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ABSTRACT Actual circuits have fractional order characteristics essentially.With the widespread application
of fractional order circuits and the great strides in the manufacturing of fractional order elements in recent
years, passive synthesis of fractional order circuit becomes an important research content. In this paper,
classical Darlington’s synthesis is extended to the two-variable case. Based on two-variable Darlington’s
synthesis and variable substitution, synthesis of fractional order immittance function with two element orders
is proposed. Finally, an example is given to illustrate the calculation process.

INDEX TERMS Fractional order, passive circuit, network synthesis, circuit theory.

I. INTRODUCTION
Because of inherently fractional order characteristics ofmate-
rials [1], actual circuits have fractional order characteristics
essentially [1]. With the fractional order network widely used
in different fields [2], [3], there have been many aspects of
research on fractional order network, for example: analysis of
frequency response [4], transmission efficiency of energy [5],
approximation of the fractional order system by an integer
order one [6], etc. In recent years, the great strides in manu-
facturing of fractional order devices [7], [8] make it possible
to establish actual fractional order circuit, and the fractional
circuit models [9], have been used, these motivate the need to
develop the synthesis methods for fractional order networks.
Therefore, it is necessary to study fractional order network
synthesis. However, fractional order network synthesis is
in its infancy, [10] and [11] can realize integer order RLC
two-port terminated one fractional order element, [12] pro-
poses a synthesis method of fractional order two-port. And
progress has also been made in the design of fractional order
oscillator [13], fractional order filter [14], fractional order
devices [15] and analysis of fractional order circuits [16].
Recently, a new synthesis method in [17] is proposed based
on multivariable network synthesis theory [18], it provides a
new idea for fractional order network synthesis.

The associate editor coordinating the review of this manuscript and
approving it for publication was Norbert Herencsar.

The mathematical basis of one-variable passive real-
ization theory is proposed by Brune [19]. After that,
Darlington [20] published his integer order lossy network
synthesis method. Based on transducer gain and scattering
parameters, he derives a reactancematrix and then establishes
a reactance ladder network between the power source and
a resistor. This method is suitable to arbitrary one-variable
positive real function. Since then, Darlington synthesis is the
cornerstone of designing digital filters [21], equalizers [22],
matching networks [23], and similar circuits. In 1961,
Hazony [24] extended the algorithm of Darlington synthe-
sis on the nonreciprocal structure. Amarit and Sanjit [25]
extended Darlington synthesis to the two-variable case and
changed an extracted unit resistor into an impedance function
in 1975, but this method has restrictions on the function form
and only can be used to realize reciprocity network. After that,
Dewilde [26] conducted a detailed analysis of Darlington
synthesis and Carlin Herbert [27] summarized Darlington
Synthesis. Then Belevitch [28] proposed Darlington synthe-
sis to arbitrary integer order 2n-port in 2011.

After Ozaki and Kasami [29] introduced the concept
of multivariable positive real property in 1960, multivari-
ate synthesis theory has made a great progress [30]–[38].
In the case of two-variable, [39] can realize lossless recip-
rocal network, [40] can realize lossy reciprocal network,
and arbitrarily LC n-port can be realized by [41]. Further-
more, there are three-variable [18] reciprocal immittance
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function Z
(
p1, p2, p3

)
synthesis method, but this method

requires ∂Z
(
p1, p2, p3

)
/∂pi to be completely squared.

This paper firstly needs a two-variable immittance function
synthesis method without restrictions. However, traditional
Darlington synthesis [27] and paper [24] only can synthesize
one-variable immittance function, and their reactance matrix
synthesis method based on residues can’t be directly extend
to the two-variable case. On the other hand, paper [25], a two-
variable Darlington synthesis method, constraints on the form
of immittance function. To solve this problem, this paper
finds a suitable reactance matrix synthesis method [41], then
proposes a Darlington synthesis of two-variable immittance
function without restrictions. Based on above mentioned, this
paper also gets a conclusion that the necessary and suffi-
cient condition for a two-variable immittance function to be
passively realized is that the function is positive real.

This paper is organized as follows. Section 2 mainly
presents two-variable Darlington synthesis. And Section 3
briefly introduces two-variable reactance matrix synthesis
method of paper [41]. In Section 4, synthesis of two-variable
fractional order immittance function with two element orders
is proposed, then an application is given to illustrate it. The
conclusion of this paper is Section 5.

II. TWO-VARIABLE DARLINGTON SYNTHESIS
As mentioned in the introduction, traditional Darlington
synthesis and its expansion method [24] cannot be used
directly to synthesize two-variable immittance function, and
paper [25] can’t solve the problems required by this paper
due to its limitation on the immittance function. So, propos-
ing a synthesis method of two-variable immittance function
without constraints is necessary.

A. EXTRACTION OF AN UNIT RESISTOR
Definition 1 [37], [41]: A n × n matrix Z

(
p1, p2

)
is said to

be a two-variable positive real matrix, if

1) For real p1 and p2, the elements of Z
(
p1, p2

)
is real;

2) In the domain Re [p1] > 0 and Re[p2] > 0, the
elements of Z

(
p1, p2

)
are analytic;

3) Z
(
p1, p2

)
+ ZH

(
p1, p2

)
is a positive semidefinite

matrix in the domain Re [p1] > 0 and Re[p2] > 0.

where superscript H represents the conjugate transpose of
matrices. Since this paper studies finite lumped networks,
the functions mentioned in this paper are rational.
Definition 2 [37], [41]: A n× n matrix X

(
p1, p2

)
is said

to be a two-variable reactance matrix, if

1) X
(
p1, p2

)
is a two-variable positive real matrix;

2) X
(
p1, p2

)
+ XH (p1, p2) ≡ 0n.

This paper takes a two-variable impedance function
Z
(
p1, p2

)
to illustrate the calculation process, admittance

functions have similar ideas.
When a unit resistor is extracted from Z

(
p1, p2

)
, the

network of Z
(
p1, p2

)
will become Fig. 1, where N expressed

by 2× 2 matrix X
(
p1, p2

)

FIGURE 1. The network of impedance function Z
(
p1, p2

)
.

According to the relationship between port-voltage and
port-current, equation (1) can be obtained.

Z
(
p1, p2

)
= x11(p1, p2)−

x12(p1, p2)x21(p1, p2)
1+ x22(p1, p2)

= x11(p1, p2)
1+ x11(p1,p2)x22(p1,p2)−x12(p1,p2)x21(p1,p2)

x11(p1,p2)

1+ x22(p1, p2)
(1)

On the other hand, the numerator and denominator of
Z
(
p1, p2

)
can be divided into odd parts and even parts respec-

tively, then Z
(
p1, p2

)
can be written as

Z (p1, p2) =
o1(p1, p2)+ e1(p1, p2)
o2(p1, p2)+ e2(p1, p2)

(2)

where polynomials oi(p1, p2) and ei(p1, p2)(i = 1, 2) are odd
and even part respectively.

To make x11(p1, p2) and x22(p1, p2) odd, the calculation
of (2) can be divided into two cases.

Case A:

Z (p1, p2) =
e1
o2
·
1+ o1

e1

1+ e2
o2

(3a)

Case B:

Z (p1, p2) =
o1
e2
·
1+ e1

01

1+ o2
e2

(3b)

By comparing equations (1) and (3), the following equations
are obtained.

x̄11 (p1, p2) =
e1
o2

(4a)

x̄22 (p1, p2) =
e2
o2

(4b)

x̄11 (p1, p2) x̄22 (p1, p2)− x̄12 (p1, p2) x̄21 (p1, p2)
x̄11 (p1, p2)

=
o1
e1
(4c)

x11 (p1, p2) =
o1
e2

(5a)

x22 (p1, p2) =
o2
e2

(5b)

x11 (p1, p2) x22 (p1, p2)− x12 (p1, p2) x21 (p1, p2)

x11 (p1, p2)
=
e1
01
(5c)

where x̄ij (p1, p2) denotes case A; x ij (p1, p2) denotes case B,
i, j = 1, 2. Substituting equations (4a) and (4b) into (4c),
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we can find

x̄12 (p1, p2) x̄21 (p1, p2) =
e1e2 − o1o2

o22
(6)

Substituting equations (4d) and (4d) into (4d), we also can
find

x12 (p1, p2) x21 (p1, p2) =
o1o2 − e1e2

e22
(7)

However, e1e2−o1o2 and o1o2−e1e2 are not always a simple
form to be factorized.

To ensure the feasibility of the synthesis process, this paper
introduces two-variable positive real polynomial L (p1, p2) =
o0 (p1, p2)+ e0 (p1, p2) and makes

e20 − o
2
0 = e1e2 − o1o2 (8)

where o0 (p1, p2) is odd, e0 (p1, p2) is even. According to
paper [29], (e1e2 − o1o2)|p1=jω1

p2=jω2
≥ 0.

In one-variable case, paper [24] does not give a clear
calculation method for equation (8), this paper solves this
problem by using two-variable spectral factorization.

The calculation method of L (p1, p2) = o0 + e0 is as
follows:

The property (e1e2 − o1o2)|p1=jω1
p2=jω2

≥ 0 ensures that two-

variable spectral factorization [42], [43] can be performed.
Then, polynomial e1e2 − o1o2 is performed spectral factor-
ization and equation (9) is obtained.

e1e2 − o1o2 = L (−p1,−p2)L (p1, p2) (9)

The calculation of two-variable spectral factorization is in
Appendix A. Hereafter, dividing polynomial L (p1, p2) into
odd part and even part, that is,

L (p1, p2) = o0 + e0 (10)

Obviously, when Re [p1] = 0 and Re [p2] = 0,

L (−p1,−p2) = −o0 + e0 (11)

The next calculation process is divided into reciprocity and
nonreciprocity two situations.

B. EXPRESSIONS OF REACTANCE MATRIX
IN NONRECIPROCAL SITUATION
According to equation (8), equation (6) and (7) becomes

x̄α,12 (p1, p2) x̄α,21 (p1, p2) =
e20 − o

2
0

o22
(12a)

xα,12 (p1, p2) xα,21 (p1, p2) =
o20 − e

2
0

e22
(12b)

where, the right subscript α denotes nonreciprocal situation.
It is easy to factorize equation (12a) and get equation (13).

x̄α,12 (p1, p2) = ±
e0 + oo
o2

x̄α,21 (p1, p2) = ±
e0 − oo
o2

(13)

Similarly, it is easy to factorize equation (12b) get
equation (14).

xα,12 (p1, p2) = ±
o0 + eo
e2

xα,21 (p1, p2) = ±
o0 − eo
e2

(14)

Remark: equation (13) is also feasible to take
x̄α,12 (p1, p2) = ±

e0−oo
o2

and x̄α,21 (p1, p2) = ±
e0+oo
o2

, but
there is no essential difference between their network. Hence,
this paper just takes the case of equation (13). The case of
equation (14) is similar.

In summary, when e0 (p1, p2) 6= 0 and o0 (p1, p2) 6= 0, the
expressions of X

(
p1, p2

)
in nonreciprocal situation are

X̄α (p1, p2) =


e1
o2

±
e0 + oo
o2

±
e0 − oo
o2

e2
o2

 (15)

Xα (p1, p2) =


o1
e2

±
o0 + eo
e2

±
o0 − eo
e2

o2
e2

 (16)

Theorem 1: X̄α (p1, p2) and Xα (p1, p2) are reactance
matrix.

The proof of Theorem 1 is in Appendix B.

C. EXPRESSIONS OF REACTANCE MATRIX IN RECIPROCAL
AND ANTIRECIPROCAL SITUATION
If the numerator and denominator of equation (3) is multi-
plied by factor L (p1, p2) = o0 + e0,Z (p1, p2) will become
equation (17).

Z (p1, p2) =
o1 + e1
o2 + e2

·
o0 + e0
o0 + e0

=
(o1e0 + e1o0)+ (o1o0 + e1e0)
(o2e0 + e2o0)+ (o2o0 + e2e0)

(17)

Similar to the idea of Section A, we can get

x̄β,11 (p1, p2) =
o1o0 + e1e0
o2e0 + e2o0

x̄β,22 (p1, p2) =
o2o0 + e2e0
o2e0 + e2o0

(18a)

xβ,11 (p1, p2) =
o1e0 + e1o0
o2o0 + e2e0

xβ,22 (p1, p2) =
o2e0 + e2o0
o2o0 + e2e0

(18b)

and

x̄β,12 (p1, p2) x̄β,21 (p1, p2) =
(e20 − o

2
0)

2

(o2e0 + e2o0)2
(19)

xβ,12 (p1, p2) xβ,21 (p1, p2) = −
(e20 − o

2
0)

2

(o2o0 + e2e0)2
(20)

Using reciprocal property xβ,12 (p1, p2) = xβ,21 (p1, p2)
for (19). Using antireciprocal property −xβ,12 (p1, p2) =
xβ,21 (p1, p2) for equation (20). The results are

x̄β,12 (p1, p2) = x̄β,21 (p1, p2) = ±
e20 − o

2
0

o2e0 + e2o0
(21)
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xβ,12 (p1, p2) = −xβ,21 (p1, p2) = ±
e20 − o

2
0

o2o0 + e2e0
(22)

The expressions ofX
(
p1, p2

)
in reciprocal and antireciprocal

situation are

X̄β (p1, p2) =


o1o0 + e1e0
o2e0 + e2o0

±
e20 − o

2
0

o2e0 + e2o0

±
e20 − o

2
0

o2e0 + e2o0

o2o0 + e2e0
o2e0 + e2o0

 (23)

Xβ (p1, p2) =


o1e0 + e1o0
o2o0 + e2e0

±
e20 − o

2
0

o2o0 + e2e0

∓
e20 − o

2
0

o2o0 + e2e0

o2e0 + e2o0
o2o0 + e2e0

 (24)

When e0 (p1, p2) = 0 and o0 (p1, p2) = 0, four reactance
matrices in formula (15) and (16) are

X̄α (p1, p2) =


e1
o2

0

0
e2
o2

 (25)

Xα (p1, p2) =


o1
e2

0

0
o2
e2

 (26)

And the four reactance matrices in formula (23) and (24) are
0
0 type, so they will not be discussed.
When e0 (p1, p2) = 0 or o0 (p1, p2) = 0, four reactance

matrices in formula (15) and (16) can be transformed into
reciprocal and antireciprocal situation, and it is also possible
to simplify four reactance matrices in formula (23) and (24),
the simplified results are shown in Table 1.

TABLE 1. Simplified results of reactance matrices.

From Table I, the results in formula (15) and (16) are
equivalent to those in formula (23) and (24). Hence, formula
(23) and (24) also meet Theorem 1.

D. SUMMARY OF TWO-VARIABLE
DARLINGTON SYNTHESIS
The process of two-variable Darlington synthesis is as
follows.

1) Dividing Z
(
p1, p2

)
into odd parts and even parts,

Z (p1, p2) =
o1(p1, p2)+ e1(p1, p2)
o2(p1, p2)+ e2(p1, p2)

(27)

where, polynomials oi(p1, p2) and ei(p1, p2)(i = 1, 2)
are odd and even part, respectively.

2) Polynomial e1e2 − o1o2 is performed spectral factor-
ization [42], [43] and we can get

e1e2 − o1o2 = L (−p1,−p2)L (p1, p2) = e20 − o
2
0

(28)

3) When e0 (p1, p2) 6= 0 and o0 (p1, p2) 6= 0, the result is
formula (15) and (16);
When e0 (p1, p2) = 0 or o0 (p1, p2) = 0, the result is
formula (23) and (24);
When e0 (p1, p2) = 0 and o0 (p1, p2) = 0, the result
is formula (25) and (26).

4) Combining with Section 3, the final two-variabl
network is obtained.

III. TWO-VARIABLE REACTANCE MATRIX SYNTHESIS
Paper [25], a method based on extracting immittance func-
tion, uses traditional one-variable reactance matrix synthesis
method, which led to limitation of synthesized immittance
function form. This paper uses suitable synthesis method [41]
without effect on synthesized immittance function form. The
synthesis steps of X (p1, p2) is as follows.
1) Assuming that reactance matrix X (p1, p2) has no inde-

pendent pole, the concept of independent poles and how
to extract them are referenced to [41].

2) Writing X (p1, p2) as the following form.

X (p1, p2)=
B0 (p1) pr2+B1 (p1) p

r−1
2 +· · ·+Br (p1)

a0 (p1) pr2+a1 (p1) p
r−1
2 +· · ·+ar (p1)

(29)

where scalar

g
(
p1, p2

)
=a0 (p1) pr2+a1 (p1) p

r−1
2 +· · · + ar (p1)

(30)

is the least common denominator of matrix X (p1, p2).
3) Calculating Al (p1) , the expression is as follows.

Al (p1) =
(−1)l+1

al+20

∣∣∣∣∣∣∣∣∣∣∣

B0 a0 0 · · · 0
B1 a1 a1 · · · 0
...

...
...

. . .
...

Bl al al−1 · · · a0
Bl+1 al+1 al · · · a1

∣∣∣∣∣∣∣∣∣∣∣
(31)

where, l = −1, 0, 1, · · · . When l ≥ r,Bl (p1) = 0n
and al (p1) = 0.

4) Set

Nr−1 (p1) =


A0 · · · Ar−1
−A1 · · · −Ar
...

. . .
...

(−1)r−1Ar−1 · · · (−1)r−1A2r−2


(32)

and then calculating N̂r−1 (p1) = a2r0 (p1)Nr−1 (p1).

VOLUME 7, 2019 23563



G. Liang, Z. Qi: Extended Darlington Synthesis of Fractional Order Immittance Function

5) Matrix N̂r−1 (p1) can be factorized [44], that is, when
r is odd and a0 (p1) = −a0

(
−p1

)
,

−N̂r−1 (p1) = M (p1)MT (−p1) (33a)

other case,

N̂r−1 (p1) = M (p1)MT (−p1) (33b)

6) M (p1) is divided into r submatrices M i (p1) yields
M (p1) =

[
M0 (p1) M1 (p1) · · · M r−1 (p1)

]T .
7) Set

� (p1) =


0n En · · · 0n
0n 0n · · · 0n
...

...
...

...

0n 0n · · · En
−
ar
a0
En −

ar−1
a0

En · · · −
a1
a0
En


(34)

8) The expression of one-variable reactance matrix
X̂ (p1) is

X̂ (p1) =

 X(p1,∞) M0(p1)
ar0(p1)

−
MT

0 (−p1)
ar0(−p1)

M−1(p1)�
(
−p1

)
M (p1)


(35)

whereM−1(p1) is the left inverse [45] ofM (p1).
9) The network of X̂ (p1) can be realized by traditional

synthesis method [46], [47].
10) Terminating rank [Nr−1 (p1)] p2−type unit inductors

on the network of X̂ (p1) , then this paper gets the
network of X (p1, p2).

Theorem 2: The necessary and sufficient condition for a
two-variable immittance function to be passively realized is
that the function is positive real.

The proof of Theorem 2 is in Appendix C.

IV. SYNTHESIS OF FRACTIONAL ORDER IMMITTANCE
FUNCTION WITH TWO ELEMENT ORDERS
A. SYNTHESIS STEPS
This paper takes impedance function as an example, and
admittance function is the same.

There is a fractional order impedance function with two
element orders Z (s) and it can be written as

Z (s) =

l∑
k1=0

t∑
k2=0

bk1k2s
k1α+k2β

l∑
k1=0

t∑
k2=0

ck1k2sk1α+k2β
+ d1sα + d2sβ (36)

The synthesis steps are as follows.
1) Set sα = p1, sβ = p2,Z (s) is transformed

into two-variable impedance function Z
(
p1, p2

)
,

i.e. equation (37).

Z
(
p1, p2

)
=

l∑
k1=0

t∑
k2=0

pk11 p
k2
2

l∑
k1=0

t∑
k2=0

pk11 p
k2
2

+ d1p1 + d2p2

(37)

2) Realizing the network of Z
(
p1, p2

)
by two-variable

Darlington synthesis method.
3) p1−type and p2−type elements are transformed into

fractional order elements by p1 = sα, p2 = sβ .
Immittance matrix of a network composed of fractional

order elements with their orders ranging from 0 and 1, and
other passive elements are multivariable positive real matrix
through appropriate variable substitutions sα = p1, sβ =
p2 [48].
The sign of fractional order LC elements is shown in Fig. 2,

where,Cα and Lβ is the value of fractional order capacitor and
fractional order inductor respectively; α and β is the order
of fractional order capacitor and fractional order inductor
respectively.

FIGURE 2. The sign of fractional order elements. (a) Fractional order
capacitor. (b) Fractional order inductor.

FIGURE 3. Synthesis of fractional order immittance functions with two
element orders.

The whole process of synthesizing fractional order immit-
tance function with two element orders is shown in Fig. 3.

B. APPLICATION EXAMPLE
This section illustrates above synthesis process, then gives
two resultant fractional order networks and their simulation.

There is a fractional order impedance function with two
element orders,

Z (s) =
s1.1 + s0.95

2s0.95 + s0.8 + s0.3 + s0.15

Set sα = s0.15 = p1, sβ = s0.8 = p2, then Z (p1, p2) is
obtained, i.e.,

Z (p1, p2) =
p21p2 + p1p2

p21 + 2p1p2 + p1 + p2

23564 VOLUME 7, 2019
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Odd part and even part in Z (p1, p2) are

o1 = p21p2 e1 = p1p2
o2 = p1 + p2 e2 = p21 + 2p1p2

Using equation (8), we find that

e20 − o
2
0 = e1e2 − o1o2

= p1p2
(
p21 + 2p1p2

)
− p21p2(p1 + p2) = p21p

2
2

Obviously, e0 = p1p2; o0 = 0.
Since o0 = 0, the resultant reactance matrix is reciprocal

or antireciprocal. This paper takes two results.
1) When all the parameters e1, e2, e0, o1, o2, o0 be gotten,

reactance matrix X̄β (p1, p2) can be obtained from formula
(23) directly.

X̄β (p1, p2) =


p1p2

p1 + p2

p1p2
p1 + p2

p1p2
p1 + p2

p21 + 2p1p2
p1 + p2


Synthesis method in Section 3 can realize its network, this
network as shown in Fig. 4(a).

FIGURE 4. (a) The network of X̄β
(
p1, p2

)
. (b) The network of Z

(
p1, p2

)
.

(c) The network of Z (s).

The network of X̄β (p1, p2) terminating a unit resistor,
then we can obtain the network of Z (p1, p2) , as shown
in Fig. 4(b).

To get the network of Z (s) , this paper replaces two-
variable elements with fractional order elements in Fig. 4(b)

FIGURE 5. (a) The network of Z
(
p1, p2

)
. (b) The network of Z (s).

by using p1 = s0.15 and p2 = s0.8. The result as shown
in Fig. 4(c).

2) According to formula (24), the other reactance matrix
Xβ (p1, p2) is

Xβ (p1, p2) =


p1p2

p1 + 2p2

p1p2
p21 + 2p1p2

−
p1p2

p21 + 2p1p2

p1 + p2
p21 + 2p1p2


The synthesis process is similar to those of X̄β (p1, p2). The
network of Z (p1, p2) as shown in Fig. 5(a).

By using variable substitution p1 = s0.15 and p2 = s0.8,
the resultant fractional order network as shown in Fig. 5(b).

In order to verify the correctness of resultant networks,
two current excitations shown in Fig. 6 are applied to frac-
tional order impedance function and fractional order network
respectively, then this paper gets two voltages by frequency
domain analysis.

The voltage responses are shown in Fig. 7.
Since the zero-impedance branch may appear in the cir-

cuits, the modified nodal approach (MNA) [49] is used to
establish the circuit equation in simulation. In Figure 7,
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FIGURE 6. Current excitation. (a) Sinusoidal steady-state current. (b) Step
transient current.

FIGURE 7. Port-voltage response. (a) Sinusoidal steady-state current.
(b) Step transient current.

‘‘U (s) = Z (s)I (s)’’ and ‘‘Modified nodal approach’’ are
consistent, hence the resultant networks are correct.

V. CONCLUSION
The necessary and sufficient condition for a two-variable
immittance function to be passively realized is that the func-
tion is positive real. This paper extends classical Darlington
synthesis to two-variable case, then above method is applied
to synthesize fractional order immittance function with two
element orders.

APPENDIX A
SPECTRAL FACTRICATION OF TWO-
VARIABLE POLYNOMIALS
There is a two-variable polynomial H (p1, p2).
If H (p1, p2)|p1=jω1

p2=jω2
≥ 0, thenH (p1, p2) can be factored into

H (p1, p2) = F (−p1,−p2)F (p1, p2) (A-1)

The following is a brief description of the calculation
process.

1) Writing H (p1, p2) as the following form.

H (p1, p2) =
M1∑
k=0

M2∑
l=0

h(k,l)pk1p
l
2 (A-2)

where M1 and M2 are the highest order of p1 and p2,
respectively.

2) Set matrix 8i,

8i =



h(0,i) h(1,i) · · · h
(
M1

2
,i)

0 0 · · · −h
(
M1

2
+1,i)

...
...

. . .
...

0 0 · · · (−1)

M1

2 h(M1,i)


(A-3)

where i = 0, 1, · · · ,M2. If M1 and M2 are odd, then
replace them with M1 + 1 and M2 + 1 respectively.

3) Set (M1
2 + 1)(M2

2 + 1)−dimensional matrix A,

A =



ψ (0,0) ψ (0,1) · · · ψ
(0,
M2

2
)

ψ (1,0) 0 · · · ψ
(1,
M2

2
)

...
...

. . .
...

ψ
(
M2

2
−1,0)

0 · · · ψ
(
M2

2
−1,

M2

2
)

ψ
(
M2

2
,0)

ψ
(
M2

2
,1)

· · · ψ
(
M2

2
,
M2

2
)


(A-4)

where

ψ (0,0) =
1
2
(80 +8

T
0 ) (A-5a)

ψ (0,i) =
1
2
8i (A-5b)

ψ (i,0) =
1
2
8T
i (A-5c)

ψ
(i,M2

2 )
= (−1)i8M2

2 +i
(A-5d)

ψ
(M2

2 ,i)
= (−1)i8T

M2
2 +i

(A-5e)

ψ
(M2

2 ,
M2
2 )
= (−1)

M2
2

1
2
(8M2 +8

T
M2

) (A-5f)

and i < M1
2 ,

M2
2 .

4) After that, set matrices σ 1, σ 2, σ 3, σ 4, we can obtain

σ 1 =


0 a · · · b

0
... 0

...
... b

... c
0 0 · · · 0

 σ 2 =


0 0 · · · 0
a · · · b 0
... 0

...
...

b · · · c 0


(A-6a)

σ 3 =

 0 d e
... e f

0M2+1 · · · 0

 σ 4 =

 0 · · · 0M2+1

d e
...

e f 0


(A-6b)

5) Solving linear matrix inequality (LMI) [50],

B = A− σ 1 − σ 2 − σ 3 − σ 4 ≥ 0 (A-7)

Then we can get a, b, c, d , e, f .
6) Constant matrixB is factorized [51], 1×(M1

2 +1)(
M2
2 +

1) matrix F̄ is obtained.

B = F̄
T
F̄ (A-8)

7) The resultant polynomial F (p1, p2) is

F (p1, p2)

= F̄ ·


1 p1 · · · p

M1

2
1 p2 p1p2 · · ·

p

M1

2
1 p

M1

2
2


T

(A-9)

23566 VOLUME 7, 2019



G. Liang, Z. Qi: Extended Darlington Synthesis of Fractional Order Immittance Function

APPENDIX B
THE PROOF OF THEOREM 1
Lemma 1 [37]: The necessary and sufficient condition for a
n × n matrix X

(
p1, p2

)
to be a two-variable positive matrix

is that

S
(
p1, p2

)
= [X − E] [X + E]−1 ≥ 0 (B-1)

is analytic in theRe [p1] > 0,Re [p2] > 0 and

E− SH
(
p1, p2

)
S
(
p1, p2

)
≥ 0n (B-2)

for Re [p1] = 0Re [p2] = 0. Except at singularities of
indeterminacy, if they exist. Where E is unit matrix.
Since X̄α (p1, p2) andXα (p1, p2) are real rational function

matrix, so the real property is holds.
Subscript ‘‘+’’ and ‘‘−’’ presents that (15) and (16) take

upper and lower sign, respectively. Based on equation (8),
the scattering matrices of X̄α,+ (p1, p2) and Xα,+ (p1, p2) are

S̄ (p1, p2) =

 m
n

L
n

L∗

n
−
m∗

n

 (B-3a)

S (p1, p2) =

 m
n

L
n

−
L∗

n
m∗

n

 (B-3b)

where

mm∗ + LL∗ = nn∗ (B-4)

And even parts ne (p1, p2) =
e1+e2

2 ,me (p1, p2) =
e1−e2

2 ; odd
parts no (p1, p2) =

o1+o2
2 ,mo (p1, p2) =

o1−o2
2 . This paper

takes

S (p1, p2) =

 m
n

L
n

±
L∗

n
∓
m∗

n

 (B-5)

The combination of equation (B-4) and (B-5) can get

E− S (p1, p2)SH (p1, p2) = 0 (B-6)

Based on Lemma 1, Definition 1 and Definition 2,
X̄α,+ (p1, p2) and Xα,+ (p1, p2) are reactance matrix.
The relationship between X̄α,+ (p1, p2) and X̄α,− (p1, p2)

is[
−1 0
0 1

]−1
X̄α,+ (p1, p2)

[
−1 0
0 1

]
= X̄α,− (p1, p2)

(B-7)

Hence X̄α,+ (p1, p2) and X̄α,− (p1, p2) are similar,
X̄α,− (p1, p2) is also reactancematrix. Similarly,Xα,− (p1, p2)
is reactance matrix.

In summary, X̄α (p1, p2) and Xα (p1, p2) are reactance
matrix. �

FIGURE 8. Two-variable passive network M.

APPENDIX C
THE PROOF OF THEOREM 2
Necessary: This paper takes the impedance function
Z
(
p1, p2

)
an example, the proof of admittance function is

similar.
Supposing that the two-variable passive network M shown

in Fig. 8 is composed of p1−type and p2−type passive
inductors, p1−type and p2−type passive capacitors, passive
resistors, ideal transformers and ideal gyrators. The input
impedance of network M is Z

(
p1, p2

)
.

According to generalized Tellegen’s theorem [52],
equation (C-1) is obtained.

−U1
(
p1, p2

)
I∗1
(
p1, p2

)
+

b∑
k=2

Uk
(
p1, p2

)
I∗k
(
p1, p2

)
= 0 (C-1)

where, Uk
(
p1, p2

)
and Ik

(
p1, p2

)
(k = 2, · · · , b)are internal

branch voltage and current in the network M, respectively.
Equation (C-1) can be changed into equation (C-2).

U1
(
p1, p2

)
I∗1
(
p1, p2

)
=

b∑
k=2

Uk
(
p1, p2

)
I∗k
(
p1, p2

)
(C-2)

The expression of Z
(
p1, p2

)
can be written as equa-

tion (C-3).

Z
(
p1, p2

)
=

U1
(
p1, p2

)
I1
(
p1, p2

) = U1
(
p1, p2

)
I∗1
(
p1, p2

)
I1
(
p1, p2

)
I∗1
(
p1, p2

)
=

1∣∣I1 (p1, p2)∣∣2
b∑

k=2

Uk
(
p1, p2

)
I∗k
(
p1, p2

)
(C-3)

Polynomial
b∑

k=2
Uk
(
p1, p2

)
I∗k
(
p1, p2

)
can be decomposed

into equation (C-4).

b∑
k=2

Uk
(
p1, p2

)
I∗k
(
p1, p2

)
= F0

(
p1, p2

)
+
[
p1T01

(
p1, p2

)
+ p2T02

(
p1, p2

)]
+ [

1
p1
V01

(
p1, p2

)
+

1
p2
V02

(
p1, p2

)
] (C-4)
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And each part of (C-4) is

F0
(
p1, p2

)
=

b∑
k=2

Rk
∣∣Ik (p1, p2)∣∣2

T01
(
p1, p2

)
=

b∑
k=2

Lk1
∣∣Ik (p1, p2)∣∣2 (C-5a)

+

b∑
k=2
k 6=l

b∑
l=2

Mkl1I∗k
(
p1, p2

)
Il
(
p1, p2

)
(C-5b)

T02
(
p1, p2

)
=

b∑
k=2

Lk2
∣∣Ik (p1, p2)∣∣2

+

b∑
k=2
k 6=l

b∑
l=2

Mkl2I∗k
(
p1, p2

)
Il
(
p1, p2

)
(C-5c)

V01
(
p1, p2

)
=

b∑
k=2

Ck1
∣∣Ik (p1, p2)∣∣2 (C-5d)

V02
(
p1, p2

)
=

b∑
k=2

Ck2
∣∣Ik (p1, p2)∣∣2 (C-5e)

where, F0
(
p1, p2

)
is the power consumed by all the branch

resistors; T01
(
p1, p2

)
and T02

(
p1, p2

)
are average magnetic

energy;V01
(
p1, p2

)
andV02

(
p1, p2

)
are average electric field

energy. For sinusoidal steady-state signals, the average mag-
netic energy stored on the coupled inductors is

ξT01
(
p1, p2

)
=

1
4

b∑
k=2

Lk1Ik
(
p1, p2

)
I∗k
(
p1, p2

)
+
1
4

b∑
k=2
k 6=l

b∑
l=2

Mkl1I∗k
(
p1, p2

)
Il
(
p1, p2

)
=

1
4
T01

(
p1, p2

)
≥ 0 (C-6a)

ξT02
(
p1, p2

)
=

1
4

b∑
k=2

Lk2Ik
(
p1, p2

)
I∗k
(
p1, p2

)
+
1
4

b∑
k=2
k 6=l

b∑
l=2

Mkl2I∗k
(
p1, p2

)
Il
(
p1, p2

)
=

1
4
T02

(
p1, p2

)
≥ 0 (C-6b)

Since all the elements in network M are passive, the values
of Rk ,Ck1 and Ck2 are all equal to or greater than 0. Obvi-
ously, all the parts in (C-4) are greater than or equal to 0,
we further know that Z

(
p1, p2

)
≥ 0. In addition, the values

of Rk ,Lk1,Lk2, Mkl1,Mkl2,Ck1 and Ck2 are real, so all the
coefficients of Z

(
p1, p2

)
are real.

From above mentions, Z
(
p1, p2

)
is positive real function.

Sufficiency: The two-variable Darlington synthesis pre-
sented in this paper is a passive synthesis method. This
method does not make any special requirement for the pos-
itive real function in calculation process, so it is suitable to
arbitrary two-variable real positive function. �
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