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ABSTRACT Logic minimization has recently attracted significant attention because in many applications
it is important to have a compact representation as possible. In this paper, we propose a fast minimization
algorithm (FMA) of fixed polarity Reed–Muller expressions (FPRMs). The main idea behind the FMA is to
search the minimum FPRM with the fewest products by using the proposed binary differential evolution
algorithm (BDE). The BDE can efficiently maintain population diversity and achieve a better tradeoff
between the exploration and exploitation capabilities by use of proposed binary random mutation operator
and improved selection operator. The experimental results on 24 MCNC benchmark circuits demonstrate
that the FMA outperforms the genetic algorithm-based and simulated annealing genetic algorithm-based
FPRMs minimization algorithms in terms of accuracy of solutions and solving efficiency. To the best of our
knowledge, we are the first to use differential evolution algorithm to minimize FPRMs. The FMA can be
extended to derive a minimum mixed polarity Reed–Muller expression.

INDEX TERMS Logic minimization, fixed polarity Reed-Muller expressions, differential evolution algo-
rithm, mutation operator, selection operator.

I. INTRODUCTION
Logic functions can be expressed either in AND/OR/NOT
based Boolean logic or in AND/XOR based Reed-Muller
(RM) logic. For some circuits, such as the arithmetic circuits,
parity check circuits and communication circuits, RM repre-
sentation are more efficient than their Boolean representation
in power, area, speed, and testability [1]–[3]. Notably, func-
tions that do not produce efficient solutions in the Boolean
representation can often be realized efficiently in the RM
representation [4]–[6]. Therefore, it is necessary to estab-
lish synthesis schemes for RM logic circuits, particularly as
look-up-table based Field Programmable Gate Array (FPGA)
technology has become increasingly available and the rel-
ative cost of EXOR gates has become a non-critical factor
restricting the use of RM design approaches [7], [8]. Fixed
Polarity RM Expressions (FPRMs) are one of the canonical

The associate editor coordinating the review of this manuscript and
approving it for publication was Walter Didimo.

RM expressions. FPRMs have attracted wide attention due
to their remarkable superiority in designing easily testable
circuits, detecting symmetric variable of switching functions,
designing multi-level circuit and Boolean matching [9], [10].
Furthermore, for many practical functions, FPRMs require
fewer products than sum-of-products expressions.

Logic minimization has become a fundamental research
topic. For an n-variable logic functions, it has 2n distinct
FPRMs corresponding to 2n different polarities. A mini-
mum FPRM is one with the fewest products. Therefore,
to search the best polarity corresponding to minimum FPRM
from polarity optimization space is a typical NP-hard prob-
lem. Genetic Algorithm (GA) and its variants have been
widely used in the polarity optimization of FPRMs due to
the simplicity, robustness and inherent parallelism of GA.
(e.g., [11]–[15]).

However, the existing polarity optimization approaches,
which are mainly based on GA or its variants, have a low
convergence speed or are easily trapped into the local optimal
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solution due to the inherent defects of GA. Firstly, the selec-
tion operation makes the variance and entropy of popula-
tion evolve toward the reduction, which would result in the
decrease of population diversity. Secondly, there exists a
contradiction between the dispersion of population and con-
vergence, which leads to the slow convergence speed. Lastly,
the selection mechanism based on fitness tends to the pure
random selection when there is not much difference among
the fitness of individuals, which would make the GA fall into
the local optimal solution.

In this paper, we propose a Fast Minimization Algo-
rithm (FMA) of FPRMs. Compared to existing minimization
algorithms of FPRMs, our main contributions are as follows.

1)We propose a Binary Differential Evolution (BDE) algo-
rithm to solve the discrete binary-encoded combination opti-
mization problem, which can efficiently maintain population
diversity and achieve a better tradeoff between the exploration
and exploitation capabilities by use of proposed binary ran-
dom mutation operator and improved selection operator.

2) We propose a FPRMs minimization algorithm, called
FMA, which uses the BDE to search the minimum FPRM
with the fewest products. To the best of our knowledge, we are
the first to use differential evolution algorithm to minimize
FPRMs. It can be extended to derive a minimum mixed
polarity Reed-Muller expression.

3) We compare FMA with the GA based and Simulated
Annealing GA (SAGA) based FPRMs minimization algo-
rithms on MCNC benchmark circuits. Experimental results
demonstrate the effectiveness and superiority of FMA.

The remainder of this paper is structured as follows.
In Section II, we introduce a few preliminaries that are rele-
vant to our study. The fast minimization algorithm of FPRMs
is described in detail in Section III. Section IV presents
the experimental results. Our conclusions are presented in
Section V.

II. PRELIMINARIES
A. FPRM
Any n-variable Boolean function may be represented canon-
ically in a sum-of-products form as

f (xn−1, xn−2, . . . , x0) =
2n−1∑
i=0

aimi (1)

where 6 is an OR operator and mi are the minterms. ai are
the coefficient of minterms, and ai = 1 or 0 represents the
presence or absence of minterms, respectively.

By applying shannon theorem, the Boolean function can
be expressed as follows:

f = xn−1f (0, xn−2, . . . , x0)+xn−1f (1, xn−2, . . . , x0)

= (1⊕ xn−1)f (0, xn−2, . . . ,@0)⊕ xn−1f (1, xn−2, . . . , x0)

= f (0, xn−2, . . . , x0)⊕ xn−1[f (0, xn−2, . . . , x0)

⊕f (1, xn−2, . . . , x0)] (2)

Therefore, the XOR/AND expansion corresponding to vari-
ant xn−1 of Boolean function is as follows:

f = f0(xn−2, . . . , x0)⊕ xn−1f1(xn−2, . . . , x0) (3)

where f1(xn−2, . . . , x0) = f (0, xn−2, . . . , x0)⊕f (1, xn−2, . . . ,
x0), and f0(xn−2, . . . , x0) = f (0, xn−2, . . . , x0).
By applying shannon theorem to each variant in turn,

the Boolean function can be expressed by a FPRM as follows:

f p(xn−1, xn−2, . . . , x0) = ⊕
2n−1∑
i=0

biπi (4)

where ⊕6 denotes the modulo-2 addition, and πi =

xn−1xn−2 . . . x0 represents the products of FPRM. bi ∈ {0, 1}
represents whether or notπiappears in the function, and p =
(pn−1pn−2 . . . p0) is the polarity. In a FPRM, each variable
appears either in true or in complement form, but not both.
The polarity of FPRM can be represented by replacing each
variable with 0 or 1 depending on whether the variable is used
in true or complement, respectively. When a variable is used
in true (complement), it can be replaced with 0 (1).

B. DIFFERENTIAL EVOLUTION
Differential Evolution (DE) algorithm, which was proposed
by Storn and Price [22], is a simple yet powerful global
optimization algorithm to deal with continuous optimization
problems. It has become a new research hotspot in evolu-
tionary computation and has been successfully applied in
scientific and engineering fields. Similar to GA, DE is also
a population based algorithm, which is stochastic in nature to
find global solution in feasible individual space. Moreover,
only a few control parameters are required in comparisonwith
other competing heuristic optimizationmethods [17]. TheDE
mainly includes population initialization and three evolution-
ary operators (i.e., mutation, crossover and selection) that are
used to update the population.

1) POPULATION INITIALIZATION
In DE, each individual is an n-dimensional vector that repre-
sents a candidate solution to the problem, which is randomly
created in the search domain as follows:

xij = x lj + r × (xuj − x
l
j ) (5)

where i ∈ {1, 2, . . . ,NP}, j ∈ {1, 2, . . . , n}, xij is the j-th
component of the i-th individual xi, x lj and x

u
j are the lower

and upper bounds of xj, respectively. NPis the population
size, and r is a uniformly distributed random number in [0,1].
In initialization, all individuals are randomly generated with
the uniform probability distribution.

2) MUTATION OPERATOR
The basic idea of mutation is that the difference vector
between two individuals is taken, and a scaled version of the
difference vector is added to a third individual to create a new
candidate solution. Various other mutation schemes are listed
in Table 1 [18], where xbest is the optimal individual in current
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TABLE 1. Mutation schemes of DE.

FIGURE 1. ‘‘DE/rand/1’’ mutation operation.

population. Equation (6) is one of most popular DE mutation
schemes, which can be described by Fig.1.

vi = xr1 + F × (xr2 − xr3) (6)

where vi is a mutation vector, and F is the scaling factor
that controls the amplification of the differential vector. xr1,
xr2 and xr3 are candidate solutions, and r1, r2 and r3 are
randomly selected that satisfy r1, r2, r3 ∈ {1, 2, . . . ,NP}
and r1 6= r2 6= r3 6= i.

3) CROSSOVER OPERATOR
The trial vector ui is generated by crossing the target vector
xi with its mutation vector vi. The widely used binomial
crossover is defined as follows:

uij =

{
vij, rand < CR or j = r
xij, otherwise

(7)

where j is the index of the dimensionality n, and rand is a
stochastic number taken from the uniform distribution [0,1].
CR is the constant crossover rate in [0,1], and r is the random
number in [1,n].

4) SELECTION OPERATOR
The fitness value f (xi) of the target vector xi is compared
with the fitness value f (ui) of trial vector ui to create the new
population in the next generation. The winner will survive for
the next generation. Taking the minimization problem as an
example, the selection process is depicted as:

xnexti =

{
ui, f (ui) ≥ f (xi)
xi, otherwise

(8)

III. FAST MINIMIZATION OF FPRMS
In this section, we propose a binary version of DE according
to the polarity characteristic of FPRMs, called BDE, to find
the optimal solution in binary optimization space. Moreover,
based on the BDE, we propose a FPRMs minimization algo-
rithm, called FMA, which uses the BDE to search the best
polarity corresponding to minimum FPRM with the fewest
products. The overview of the FMA is depicted in Fig.2.

FIGURE 2. Overview of FMA.

A. BINARY DIFFERENTIAL EVOLUTION ALGORITHM
Since the polarity of FPRM can be represented by replacing
each variable with 0 or 1 depending on whether the variable
is used in true or complement, the polarity optimization of
FPRMs is binary-encoded combinational optimization prob-
lem. However, the standard DE and most of its improved
variants operate in the continuous space, which are not suit-
able for solving polarity optimization problems of FPRMs.
Moreover, the DE has not yet been used as optimizer for RM
circuits until now.

In this section, we propose a binary version of DE, called
BDE, which enables the DE to operate in binary spaces.
The structure of the BDE is similar to the standard DE so
that the advantages of DE, such as easy implementation and
parameter tuning, are inherited. Moreover, to enhance the
global convergence ability, we introduce the elitism strategy
to the BDE, namely the worst individual in current population
is replaced by the elitism individual. In addition, we propose
a binary randommutation operator and an improved selection
operator to increase the population diversity and improve the
global searching ability.

1) POPULATION INITIALIZATION
In the initialization process, the initial individuals are ran-
domly generated as follows:

xij =

{
1, r < 0.5
0, r ≥ 0.5

(9)
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After a random number r between 0 and 1 is generated, the
j-th element of i-th individual xij is set to 1 (namely, polar-
ity 1) if r is less than 1/2; otherwise, xij is set to 0 (namely,
polarity 0).

2) FITNESS FUNCTION
In BDE, the fitness function is used to evaluate the quality
of individuals. Since the higher the fitness, the better the
individual, the fitness functions is defined as follows:

fitness(xi) = 1.0/products(xi) (10)

where fitness(xi) represents the fitness value of individual
xi, and products(xi) represents the number of products cor-
responding to individual xi.

3) MUTATION OPERATOR
The use of logical mutation operator proposed in [19] has
been widely reported in many studies. The logical mutation
operator replaces the subtraction, multiplication and addition
operator with XOR, AND and OR operators. It is represented
as follows:

vi = xr1 ⊗ F ⊗ (xr2 ⊕ xr3) (11)

In the logical mutation operator, the subtraction of two
random selected vectors was represented by XOR operator,
the multiplication factor F was replaced by the AND operator,
and the OR operator was applied to replace the operation
for the addition of two randomly selected vectors. However,
the OR operator has a higher probability of production of
bit 1 in the evolution process, which could reduce the search
diversity of the optimal solution.

To avoid the premature convergence and increase the pop-
ulation diversity, we propose a binary random mutation oper-
ator, which is represented as follows:

vi,j=

{
xi,j + (−1)xi,j ·

∣∣xr2,j − xr3,j∣∣ , rand ≥ 0.5
xbest,j + (−1)xbest,j ·

∣∣xr2,j − xr3,j∣∣ , rand < 0.5

(12)

where vi,j represents the j-th element of mutation vector vi.
r2, r3 ∈ {1, 2, . . . ,NP} and r2 6= r3 6= i. xbest is the opti-
mal individual in current population, and rand is a random
number in [0,1].

Since the polarity of FPRMs is taken as 0 or 1, the absolute
value of difference vector is only 0 or 1 and the mutated
variable is still 0-1 variable. Therefore, the binary random
mutation operator satisfies the closure. Moreover, whether
or not one dimension variable can be mutated depends on
the difference vector. Specifically, the xi,j or xbest,j can be
mutated (from 0 to 1 or from 1 to 0) when

∣∣xr2,j − xr3,j∣∣ = 1,
which could increase the population diversity, improve the
global searching ability and prevent the algorithm trapping
into the local optimal solution. In addition, the probability
of xr2,j is equal to xr3,j is increasing along with the pop-
ulation evolution. The xi,j or xbest,j remain the same when∣∣xr2,j − xr3,j∣∣ = 0, which could accelerate the convergence
speed.

4) IMPROVED SELECTION OPERATOR
The traditional greed selection operator chooses the winner
with higher fitness value from target vector xi and trial vector
ui for the next generation by comparing their fitness val-
ues. However, compared to other individuals of population,
the loser may have higher fitness value. Therefore, the loser
is ignored will omit better information and reduce the con-
vergence speech. To preserve the better individual for next
generation, the improved selection operation is as follows:

W = U ∪ X (13)

where U and X represent the populations consisting of indi-
viduals ui and xi(i ∈ {1, 2, . . . ,NP}), respectively. W con-
tains all the individuals of U and X , and the NP better
individuals are selected as child population from W .

B. ALGORITHM DESCRIPTION
Based on the above description, the FMA is illustrated in
Algorithm 1, in which ‘‘Gmax’’ represents the maximum
number of iteration, ‘‘NP’’ represents the population size,
and ‘‘D’’ represents the dimensionality of decision variable.
As shown in Algorithm 1, the FPRMs of target individual and
its trial individual are obtained by using the fixed polarity
conversion algorithm [11] according to their binary codes.
Then, their fitness values are calculated according to their
FPRMs and fitness function.

Algorithm 1 FMA
Input: The evolutionary parameters
Output: The minimum FPRM
1: Read the Boolean logic circuit;
2: g← 0;
3: Initialize the population;
4: while (g < Gmax)
5: for i = 1 to NP do
6: Perform proposed binary random

mutation operator;
7: for j = 1 to D do
8: Perform the binomial crossover operator;
9: end for
10: Obtain FPRMs of target and trial individuals;
11: Calculate the fitness values of target and

trial individuals;
12: Perform proposed improved selection operator;
13: end for
14: Perform the elitism strategy;
15: g← g+ 1;
16: End
17: Output the minimum FPRM

IV. EXPERIMETNS RESULTS
The FMA has been implemented in C language, and the
programs were compiled by the GNU C complier. The
results were obtained by using a PC with Intel Core i7
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TABLE 2. Parameters and evolution operators settings for GAFMA, SAGAFMA, and FMA.

TABLE 3. Comparison of GAFMA, SAGAFMA, and FMA on the accuracy of solutions.

3.40GHz with 4G RAM under Linux. We compared the
FMA with the GA based FPRMs Minimization Algo-
rithm (GAFMA) [20] and SAGA based FPRMs Minimiza-
tion Algorithm (SAGAFMA) [21] on 24 randomly selected
MCNC benchmark circuits. Moreover, we ran the GAFMA,
SAGAFMA, and FMA 10 times on each circuit to reduce
the impact of randomness on the results. Table 2 gives the
parameters and evolution operators settings for GAFMA,
SAGAFMA, and FMA.

A. COMPARISON OF GAFMA, SAGAFMA, AND FMA ON
THE ACCURACY OF SOLUTIONS
The comparison of GAFMA, SAGAFMA, and FMA on the
accuracy of solutions are listed in Table 3. We took the
optimal solution (namely, minimum number of products cor-
responding to best polarity), average value and standard
deviation as experimental data. Column 1 shows the circuit
name. Column 2 shows the number of input variables. ‘‘min’’,
‘‘avg’’ and ‘‘std’’ represent the obtained optimal solution,
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TABLE 4. Comparison of GAFMA, SAGAFMA, and FMA on the average number of iterations and run time.

average value and standard deviation respectively, which
were taken after running each approach on each test circuit
ten times.

From the Table 3, we can find that for the circuits
with fewer variables (such as b3, xor3 and xor5), GAFMA
was able to find the optimal solution each time. However,
for the circuits that have more than 10 variables (such as
br1, table5 and duke2), the GAFMA could hardly obtain
the optimal solution. Moreover, for some circuits (such as
table5, mark1 and cordic), the corresponding average values
and standard deviations are large, which illustrates that the
GAFMA is not appropriate to solve the large-scale polar-
ity optimization problem due to its weak local searching
ability. Additionally, we can also find that the SAGAFMA
and FMA have the same searching performance for the cir-
cuits that have less than 15 variables. However, for some
circuits that have more than 15 variables (such as src1,
mark1 and cordic), although the SAGAFMA can also find
the optimal solutions, the corresponding average values and

standard deviations are larger than that of FMA. In addition,
we can find that for the 24 test circuits, there are 21 circuits
whose minimum FPRMs can be obtained by FMA each time
(namely, the corresponding standard deviation is 0) and there
are 17 circuits whose minimum FPRMs can be obtained
by SAGAFMA each time. Therefore, from the comparison
experiment we can come to the conclusion that the FMA
outperforms GAFMA and SAGAFMA on almost all the test
circuits in terms of the accuracy of solutions.

B. COMPARISON OF GAFMA, SAGAFMA, AND FMA ON
THE AVERAGE NUMBER OF ITERATIONS AND RUN TIME
The comparison of GAFMA, SAGAFMA, and FMA on the
average number of iterations and run time (in CPU seconds)
over 10 independent run are listed in Table 4. Columns 3 and
4 show the average number of iterations and run time of
GAFMA. Columns 5 and 6 show the average number of
iterations and run time of SAGAFMA. Columns 7 and 8 show
the average number of iterations and run time of FMA.
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FIGURE 3. Convergence comparison of GAFMA, SAGAFMA, and FMA. (a) bw. (b) rd84. (c) 14_4color. (d) src1. (e) mark1. (f) duke2.

Columns 9 and 10 denote the percentage of the number of
iterations and run time saved by FMA compared to GAFMA,
which are defined as:

Save1iteration =
GAFMAiteration−FMAiteration

GAFMAiteration
×100%0

(14)

Save1time =
GAFMAtime − FMAtime

GAFMAtime
× 100% (15)

Columns 11 and 12 denote the percentage of the number
of iterations and run time saved by FMA compared to

SAGAFMA, which are defined as:

Save2iteration =
SAGAFMAiteration−FMAiteration

SAGAFMAiteration
×100%

(16)

Save2time =
SAGAFMAtime−FMAtime

SAGAFMAtime
×100% (17)

From the Table 4, it is clear that the FMA outperforms
the GAFMA and SAGAFMA in improving the minimiza-
tion efficiency of FPRMs. Compared to the GAFMA, the
greatest improvement in the number of iterations and run
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time, which were made by FMA, are 92.86% and 98.09%,
respectively. Moreover, compared to the SAGAFMA, the
greatest improvement in the number of iterations and run
time, which were made by FMA, are 83.33% and 96.22%,
respectively. Therefore, it is concluded that compared to the
GAFMA and SAGAFMA, the FMA has higher minimization
efficiency both for the small-scale circuits and large-scale
circuits.

C. COMPARISON OF GAFMA, SAGAFMA, AND FMA
ON THE CONVERGENCE
In order to get a comprehensive analysis on the convergence
of GAFMA, SAGAFMA, and FMA, we selected 6 represen-
tative MCNC benchmark circuits, namely, two small-scale
circuits bw and rd84, two medium-sized circuits 14_4color
and src1, and two large-scale circuits mark1 and duke2.
Fig.3 shows the convergence comparison of GAFMA,
SAGAFMA, and FMA in every 5 iterations, in which each
algorithm was run 10 times on each circuit and the average
values were used as the experimental data. Moreover, the hor-
izontal axis shows the number of iterations, and the vertical
axis shows the number of products.

As can be seen from the Fig.3, the convergence speed
of GAFMA is much slower than that of SAGAFMA and
FMA, and the GAFMA could not converge to the global
optimal solutions except for the small-scale test circuit bw.
In addition, it can be seen that the convergence curves of
SAGAFMA and FMA have similar changing tendency. How-
ever, the convergence speed of FMA is much faster than that
of SAGAFMA. Specifically, the FMA converges in 4 itera-
tions while SAGAFMA needs 7 iterations on rd84; the FMA
converges in 10 iterations while SAGAFMA needs 23 itera-
tions on 14_4color; the FMA converges in 29 iterations while
SAGAFMA needs 37 iterations on src1; the FMA converges
in 30 iterations while SAGAFMA needs 40 iterations on
mark1; the FMA converges in 34 iterations while SAGAFMA
needs 45 iterations on duke2. Moreover, it is worthy of noting
that compared to the SAGAFMA, the FMA can derive either
the same or better solutions.

V. CONCLUSION
Minimization of FPRMs is a computationally hard problem,
because the polarity optimization space increases exponen-
tially with the increase of the number of input variables.
In this paper, we propose a fast minimization algorithm of
FPRMs, called FMA, which uses proposed BDE to search
the best polarity corresponding to minimum FPRM with
the fewest products. The experimental results over MCNC
benchmark circuits demonstrate that the FMA performs supe-
rior to, or at least comparable to, the GA based and SAGA
based FPRMs minimization algorithms in terms of the accu-
racy of solutions and solving efficiency, and confirm the
application of BDE as a promising tool for solving the
polarity optimization problem of FPRMs. In future, we will
study an efficient ternary-encoded DE algorithm to minimize
mixed polarity RM expressions.
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