
SPECIAL SECTION ON THEORY, ALGORITHMS,
AND APPLICATIONS OF SPARSE RECOVERY

Received December 5, 2018, accepted December 21, 2018, date of current version February 22, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2894681

Brainstorming-Based Ant Colony Optimization
for Vehicle Routing With Soft Time Windows
LIBING WU1,2, (Member, IEEE), ZHIJUAN HE 1, YANJIAO CHEN 1, DAN WU3,
AND JIANQUN CUI4
1School of Computer Science, Wuhan University, Wuhan 430072, China
2Hubei Key Laboratory of Transportation Internet of Things, Wuhan University of Technology, Wuhan 430070, China
3School of Computer Science, University of Windsor, Windsor, ON N9B 3P4, Canada
4School of Computer Science, Central China Normal University, Wuhan 430079, China

Corresponding author: Yanjiao Chen (chenyj.thu@gmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61772377, Grant 61672257, and Grant
61702380, in part by the Natural Science Foundation of Hubei Province of China under Grant 2017CFA007 and Grant 2017CFB134,
in part by the Science and Technology Planning Project of Shenzhen under Grant JCYJ20170818112550194, in part by the Fund of Hubei
Key Laboratory of Transportation Internet of Things under Grant WHUTIOT-2017A0011, in part by the Technological Innovation Projects
of Hubei Province under Grant 2017AAA125, and in part by the Equipment Pre-Research Joint Fund of Ministry of Education of China
(Youth Talent) under Grant 6141A02033327.

ABSTRACT In this paper, we propose a novel ant colony optimization algorithm based on improved brain-
storm optimization (IBSO-ACO) to solve the vehicle routing problem with soft time windows. Compared
with the traditional ant colony algorithm, the proposed IBSO-ACO can better address the local optimum
problem, since we have carefully designed an improved brainstorming optimization algorithm to update
the solutions obtained by the ant colony algorithm, which enhance the solution diversity and the global
search ability. Furthermore, we use the classification method to accelerate the convergence of the proposed
algorithm. The extensive experimental results have confirmed that the proposed IBSO-ACO algorithm can
achieve a lower routing cost at a high convergence rate than the traditional ant colony algorithm and the
simulated annealing ant colony algorithm.

INDEX TERMS Vehicle routing problem with soft time window, improved brainstorm optimization.

I. INTRODUCTION
In light of achieving efficient logistics, to minimize trans-
portation cost while meeting the time requirement has long
been the interest of both industrial and academia communi-
ties. Vehicle routing optimization aims at finding a solution
that uses a minimum number of vehicles that travel along
optimal routing paths to serve clients at their required time
windows. There are two kinds of vehicle routing optimization
problems with time windows: one is that vehicles arriving
in time windows that are not required by customers will be
rejected, that is, vehicle routing optimization with hard time
windows; the other is that vehicles arriving in time windows
that are not required by customers will suffer penalty costs,
that is, vehicle routing optimization with soft time windows.

In this paper, we focus on the problem of optimal vehicle
routing with soft time windows. That is, finding a solution
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approving it for publication was Yin Zhang.

that uses a minimum number of vehicles along the optimal
route to serve the customer at the time window that the
customer needs, and if the vehicle arriving later than the
required time will suffer penalty costs. Existing works in
this area mostly leverage the ant colony optimization (ACO)
algorithm [1]–[4], particle swarm optimization [5], and so
on [6]. However, the traditional ACO algorithm may eas-
ily be trapped in local optimum due to a limited solution
space [7], [8]. Several alternative algorithms have been pro-
posed to address the local optimum problem. In [9], a simu-
lated annealing ant colony algorithm (SAACO) is designed to
conduct path planning for vehicle routing problems. In [10],
an improved ant colony algorithm with a new pheromone
update rule is proposed. In [11], a hybrid particle swarm
optimization is proposed for emergency relief vehicle routing
problems. Although these algorithms partially resolve the
problem of local optimum, they mainly focus on the vehicle
routing problem with hard time windows but not soft time
windows.
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In addition, in [12], a large-scale domain search is done
for the vehicle routing optimization problem with soft time
windows. In [13], scholars try to solve the vehicle routing
optimization problem with soft time windows by using a
unified tabu search algorithm. Later, simulated annealing ant
colony algorithm (SAACO) appeared to solve the problem
that ant colony algorithm is easy to fall into local optimum
to a certain extent. The corresponding problem model of the
Mouthuy’s VNS algorithm is different from that of this paper.
And we can know that SAACO algorithm is better than tabu
search algorithm through literature from [14]. So we choose
the SAACO algorithm to do the contrast experiment.

There are many related works. In [15], scholars have done
some research on edge cloud communication. In the aspect
of vehicle network, [16] and [17] has done some research
on vehicle network communication, [18] and [19] has paid
attention to the safety of vehicle network, and some big data
analytics of cloud/IoT, such as [20]. In addition, [21] has
discussed vehicle network data scheduling.

In this paper, we propose a novel ant colony optimiza-
tion algorithm based on improved brainstorm optimization
(referred to as IBSO-ACO), which enriches the solution
space to achieve the global optimum for vehicle routing
with soft time windows. We believe that this is the first
work to leverage the brainstorm optimization to address
the defect of local optimum for the ant colony algorithm.
Our carefully-designed improved brainstorm optimization
algorithm randomly generates and replaces the solutions
obtained by the ant colony algorithm under certain condi-
tions, then the pheromones for the ant colony algorithm are
updated to provide a positive feedback for the next round of
iteration.

In the experimental part, In the experimental part,
we choose the SAACO algorithm, which is a representative
of the improved ACO algorithm. We compare IBSO-ACO
algorithm with a representative SAACO algorithm and tra-
ditional ACO algorithm. Finally, the proposed algorithm will
converge to the approximate global optimal solution(because
of combinatorial optimization) to the vehicle routing problem
with soft time windows, and the result is better than which
SAACO algorithm and the traditional ACO algorithm get.

Our contributions in this paper are as follows:
• An improved brainstorm algorithm is first designed to
tackle the problem of local optimum in the traditional
ant colony algorithm for vehicle routing problems with
soft time windows.

• A novel improved brainstorm optimization algorithm
is designed to enrich the diversity of solutions of the
ant colony algorithm. The proposed iBSO-ACO algo-
rithm can improve the shortcomings of the traditional
ACO algorithm which is easy to fall into the local opti-
mal solution.

• Extensive experiments have been conducted to demon-
strate that our proposed algorithm outperforms bench-
mark algorithm in reducing the transportation cost at a
higher convergence rate.

II. SYSTEM MODEL
In the vehicle routing problem (VRP) with time windows,
if the vehicle does not arrive within the required time of
the client, there are two options: 1) direct rejection, i.e., the
VRP problem with hard time windows [22]–[25]; 2) adding
penalties in the objective function, i.e., the VRP problem
with soft time windows [26]–[29]. Note that VRP problems
with soft time windows can be transformed into the one with
hard time windows by setting service rejection as the penalty.
Therefore, in this paper, we only consider VRP problemswith
soft time windows (referred to as VRPS).

We consider a transportation system consisting of
N clients. LetG = (V ,E) [30] denote the transportation map,
in which: 1) V is the set of all nodes including the distribution
center node and the client nodes; in particular, v0 represents
the distribution center(only have one distribution center in
this model), and vi, i ∈ [1,N ] represents client; 2) E is the set
of edges, denoting the section of roads that the vehicles travel.
Let cij denote the total cost of traveling the route between vi
and vj, and di denote the demand of client vi. Let Qk be the
maximum load that vehicle k can bear. We use xijk = 1 to
denote that vehicle k has visited the route between vi and vj,
otherwise xijk = 0. The earliest and the latest time that client
vi requires the vehicle to arrive are tei and t li respectively.
Let tik denote the time that vehicle k arrives at client vi.
If tik < tei , the waiting cost per unit time is cw. If tik > t li , the
penalty cost per unit time is cp.

Our objective is to derive the route and the number of
required vehicles (denoted by K ) to serve all clients with the
lowest total cost of transportation, which includes not only the
cost of traveling and vehicle scheduling(which is proportional
to the number of vehicles), but also the penalty cost. The
objective function of our VRPS problem is:

min
K∑
k=1

N∑
i=0

N∑
j=0

cijxijk

+ cw
N∑
i=1

K∑
k=1

(
N∑
j=1

xijk )×max{(tei − tik ), 0}

+ cp
N∑
i=1

K∑
k=1

(
N∑
j=1

xijk )×max{(tik − t li ), 0}, (1)

in which cij is computed as:

cij =

{
c0kK + cssij, i = 0,
cssij, i 6= 0,

(2)

in which c0k is the scheduling cost at the distribution center;
K is the number of vehicles required; cs is the travel cost per
unit distance; sij is the distance from client vi to client vj.
Specifically, when i = 0, the more vehicles you need,
the greater the total cost. We jointly consider minimizing the
number of vehicles and the travelling distance of all vehicles.

Our objective function considers the cost of vehicle
scheduling (which is related to the number of vehicles),
the distance between vehicles (the distance after the vehicle
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is launched), and the time penalty cost (which is related to
the early arrival time and the late arrival time). It is a multi-
objective problem and minimizes the number of vehicles,
the distance between vehicles and the time penalty cost.

The constraint [31] of our VRPS problem is:

N∑
i=1

xi0k = 1, ∀i = 1, · · · ,N ; (3)

N∑
i=0

K∑
k=1

xijk = 1, ∀j = 1, · · · ,N ; (4)

N∑
j=0

K∑
k=1

xijk = 1, ∀i = 1, · · · ,N ; (5)

N∑
i=0

di(
N∑
j=0

xijk ) ≤ Qk , ∀k = 1, · · · ,K ; (6)

tik ≥ 0, ∀i = 1, · · · ,N , ∀k=1, · · · ,K . (7)

Constraint (3) means that each vehicle has to leave the
distribution center v0 first, and return to the distribution center
v0 after the service is completed. Constraints (4) and (5)
restrain that each client is served by exactly one vehicle;
Constraint (6) means that the load of a vehicle should be less
than its maximum load capacity. Constraints (7) show that the
arriving time should be non-negative.

III. IBSO-ACO ALGORITHM
In this section, we first introduce the traditional ACO algo-
rithm. Then, we propose an improved brainstorming opti-
mization (IBSO) algorithm to update the solutions obtained
from the ACO algorithm, termed as IBSO-ACO. Finally,
we demonstrate how to update the parameters in the
IBSO-ACO algorithm to form a positive feedback loop.

A. THE BASIC ACO ALGORITHM
When ants try to find food, they leave pheromones on the
paths that they have traveled. An ant will select the path
to food based on the quantity of pheromones. The more
pheromones left on a path, the more likely an ant chooses
this path, thus more ants will gather on the path with the
most pheromones to find the optimal path. Pheromones will
volatilize over time. As shown in Fig. 1, node F is the
anthill; node N is the food location; A,B,C are the inter-
mediary location nodes; the solid triangles represent ants;
and FC,FA,AC,CN ,CB,BN are the paths that ants can.
Consider a group of ants that travel from F to N for food.
Initially, ants are randomly distributed on each path, as shown
in the first stage. Then, more and more ants come to path
F → C → N , as shown in the second stage. Finally, almost
all ants gather on path F → C → N , as shown in the third
stage, while nearly no ants stay on other paths.

Suppose there are N clients, and the pheromone on each
edge(the line between the two clients is called edge) is initi-
ated as 0, the collection of all edges that ants travel through
is called a path. In ACO algorithm, assuming that there

FIGURE 1. An illustrative example of the basic ACO algorithm.

are T iterations, pheromones are updated once each itera-
tion path is completed. At round τ , the probability of ant
m traveling from node i to node j can be represented as:

Pijm(τ ) =


γij
α(τ )ηijβ∑

j∈Bm
γijα(τ )ηijβ

, if j ∈ Bm,

0, otherwise,

(8)

in which Bm is the set of nodes that ant m has not visited
and can choose as the next node with a certain probability;
γij(τ ) is the quantity of pheromones on edge eij between node
i and node j at round τ ; α is the influence of pheromones on
the ant colony search; ηij = 1/sij is the visibility of edge eij,
which is the inverse of the distance sij; β [32] is the influence
of visibility on the ant colony search, and the greater β is,
the more likely that ants will take the highly-visible path.

To begin with, all ants start from the anthill with a load
of zero. Then, each ant iteratively selects the next node
according to equation (8) until there is no node that has not
been visited, i.e., Bm is empty. Upon choosing a candidate
node according to equation (8), the ant will add the load of
the node to its current load. If the resulting load is less than
ant m’s load limit, ant m will move to that node and remove it
from the non-visiting set Bm; otherwise, ant m will return to
the anthill, where its load is reset to zero and it will continue
to select the next node. The algorithm terminates when every
ant has completed a round of search (the non-visiting set Bm
for any ant is empty).

The ACO algorithm can be used to help solve the
VRPS problem by using a cluster of ants(a total of M ants)
to generate the routing solution. Each ant starts with a load of
zero, and a load capacity of Q1. The node selection sequence
of the ant forms the routing path of the first vehicle. The load
of the node is the demand of the client. Whenever the ant
returns to the anthill due to overload, we deem that a new
vehicle is required. The load of the ant is reset to zero, and the
load capacity is set as that of the second vehicle. Such process
continues until all nodes are covered by the ant, i.e., all client
nodes are served by vehicles. The number of required vehicles
equals the number of times that the ant returns to the anthill,
and their corresponding paths can be obtained. With M ants
running the ACO algorithm for one round of search, we can
get M solutions for the VRPS problem.
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Algorithm 1 The IBSO-ACO Algorithm
Require: Maximum number of iterations T , the transporta-

tion map (V ,E), the number of ants M .
Ensure: The optimal routing path.
1: if τ ≤ T then
2: for all ant m ∈ [1,M ] do
3: The load lm = 0;
4: The non-visiting set Bm = V ;
5: end for
6: for all Ant m ∈ [1,M ] do
7: k = 1.
8: while |Bm| > 0 do
9: Select a node vi according to equation (8).
10: Update the load lm = lm + di.
11: if lm ≤ Qk then
12: The next node is vi.
13: Remove node vi from the non-visiting set Bm.
14: else
15: Return to v0.
16: k = k + 1.
17: lm = 0.
18: end if
19: end while
20: end for
21: The solution set of one round of search is

{(Sm,Cm)}m∈[1,M ].
22: Update the solution set using the IBSO algorithm.
23: Update the pheromones of all edges using the tradi-

tional ACO algorithm(according to equation (8)).
24: end if

B. UPDATE ACO SOLUTIONS WITH IBSO ALGORITHM
Although the traditional ACO algorithm has many nice
properties, it usually suffers from the local optimum prob-
lem. Therefore, we propose an improved brainstorming opti-
mization algorithm to enrich the solutions obtained by the
ACO algorithm.

After running the ACO algorithm to complete one round
of search for the VRPS problem, we can obtainM solutions.
The solution of ant m is denoted as (Sm,Cm), in which Sm is
the overall routing path, and Cm is the total cost. We design
an improved BSO algorithm (IBSO) to update the solution
set obtained by the ACO algorithm. The BSO algorithm [33]
is a heuristic intelligent optimization algorithm based on the
idea of brainstorming. The basic BSO algorithm works as
follows:

• Randomly generate M solutions. Set the thresholds
p1, p2, p3, p4.

• Divide theM solutions into several clusters using the k-
means clustering algorithm. The center of each cluster
is the optimal solution within the cluster;

• Randomly select a cluster, and generate a random num-
ber r1 ∈ (0, 1). If r1 < p1, generate a random solution
to replace the center of the cluster;

• Generate a new solution:
– Generate a random number r2 ∈ (0, 1). If r2 < p2,

randomly select a cluster, then generate a random
number r3 ∈ (0, 1). If r3 < p3, generate a new
solution by adding random values to the center of
the cluster; otherwise, randomly select a non-center
solution from this cluster and add a random value to
the solution to generate a new solution. If r2 > p2,
randomly select two clusters, and produce a random
number r4 ∈ (0, 1). If r4 < p4, combine the
centers of the two clusters and add a random value
to generate a new solution; otherwise, combine two
randomly-selected non-center solutions of the two
clusters and add a random value to generate a new
solution.

– The newly generated solution is compared with the
original solution with the same index, and the better
one is kept.

We leverage the clustering and randomization rationale of
the basic BSO algorithm to achieve solution diversity and
to avoid local optimum of the ACO algorithm. The initial
solution set of all vehicles after ACO is {(Sm,Cm)}m∈[1,M ].
Our proposed IBSO algorithm updates the solution set as
follows:
• Divide the solution set into cluster A and cluster B.
Cluster A contains all solutions with a cost lower than
(Cmin + Cmax)/2, and cluster B contains the remain-
ing solutions. The optimal solution of cluster A is
(Samin,C

a
min), which is also recorded as its cluster center,

a represents clusterA. The optimal solution of cluster B
is (Sbmin,C

b
min), which is also recorded as its cluster

center, b represents cluster B.
• For cluster A, replace each solution by a randomly-
generated solution.

• For cluster B, randomly generate a solution (S temp,
C temp), then generate a randomnumber r ∈ (0, 1). In this
algorithm, we set a probability p. If r < p, replace the
cluster center (Sbmin,C

b
min) with (S

temp,C temp) ifC temp <

Cb
min. If r ≥ p, randomly select and replace a non-center

solution (Sbk ,C
b
k ) with (S temp,C temp) if C temp < Cb

k .
It should be noted that p is a probabilistic parameter.
We have done a lot of work in choosing the parameters
of probabilistic algorithm before choosing the value of p.
We have chosen the parameter p which is relatively
suitable for solving VRPS problem, so as to maximize
the performance of IBSO-ACO algorithm.

• We regenerate the new solution by using the basic
ACO algorithm.

For cluster A, during the update, new solutions directly
replace previous solutions. Since each initial solution in clus-
ter A has a cost lower than (Cmin + Cmax)/2, the difference
between solutions after updating is relatively large, which
helps maintain the diversity and avoid local optimum to
a certain extent. For cluster B, a randomly-generated new
solution will be accepted with a probability only if the cost
of the new solution is smaller than that of the solution to be
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TABLE 1. Performance comparison on standard experiments.

FIGURE 2. IBSO-ACO algorithm optimal solution.

replaced (center or non-center). Since each initial solution in
cluster B has a cost greater than (Cmin + Cmax)/2, it is more
likely that high-cost solutions will be replaced by low-cost
solutions. In this way, the proposed IBSO-ACO algorithm can
improve the convergence rate while maintaining the diversity
of solutions.

C. PHEROMONE UPDATE
After the solution set obtained by the ACO is updated by the
IBSO algorithm, the pheromones need to be updated for the
next iteration to give a positive feedback. The pheromone of
round τ is γij(τ ), and we have the update rule as:

γij(τ + 1) = (1− ρ)γij(τ )+
M∑
m=1

1γmij (τ ), (9)

in which ρ is the parameter for pheromone evaporation;
1γij

k (τ ) is the quantity of pheromones generated by vehicle
(ant) k on edge eij at round τ . If vehicle k passes edge eij
in round τ , 1γijk (τ ) = P/Lk , otherwise 1γijk (τ ) = 0.
The constant P represents the total amount of informa-
tion, whose value affects the positive feedback of the algo-
rithm and thus affects the convergence rate of the algorithm.
Lk represents the total length of path that ant m has traveled
in this iteration. 1γij(0) are initiated as 0 (in order to better
highlight the performance of IBSO-ACO algorithm, we set
the initial pheromone to 0).

The updated solution set at iteration τ contains both the
optimal solution of the ACO algorithm at iteration τ and the
random solutions generated by the IBSO algorithm, which
enriches the diversity of pheromone distribution. The more

FIGURE 3. Performance comparison on small-scale experiment.

pheromones a path has, the greater the probability that each
vehicle will choose this path in the next iteration. Since
pheromones also exist on a small number of randomly-
generated paths, they may be chosen by vehicles in the next
iteration as well, which helps prevent local optimum. We will
run ACO followed by IBSO for multiple iterations until the
optimal cost converges or until the maximum number of
iterations is hit. We summarize the IBSO-ACO algorithm
in Alg. 1.

IV. EXPERIMENTS
We implement the proposed IBSO-ACO algorithm using
MATLAB, running on a desktop with Intel Core i5-3230M,
CPU 2.6GHz. Experiments are conducted on a small-scale
17 client nodes and on the standard test data of Solomon
(100 client nodes) [34], respectively. We choose Solomon for
our experiment because it is the most classic data set and it
makes experiment more convincing, in this study, we selected
a representative data set from each of the six types of Solomon
data sets and carried out experiments on these six data sets.
We compare the performance of the proposed IBSO-ACO
algorithm with that of the basic ant colony algorithm (ACO)
and the simulated annealing ant colony algorithm (SAACO).
The parameters for the ACO algorithm are: α = 1, β = 5,
ρ = 0.75,H = 100,M = 40,T = 150. The parameters of
SAACO are: the range of the temperature θ ∈ [θmin, θmax],
in which the initial temperature of the system is θmax = 20,
the lowest temperature is θmin = 1, the cooling coefficient is
r = 0.85. The parameters of IBSO-ACO are: p = 0.005,
the other parameters are the same as those of the
ACO algorithm.
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FIGURE 4. Convergence comparison. (a) C1-01. (b) C2-01. (c) R1-01. (d) R2-01. (e) RC1-03. (f) RC2-05.

TABLE 2. The client information.

A. SMALL-SCALE EXPERIMENTS
The information of the 17 client nodes is shown in Table 2.
Fig. 2 demonstrates the optimal paths obtained by the pro-
posed IBSO-ACO algorithm: vehicle 1: 0 → 10 → 12 →
16→ 6→ 0; vehicle 2: 0→ 3→ 5→ 2→ 1→ 0;vehicle
3: ÂŽ0 → 13 → 11 → 4 → 0; vehicle 4: 0 → 7 → 8 →
15→ 14→ 0; vehicle 5: 0→ 9→ 17→ 0.

TABLE 3. Performance comparison on small-scale experiments.

Fig. 3 compares the convergence rate and the optimal
solution of the three algorithms. It is shown that the cost of the
routing solution obtained by the IBSO-ACO algorithm is the
smallest. The IBSO-ACO algorithm converges at iteration 69
with an optimal cost of 1987.37, which is 18.33 less than the
optimal cost of SAACO, and 35.40 less than the optimal cost
of ACO.

We run the three algorithms each 10 times for each data
set, and show the average results in Table 3. The average
number of iterations for IBSO-ACO to converge is 59, which
is lower than that of ACO and SAACO, which confirms that
IBSO-ACO has a fast convergence rate. The average optimal
cost of IBSO-ACO after 20 runs is 2049.25, lower than that
of SAACO (2059.12) and ACO (2061.96), which indicates
that IBSO-ACO can yield relatively stable results within
limited iterations. The experiment results have verified that
IBSO-ACOhas improved cost, convergence rate and stability.

B. STANDARD EXPERIMENT
We have chosen six datasets with different client dis-
tributions from the Solomon test data, that is, R1-01,
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TABLE 4. The cost reduction of IBSO-ACO.

C1-01, RC1-03, R2-01, C2-01 and RC2-05 from the test data
set. We know that according to the distribution of points,
the whole Solomon data set can be divided into six types, each
of which has ten similar data sets, totaling 60. Solomon has
six types of data sets, we select a representative data set from
each kind of Solomon data set, and carry out experiments on
these six different types of data sets.So we use six represen-
tative data sets to represent the results of 60 data sets.

We run the three algorithms for 10 times, and show the
average results in Table 1. The average number of iter-
ations for IBSO-ACO to converge is faster than that for
SAACO and ACO. Compared with SAACO and ACO,
IBSO-ACO can achieve a better optimal solution for all
datasets because IBSO-ACO has a higher global search
capability. Furthermore, the average optimal solution of
IBSO-ACO after 10 runs is the closest to the final optimal
solution, which indicates that IBSO-ACO can potentially
achieve a more stable results than SAACO and ACO. Table 4
shows the cost reduction of IBSO-ACO relative to SAACO
and ACO. It confirms that IBSO-ACO can greatly decrease
the cost compared with SAACO and ACO, especially for
clustering type C examples C1-01 and C2-01.

Fig. 4 compares the convergence rate of the three algo-
rithms. For each dataset, the optimal solution obtained by
IBSO-ACO is superior to those obtained by the other two
algorithms. For C2-01 and RC2-05, the convergence rate of
IBSO-ACO is much faster than the other two algorithms;
while for R1-01, R2-01 and RC1-03, the convergence rate
of IBSO-ACO is slower than the other two algorithms. This
indicates that IBSO-ACO is more suitable for solving VRPS
problems where the client node is more agglomerated.

Fig. 5 show the optimal solution of each iteration and
the vehicle routing result obtained by IBSO-ACO on data
set C1-01. As shown in Fig. 5, IBSO-ACO converges with
82 iterations and the optimal cost 58962.41. The required
number of vehicles is 10. The optimal routing path obtained
by the proposed IBSO-ACO algorithm is shown in Table 5.

Fig. 6 show the optimal solution of each iteration and
the vehicle routing result obtained by IBSO-ACO on data
set C2-01. As shown in Fig. 6, IBSO-ACO converges with
11 iterations and achieves the optimal cost 52813.15. The
required number of vehicles is 10. The optimal routing path
obtained by the proposed IBSO-ACO algorithm is shown
in Table 6.

Fig. 7 show the optimal solution of each iteration and
the vehicle routing result obtained by IBSO-ACO on data

FIGURE 5. Global vs local optimum (C1-01).

TABLE 5. The routing path of IBSO-ACO(C1-01).

FIGURE 6. Global vs local optimum (C2-01).

set R1-01. As shown in Fig. 7, IBSO-ACO converges with
137 iterations and the optimal cost 86892.40. The required
number of vehicles is 8. The optimal routing path obtained
by the proposed IBSO-ACO algorithm is shown in Table 7.
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TABLE 6. The routing path of IBSO-ACO(C2-01).

FIGURE 7. Global vs local optimum (R1-01).

TABLE 7. The routing path of IBSO-ACO(R1-01).

Fig. 8 show the optimal solution of each iteration and
the vehicle routing result obtained by IBSO-ACO on data
set R2-01. As shown in Fig. 8, IBSO-ACO converges with
50 iterations and the optimal cost 70304.23. The required

FIGURE 8. Global vs local optimum (R2-01).

TABLE 8. The routing path of IBSO-ACO(R2-01).

FIGURE 9. Global vs local optimum (RC1-03).

number of vehicles is 8. The optimal routing path obtained
by the proposed IBSO-ACO algorithm is shown in Table 8.

Fig. 9 show the optimal solution of each iteration and the
vehicle routing result obtained by IBSO-ACO on data set
RC1-03. As shown in Fig. 9, IBSO-ACO converges with
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TABLE 9. The routing path of IBSO-ACO(RC1-03).

FIGURE 10. Global vs local optimum (RC2-05).

TABLE 10. The routing path of IBSO-ACO(RC2-05).

148 iterations and the optimal cost 77535.66. The required
number of vehicles is 10. The optimal routing path obtained
by the proposed IBSO-ACO algorithm is shown in Table 9.

Fig. 10 show the optimal solution of each iteration and
the vehicle routing result obtained by IBSO-ACO on data set
RC2-05. As shown in Fig. 10, IBSO-ACO converges with
48 iterations and the optimal cost of 69994.34. The required
number of vehicles is 10. The optimal routing path obtained
by the proposed IBSO-ACO algorithm is shown in Table 10.

V. CONCLUSION
In this paper, we have investigated the problem of vehicle
routing with soft time window and proposed a novel algo-
rithm based on ant colony optimization and brainstorm opti-
mization. To address the issue that the traditional ant colony
algorithm may fall into local optimal, we have carefully
designed an improved brainstorm optimization algorithm to
enrich the diversity of the set of solutions obtained by the ant
colony algorithm. We have conducted extensive experiments
to evaluate the performance of the proposed algorithm, and
the results have verified the superiority of our proposed algo-
rithm over traditional ant colony algorithm and the simulated
annealing ant colony algorithm in that the total transport cost
is reduced at a higher convergence rate.
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