from-shading [2], [3] falling
under other shape-from- umbrella techniques utilizing dif-
ferent vision cues, and related approaches developed over
the years, e.g. with a statistical approach [4]–[6], with an
approach of symmetry [7], with a reference model input and
spherical harmonics [8]. Another major category is model
based algorithms [9]. Vast amount of work in depth estima-
tion from single or multiple images accumulated over the
years can be seen in [10] and in its references section. If more
than one image is provided, a separate set of techniques
may be implemented, such as photometric stereo [11], where
many images of the same scene are needed to be taken under
varying lighting conditions; geometry basedmethods, such as
structure frommotion where camera and few number of point
positions are calculated followed by outlier-detection and
intensive bundle-adjustment process [12], [13], and stereo
correspondence algorithm [14].

With the advent of convolutional neural networks and GPU
based computation approaches, major problems of computer
vision field have been adapted to this new realm. While the
previous methods always had to get involved with shape and
image characteristics such as reflectance, albedo, or distri-
bution of light sources, deep learning methods leave these
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details to be learned by the filters located inside the net-
works. Shape recovery becomes a mere choice of appropri-
ate network structure, optimization technique, loss function,
and data set. Also, the previous techniques almost always
had to incorporate or develop one (or many) regularization
or optimization algorithm(s) in order to impose additional
constraints to this ill-posed problem. Again, deep neural net-
works handle this work internally, or through a parameter in
loss function equation.

Lately, a specific deep learning structure, called Genera-
tive Adversarial Networks (GANs) [15], [16], has emerged
and attracted wide attention. These structures are constructed
of two separate networks, generators and discriminators (or
called critics) and have been proved to be able to produce
realistic images. One variant of GANs is named as Condi-
tional Generative Adversarial Networks (cGAN) [17], [18].
Motivation behind cGANs is to provide a general-purpose
solution to image-to-image transformation problems. The
difference of a cGAN from an unconditional network is that
input images are fed to both discriminator and generator
networks. Some of the application areas of cGANs have
been background masking, segmentation [19], and interest-
ing implementations such as edges-to-objects [18].

In this work, we propose a solution for depth estima-
tion and reconstructing 3D models from single 2D face
images. We utilize conditional generative adversarial net-
works, and examine variants and training techniques. Follow-
ing, we also compare the results against the results of other
deep learning based and successful traditional techniques.
For the former, the proposed technique suggested recently
in [20] has been chosen in order to compare Generative Net-
works with Autoencoders, and for the latter, the SfS-derived
method in [8] has been chosen for its efficiency and fast
implementation.

II. RELATED WORK
Zhang et al. [20] implemented a deep learning approach for
learning 3D faces from 2D images. They utilized an autoen-
coder structure, called Stacked Contractive Autoencoders
(SCAE), to learn low-dimensional features of both input
images and corresponding 3D models, and connect these two
with another network. Therefore, their system consists of
three components.

Generative Adversarial Nets (GANs) [15] provided an
effective way to train a generative network (generator),
by constructing a zero-sum game between this network and
another one, named discriminator, whose objective is to
differentiate produced (fake) images from real ones. During
this training process, the zero sum game between these net-
works convolve towards a maxmin solution, theoretical Nash
equilibrium, where neither of the networks could learn and
adapt a little bit more. Radford et al. [16] introduced a class
of CNNs called deep convolutional generative adversarial
networks (DCGANs) for unsupervised learning, and they also
outline certain rules and architecture guidelines for stabiliz-
ing the GAN training processes.

GANs have been extended to conditional GAN mod-
els (cGANs) by feeding extra information to the net-
works [17], [18]. In [17], one-to-one mappings for output
categories are extended to one-to-many labels with the input
taken to be the conditioning variable. Isola et al. [18] search
for a general framework of networks to image-to-image
problems. This generalized network architecture produces
wide range of translations, such as aerial photos to maps,
BW to color, labels to street scenes and building facades
and interesting outcomes such as sketches to hand-bags,
shoes and even cats. In this architecture, the image produc-
ing generator network is a modified version of U-Net [21],
which was developed earlier for image segmentation and
consists of an encoder-decoder type of shape with addition
of some skip layers connecting corresponding resolution
blocks.

The proposed framework in [22] is called SAGAN and the
authors introduce self-attention to GANs in order to combine
features from separated regions of the images. Their network
structure is claimed to be the best performer in Inception and
FID scores. They also conduct training with separate learning
rates and different update steps for generator and discrimina-
tor networks, as suggested in [23]. In [24], both the generator
and discriminator are grown progressively, adding new layers
from low resolutions as the training progresses. Relativistic
GANs (RGANs) and Relativistic average GANs(RaGANs)
change the behavior of discriminator networks such that they
estimate the probability of the given data is more realistic than
the fake data [25].

Training GANs have been reported to be not an easy task
as it is unstable and very sensitive to parameter choices [26].
The outcome of vanishing or exploding gradients is just
one of the problems. In order to improve convergence,
many approaches and alternatives of GANs have been pro-
posed in the last couple of years [22], [23], [25], [27]–[33].
Arjovsky et al. [27] investigate several distance mea-
sures between distributions and propose Earth-Mover(EM)
or Wasserstein distance for their GAN structure, named
Wasserstein GAN (WGAN) with improved stability. In their
algorithm, a new loss metric is presented and claimed to be
a better alternative than the original one, also the discrimi-
nator network becomes a critic. WGAN-GP improves per-
formance of WGAN by introducing a gradient penalty rather
than clipping weights as in WGAN [28]. To overcome van-
ishing gradients, Least Squares GANs (LS-GANs) change
the discriminator loss function with a LS approach [29],
and claim to be more stable and producing higher quality
images. Another generative model is named Stacked GAN
and decomposes the training process into multiple layers,
consisting of a top-down stack of GANs [30]. It is claimed
to be the best performer on Inception Score on CIFAR-10
database [31]. With BEGAN, Berthelot et al. propose a new
method for balancing the generator and discriminator during
training, and also a measure of convergence derived from the
Wasserstein distance. They use an auto-encoder as the dis-
criminator network, previously proposed with Energy-Based
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FIGURE 1. General structure of a conditional generative adversarial network with inputs of 2D images and depth maps.

GAN (EBGAN) in [33]. EBGAN model considers the dis-
criminator as an energy function.

The proposed framework in [22] is called SAGAN and the
authors introduce self-attention to GANs in order to combine
features from separated regions of the images. Their network
structure is claimed to be the best performer in Inception
and FID scores. They also conduct training with separate
learning rates and different update steps for generator and
discriminator networks, as suggested in [23]. In [24], both
the generator and discriminator are growed progressively,
adding new layers from low resolutions as the training pro-
gresses. Relativistic GANs (RGANs) andRelativistic average
GANs(RaGANs) change the behavior of the discriminator
network such that they estimate the probability of the given
data to be more realistic than the fake data [25].

Researches from Google Brain conducted a study to mea-
sure several of the aforementioned models. They conclude
that more important task in training lies in hyperparameter
optimization rather than a network structure andmanymodels
can reach similar results [34].

III. NETWORK STRUCTURE
While the original Generative Adversarial Network used
a noise variable as input [15], conditional GANs (CGAN )
incorporate input data as a conditioning variable. This con-
ditioning has been applied in many applications previously,
such as labels [17], text [35], images and videos [36]–[40],
and also in general non application-specific structure [18].

Conditional GAN structure that is going to be implemented
for the depth estimation goal can be defined as follows: LetG
and D represent two networks, generator and discriminator,
respectively. G maps a random Gaussian noise z under the

condition of observed image x to depth map d :

G : {x, z} → d

In training the generator network, our aim is to maximize
the objective function

LG(G,D) =
∑

logD(x,G(x, z)) (1)

where G tries to force D to accept generated depth maps as
true outputs. At the same time D is trained to discriminate
fake maps from real ones, maximizing the objective function:

LD(G,D) =
∑

logD(x, d)+ log(1− D(x,G(x, z))) (2)

The first part of the last equation represent the training with
real images to real depth maps, while second part covers
the output maps of the generator network, labeled as fake.
An additional distance loss term can be added in Equation 1
to prevent the generator from moving too far away from
the ground-truth data during the training process. This term
can be an L2 distance loss, or an L1 distance loss as sug-
gested in [18]. Figure 1 illustrates the general structure of the
approach. The final objective function for the generator can
be written as

G∗ = argmin
G

max
D

LG(G,D)+ λdL1|L2(G) (3)

where LG is the loss function given in Equation 1. The last
term is a L1- or a L2-norm distance function.
Training GANs have been reported to be problematic

for many reasons [23], [32], [41], including non-convergence
where the model oscillates or never converges, vanishing or
exploding gradients where the discriminator network over-
whelms over the generator in the zero-sum game, mode
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FIGURE 2. Augmented images for an indiviudal in the dataset. From left to right: a) White-balanced, b) Rotated
clockwise, c) Rotated counterclockwise, d) Gaussian blurred, e) Original images.

collapses where the generator network does not learn and
generates small number of outputs, and overfitting issues.
In general, the models are highly sensitive to hyperparam-
eters. A lot of effort has been spent to remedy these problems
to train stable and robust networks [26]–[29], [31]. Gradient
descent and related algorithms to train deep convolutional
neural networks can easily collapse in training GANs where
the sought solution is a Nash equilibrium, rather than a
minimum.

Lately, Wasserstein GAN structure have been reported to
be overcoming some of these hurdles in training GANs [27].
The Earth-Mover (EM) or Wasserstein-1 distance is the dis-
tance between two probability distributions over a region and
can be formulated between two distributions µ and ν as:

Wp(µ, ν) = inf E[d(X ,Y )] (4)

where E is the expected value taken over all joint dis-
tributions of the random variables X and Y , and d(·) is
the absolute-value distance function. Arjovsky et al. [27],
in order to tract the infimum in Equation 4, introduce
K-Lipschitz continuity constraint, and apply weight clipping
to enforce this condition roughly.

In the next section, our experimental setup for depth
estimation and several alternative network structures are pre-
sented. Conditional GAN and Wasserstein GAN cost func-
tions with the same generator and discriminator networks are
compared quantitatively. Although the Wasserstein GAN is
an unsupervised learning method, by conditioning the prob-
ability distribution with input images, the proposed method
becomes a Conditional Wasserstein GAN.

IV. EXPERIMENTS
In this section we introduce our setup for training and testing,
as well as the datasets used in the process. Real ground-truth
depth maps measured with laser scanners are needed for any
dataset that would be utilized in developing depth estimation
algorithms. A small percentage of images in any dataset is
left aside for testing step conducted after the training process
finishes.

A. DATABASES
Two separate 3D face databases have been used in our
experiments: The Texas 3D Face Recognition Database [42]
and Bosphorus Database for 3D Face Analysis [43]. We will
refer to these databases as Database I and II, respectively.

Database I consists of 116 individuals, while II has
105 individuals’ varying poses and emotional expressions.
Neutral and near-neutral posed images from the latter one
were consolidated with the former. Ground truth depth maps
are providedwith the databases. Each 2D portrait image in the
databases comes with the depth map showing corresponding
depth values for each pixel of the portrait image. Depth maps
were normalized to [0,255], where 255 represents the near
clipping plane while 0 denotes the background. All input 2D
images and output depth maps were scaled to 256 × 256
resolution and faces (and corresponding depth images) in
Database I were zoomed in in order to fill the most of the
frame since there are large background regions in the original
images. 10 individuals from each database are randomly set
aside for testing purposes, and training data set is constructed
from the remaining image-depth pairs.

In order to increase variance of the data set at the hand,
and improve robustness of the trained networks, augmenta-
tion was applied to the training data. The following trans-
formations were applied to randomly selected one-third of
the original data set: Gaussian blur, slight rotation clockwise
and counterclockwise separately, and histogram equalization.
The last one was chosen because of the fact that majority of
the original database images were taken under low contrast
and dim lighting conditions. Therefore, the total number of
images in the data set were increased from 1901 to 4442.
A set of augmented images belonging to an individual can
be seen in Figure-2. Table 1 summarizes information about
the databases.

TABLE 1. Databases.

B. SETUP
With a choice of a generator network, a discriminator network
and a loss function among many options, several number of
different structures for a GAN can be constructed. Three of
them have been tested and are listed in Table 2. Note that con-
figuration I is the same network structure as described in [18],
named pix2pix. It uses a modified version of U-Net [21]
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FIGURE 3. RMS error comparisons for a) WGAN, b) SCAE [19] and c) SfS with a reference image [8] on tested 97 face images. Average RMS values are
also shown by horizontal lines.

TABLE 2. Configuration options.

as the generator network. Configuration II has conditional
version ofWasserstein GAN loss function with DCGAN [16]
as a critic. In configuration III, a different network for the
generator developed for pose estimation earlier and named as
Stacked Hourglass (SHG) [44], is applied. While the details
can be seen in [44], implementation in our research omits the
first layer of the structure in order to preserve the input image
dimensions. Apart from this, a stack of 8-hourglass 1-residual
modules as suggested in [44], is applied.

All of the code development has been done with Apache
MxNet and PyTorch deep learning frameworks on Ubuntu
operating system, and the training were conducted on a single
GPU (NVIDIA Tesla V100).

In order to evaluate and compare the success of overall
reconstruction outputs, pixel-wise average Mean Absolute
Error in percentage is calculated for each image in the testing
dataset. Then, average for all test images is calculated in a
similar way implemented in [8]. Let hout (x, y) and hgt (x, y)
be the pixel depth value estimated for an input image and
corresponding ground-truth value, respectively.

Then, MAE in percentage can be calculated using:

e(x, y) =

∣∣∣∣hout (x, y)− hgt (x, y)255.0

∣∣∣∣ ∗ 100 (5)

and overall error rate in percentage for an image using:

Ei =

∑
x,y∈�

e(x, y)

× 1
m× n

(6)

where the size of the image is m× n.
The test results for various configurations can be seen

in Table-3.

TABLE 3. Comparison of depth estimator networks (100 minus average
error rate %).

C. CONVERGENCE ISSUES AND LEARNING
RATE OPTIMIZATION
GANs have been reported to be very hard to train.
In order to optimize the training process, we explored sev-
eral optimization algorithms including Stochastic Gradient
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FIGURE 4. Test outputs for the proposed WGAN depth estimation network. Test images come from databases, but they are not included in the training
stage. From left to right: a) Input image, b) Test output reconstructed snapshot image, c) Ground truth depth map reconstructed snapshot image,
e) and f) Snapshots of reconstructed outputs from two different views with textures mapped, f) Difference heat map image between ground truth and test
output depth maps. The pixel-wise error rates from top-to-bottom are %5.385 ± 6.713, %3.108 ± 3.074, %0.649 ± 0.844, %2.307 ± 1.937 and
%0.356 ± 0.882.

Descent, RMSProp, Adam and Adamax [45], AdaGrad [46],
ADADELTA [47] and Nadam. In overall, Adam algorithm
provided the most robust training process for the depth esti-
mation task. A monotonically decreasing learning rate has
been found to be a much better alternative to a constant
rate in training processes [48], in terms of updating layers’
weights with a gradually decreasing learning rate as the train-
ing epochs progress. The degree of change for this decreas-
ing should be adjusted carefully. There are several learning
rate scheduling functions suggested, including exponential
decaying, step or multi-step scheduling, cosine annealing,

or learning rate reducing functions when a metric stops
improving. In this work, these algorithms have been tested
extensively, and a cosine scheduling was observed to be the
most effective learning rate adjustment algorithm, where a
learning rate is adjusted at just before any optimizer step
moment according to the following equation [49]:

ηt = ηmin +
1
2
(ηmax − ηmin)(1+ cos(

Tcur
Tmax

π )). (7)

Here ηmax is the initial learning rate, ηmin is the final rate,
Tcur is the current weight updating step, Tmax is the total
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FIGURE 5. Reconstructed outputs of test inputs which were downloaded from internet for visual inspection. Since
ground-truth depth-maps are not available for these images, objective performance measurements can not be done. In each
row, from left to right, a) input 2D image, b) output depth map, c) surface reconstructed snapshots, d) and e) reconstructed
and texture mapped 3D data viewed from two different angles.

number of updating steps. ηmin is set as 0 in most of the
applications, however, in our experiments we have observed
that setting ηmin to a fraction of ηmax (like 1/20th) yields a
better convergence outcome.

V. DISCUSSION
In Table 3, quantitative comparison of methods are given.
According to this, the most successful network is a U-Net
generator with a DCGAN discriminator, and the loss function
is Wasserstein metric with a L1 distance term. In Figure 4,

output results for some of the images in the testing group
can be seen. Each output depth map has been converted
to a point cloud file, and surface reconstruction has been
done with MeshLab software [50]. Poisson surface recon-
struction approach is applied after point normals are calcu-
lated. In order to handle some irregularities and to improve
smoothness Laplace surface smoothing algoritm is also run
in the next step. It should be noted that there was no particular
reason for opting any smoothing algorithm against others
here. In addition to the face images in test databases whose
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depth values are available, some portrait images from internet
were downloaded and processed for visual inspection. These
results can be seen in Figure 5. Outputs for test images from
databases are found to be better and smoother due to the fact
that these images come from the same sourcewith the training
images, taken under similar conditions, although test images
are never included in the training process.

FIGURE 6. In order to investigate any possible over-fitting issues,
the training data set were divided into two parts randomly: 80% for
training and 20% for validation. The generator network’s loss value is
plotted in this figure for each epoch over 2500 epochs.

In order to investigate any potential over-fitting issues in
training the proposed Generative method, the training set is
divided into two parts; training and validation. After each
epoch the loss function of the generator network is recorded
and the results are given in Figure V. The validation loss is
observed to be decreasing monotonically by tracing the train-
ing set’s curve with a certain amount of difference between
the two.

A. COMPARISON WITH AUTOENCODERS
In order to compare GAN structure with other deep networks
in terms of depth estimation task, we have implemented the
Stacked Contractive Autoencoder (SCAE) network, a recent
algorithm proposed in [20]. Contractive autoencoders have
proved themselves effective in representing input data in
lower dimensions. The proposed method’s [20] layout is as
follows: Initially, a stacked AE structure is trained for 2D
input images in order to represent these images in lower
dimension. Another similar stacked AE network is also
trained for 3D models (point clouds). These two networks
are brought together with a third network, consisting of only
a dense layer. Given a 2D image, the aim is to predict 3D
representation of the input via whole network top-to-bottom.
In our experiments, we have followed the researchers’ sug-
gestion of 3-layer structure for autoencoders. For compar-
ison reasons we resized images from both databases to
70x70 pixel gray-scale images. Without any convolutional
layers, it is obvious that training with original images at
larger resolutions with only linear layers would be a gigantic
workload (For example, a layer of 10,000 neurons with

a 256x256x3 input will result in approximately 2 billion
weights in a single layer!) The exact layer structure of the
SCAE is 4900-500-100-10 and 14900-1000-100-10 for 2D
images and 3D points, respectively.

Following the generation of depth maps, RMS errors [20]
are calculated using

RMS =

√√√√ 1
N

N∑
i=1

(x̃3D(i)− x3D(i))
2. (8)

RMS results of SCAE and the generative methods can
be comparatively seen in Figure 3. The superiority of gen-
erative models is very obvious. We believe that there are
mainly two reasons for lower than expected performance of
SCAE. 1) The research conducted in [20] uses synthesized
face models and images of perfect design for the task at hand.
When it comes to real images with real textures, albedos
and shading the proposed method results in poor outcomes.
2) Autoencoders naturally act as lossy compressors. At each
layer down the pipeline, a considerable amount of detail
information of the input is naturally eliminated. We have
observed this phenomena by reconstructing the back propa-
gated images, decoding at each layer’s output and compar-
ing with the original image. Although at [20, Table 2] the
reconstruction error increases significantly starting with layer
number 4, in our experience after the third layer a sudden drop
of detail information occurs due to diminishing number of
features. This might be something to look for when distin-
guishing human faces against other objects, but certainly not
desirable for separating one face from another. By contrast,
U-Net network [21] with its skip layers is a robust structure
for reconstruction of large and real images (256 × 256 vs.
70× 70).

B. COMPARISON WITH SFS METHODS
We have also implemented the shape from shading algo-
rithm described in [8] in order to compare generative mod-
els with one of the last state-of-the-art methods of pre
deep-learning era. In this work the authors conduct depth
estimation with an 2D image as input as usual, but also
use another average image of all individuals in the dataset,
of which depth information is known. They also utilize spher-
ical harmonics expansion to capture the lighting component
of the Lambertian reflectance model. The algorithm pipeline
is a three step procedure as follows: 1) Four lighting coef-
ficients are estimated with a linear expansion utilizing ref-
erence image’s depth values and albedo map, 2) Pixel-wise
depth values are estimated via a sparse matrix solution of a
large set of linear equations with regularization terms using
the lighting coefficients estimated in step 1 and reference
image’s albedo map, 3) Albedos are estimated in a similar
fashion with the step 2, this time using estimated values from
step 1 and 2. For the reference input image, we took average
of all images in both databases separately, and used this refer-
ence 2D image and corresponding depth map for test images
coming from that database. For estimating reference albedo
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FIGURE 7. Comparison of the three methods discussed in Section V. The test images come from the test data set and they are also the
same input images presented in Figure 4. The RMSE errors of three methods for each row is shown above the difference images.
as: 1- (32.52, 12.20, 5.10); 2- (31.71, 2.66, 3.10); 3- (23.82, 11.46, 1.43); 4- (27.61, 11.33, 2.19); 5- (33.75, 10.09, 4.62).

map, the point light source estimation algorithm in [51] was
deployed and the unknown albedo map for the reference
inputs were obtained. The results of this overall procedure
can be seen in Figure 3. Although this is a very fast algorithm
not requiring any training process, the generative models still
perform much better in general in the depth estimation task.

VI. CONCLUSION
In this work, we have implemented a generative adversar-
ial network solution for depth estimation of 2D images
for 3D reconstruction. This is an ill-posed, however a
well researched problem for which many algorithms and
approaches have been proposed over the decades. We have
constructed several GAN structures and concluded that
Wasserstein GAN is a robust and well-performing solu-
tion for the task. We have also compared this method with
two other methods, one of which is another deep network
approach based on autoencoders [20], and the other one is
a variant of a conventional SfS algorithm based on spher-
ical harmonics expansion [8]. After rigorous tests of all of
the mentioned methods, we conclude that WGAN approach
outperforms other methods in depth estimation of a face
from a single 2D image. Although this is an exciting and
promising approach, generative models are found to be very
difficult to be trained fully and future work is needed to opti-
mize the methods and develop new algorithms to circumvent
possible convergence issues. Traditional approaches, such

as 3D Morphable Models [9], may be combined with Deep
Learning techniques, especially with Generative Networks in
order to facilitate the complex process of depth estimation
with new computational opportunities.
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