
Received December 28, 2018, accepted January 26, 2019, date of publication February 11, 2019, date of current version April 8, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2897405

A Method of Automatically Evolving Feature
Models of Software Product Lines
JUNQI REN 1,2, LEI LIU1, PENG ZHANG 1,2, AND WENBO ZHOU 1,2
1College of Computer Science and Technology, Jilin University, Changchun 130012, China
2Key Laboratory of Symbolic Computation and Knowledge Engineering (Jilin University), Ministry of Education, Changchun 130012, China

Corresponding author: Peng Zhang (zhangpengccst@jlu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61300049, Grant 61502197, and
Grant61503044, in part by the Natural Science Research Foundation of Jilin Province of China under Grant 20190201193JC, Grant
20180101053JC, and Grant 20150101054JC, in part by the China Postdoctoral Science Foundation under Grant 2016M591482 and Grant
2016M590254, and in part by the Graduate Innovation Fund of Jilin University under Grant 101832018C025.

ABSTRACT A software product line is a kind of software, which generates software products with similar
functionality by reusing assets. A feature model is extracted from requirements documents to represent
each functional module of a software product line and the relationship among functionality. During the
evolution of a software product line, a feature model always needs to be rebuilt. The rebuilding process
cannot guarantee the correctness of the reconstructed feature model. Therefore, we propose a method of
automatically evolving feature models of software product lines with evolutionary requirements to solve the
repeated reconstruction and reduce errors in reconstruction. In the method, a formal model of feature models
is constructed by communication membrane calculus, then the formal evolutionary requirements can change
the formal model automatically, finally the changed formal model is mapped to the reconstructed feature
model. The several experiments are carried out by open feature models, and the results of experiments not
only verify the effectiveness of the proposed method but also show the method can be used to test whether the
software product line evolves according to the requirements. The method can automatically change feature
models of software product lines to avoid mistakes when people modify the feature model.

INDEX TERMS Software product line, feature model, communication membrane calculus, evolutionary
requirement.

I. INTRODUCTION
A software product line (SPL) is a kind of software that
generates software products family through the reuse of assets
according to the customers’ needs [9], [29], [35]. The soft-
ware product family is a series of software products pro-
duced by SPL having the same basic functionality and similar
other functionality. This approach of developing software
through reuse of asset saves development timewhile reducing
the upfront cost of the product and reducing development
risk [1], [3], [7], [21], [33]. The design of SPL in industrial
needs to meet the increasing needs of users, which requires
SPL not only to have a long life cycle but also to have a stable
architecture and a mechanism to respond to changes [15].
However, with the maturity of SPL technology, the scale
of SPL and its functionality is increasing gradually, at the
same time the difficulty and risk of evolving SPL are rising

The associate editor coordinating the review of this manuscript and
approving it for publication was Hailong Sun.

gradually. Compare with the traditional software evolution,
SPL also has three ways of evolution: adding, deleting and
modifying. But there are some differences between the SPL
evolution and the evolution of traditional software. In the SPL
evolution, we can add or delete a software with some func-
tionality related to SPL into or from the original product lines,
instead of adding or deleting some functionality in traditional
software [22]. This unique way of adding and deleting makes
the evolution of SPL more massive and difficult.

A feature model is a tool that can describe software func-
tionality and functionality structure [14]. A feature model has
a wide range of applications in SPL. It can not only describe
the functional structure of SPL but also describe the structure
of a software product generated by SPL. Feature models play
an irreplaceable role in SPL and an integral role in the SPL
evolution. Heradio et al. through access to 175 articles about
the SPL from 1995 to 2014, get an important conclusion
about the feature model: Feature modeling has been the
most important topic in the whole SPL research area [18].

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

39253

https://orcid.org/0000-0002-4679-3654
https://orcid.org/0000-0001-9157-543X
https://orcid.org/0000-0002-1009-4544


J. Ren et al.: Method of Automatically Evolving Feature Models of SPLs

And Montalvillo et al. through access to 107 articles about
the evolution of the SPL, get another critical conclusion about
the feature model: in the past 15 years, the feature model is
the most critical topic in the research of SPL evolution [25].

At present, most of the articles about SPL evolution are
using the feature model of SPL to determine the influence
scope of evolution. And then ensuring the correctness of
evolution [25]. In order to ensure the availability of feature
models for the next evolution after using a feature model to
evolve SPL, it needs to change the feature model accordingly
after each of the evolving SPL assets. When the SPL evolves,
it needs domain experts to reconstruct the feature model by
the existing modeling standards. This process relies on the
experience of modelers and their understanding of require-
ments. It cannot guarantee the correctness of the recon-
structed feature model. Therefore, we present a method of
automatically evolving feature models of SPL (AutoEvoSPL)
by a kind of formal method and evolutionary requirements.
This formal method can automatically determine the range
of evolution and automatically change feature models. It can
avoid the error of artificial modification of the feature model.
In AutoEvoSPL, we formalize a feature model and the evo-
lution process of a feature model by Communication Mem-
brane Calculus (CMC) [31]. We will use the key informa-
tion extracted from the evolutionary requirements to change
the formalized model. And then it will generate a new
feature model automatically which meets the evolutionary
requirements.

The method generates a new feature model automati-
cally by evolutionary requirements and CMC. In this article,
we will use CMC to model feature model of SPL, and give
the mutual mapping between CMC and a feature model of
SPL. At the same time, we will present a method to describe
the evolutionary requirements of SPL by CMC. And then,
we will use the evolutionary requirements described by CMC
to change the feature model described by CMC and generate
a new feature model described by CMC. Finally, the new
feature model described by CMC will be mapped into a
feature model of SPL. During the process, getting feature
models and requirements are semiautomatic, the other steps
are got automatically. We have designed a tool named Auto-
EvoFM to implement the method of AutoEvoSPL. To verify
the effectiveness of the proposedmethod, several experiments
are designed. The data are collected from SPLOT and website
of Mobile Media.

The remainder of the paper is structured as follows: We
introduce the basic definition of a feature model of SPL and
CMC in section II. In section III, we introduce the framework
of automatic evolution of feature model. We give the map-
ping between feature models and CMC in section IV. Subse-
quently, the mapping process from evolutionary requirements
to CMC is given, and the requirements mapping methods
are shown in section V. We show the process of splitting an
evolutionary need, the method of evaluating the reasonability
of need, and the process of evolving a feature model in
section VI. And the implementation of AutoEvoFM is shown

in section VII. And then, we verify the effectiveness of Auto-
EvoFMby the experiments based on the several public feature
models in section VIII. Finally, we give the related works
in section IX and conclude the paper with final thoughts
(Section X). And we also give an example to explain the way
of using our method at the end of section IV, V and VI.

II. BACKGROUND
A. FEATURE MODEL
In recent years, the SPL is mainly used to reduce the amount
of work, reduce costs, improve quality and speed up the devel-
opment of software products by a series of reusable com-
ponents. A product line describes the relationships among
modules such as exclusion, dependencies and so on through
feature modeling. Each module is a feature, and each fea-
ture represents a corresponding functionality of SPL [19].
A product is a series of features with code. And a feature
model is a combination of a series of effective products
with restrictions and relations. Feature models are used in
many large companies such as Boeing, Siemens, and Toshiba
Co [19], [23].

Feature models can use a tree structure to describe the
relationship of features. In the tree structure, each node repre-
sents a feature, and different connections of nodes represent
different relationships of features.

Fig. 1 describes a feature model of the global positioning
system (GPS) by a tree diagram [4]. In the tree diagram, root
node is the name of GPS and the sub-nodes represent the
functionality contained in GPS.

The relationship between the parent node and the sub-node
can be divided into the following four types:

1) Mandatory. The node is the necessary node for its
parent node. It indicates that in all products of the SPL,
this feature must be contained if its parent feature is
selected. In Fig. 1, Routing and Interface are function-
ality that GPS must provide.

2) Optional. The node is an optional node for its parent
node. This means that in products of the SPL, if you
select its parent feature, you can select this feature or
not. In Fig. 1, Traffic avoiding is an optional feature
of GPS.

3) Alternative. The parent node has only one sub-node.
This means that if the parent feature is selected in prod-
ucts, only one of the features among these alternative
features can appear in the product. In Fig. 1, Screen can
select only one sub-feature between Touch and LCD.

4) Or. The parent node has at least one sub-node. It indi-
cates that in products of SPL, once its parent feature
is selected, one or more of or features can be in the
products. In Fig. 1, at least one functionality between
3D map and Auto-rerouting must be selected, when
Routing appears in products.

Besides, the symbols at the bottom of the tree represent the
constraints between two features, and the constraints contain
two kinds of relationships:

39254 VOLUME 7, 2019



J. Ren et al.: Method of Automatically Evolving Feature Models of SPLs

FIGURE 1. A feature model of the GPS.

1) Requires. In products of SPL, if we select feature A,
feature Bmust be select. A⇒ B is used to represent the
requires relationship between feature A and feature B,
and arrows point to feature B. ¬A∨B is the mathemat-
ical description of requires, where F is the feature set
of SPL, and A ∈ F , B ∈ F . In Fig. 1, Traffic avoiding
and Auto-rerouting have the relationship of requires.

2) Excludes. One of feature A and feature B exists in
products of SPL. A ↔ B is used to represent the
excludes relationship. The two arrows point to featureA
and featureB respectively.¬A∨¬B is themathematical
description of the excludes, whereF is the feature set of
SPL, and A ∈ F , B ∈ F . In Fig. 1, Touch and Keyboard
are a pair of excludes.

This article focuses on how to use the evolutionary require-
ments to evolve a feature model of SPL.Wewill give a formal
definition in section IV to describe feature model.

B. COMMUNICATION MEMBRANE CALCULUS
CMC is a formal method suitable for modeling evolutionary
problems [31]. It comes from membrane computing. It can
describe the structure and relationship of modules. And it also
can describe the communication process among modules.
So it is suitable for modeling the structure of feature models
and the evolution of feature models. CMC can automatically
determine the range of evolution and automatically change
feature models to avoid the error of artificial modification of
feature models.
Definition 1 (Communication Membrane Calculus): CMC

is a multivariate set∏
= (V , µ,O1, ...,On, (R1, ρ1), ..., (Rn, ρn)), where

1) V is a collection of all objects that the system contains,
2) µ is the structure of membranes,
3) Oi, 1 ≤ i ≤ n is a multiset of objects within

membrane i,

4) (Ri, ρi), 1 ≤ i ≤ n are sets of reaction rules and priority
of the reaction rules in membrane i. Ri is the rule set in
the membrane. ρi is a priority set of rules.

In CMC, objects are represented as a : C, a is the name of
objects, andC is the class of objects. The rules are represented
as A→ B, it means change A to B,→ is an identifier of rules.
And the priority between two rules is represented by>. Such
as ρi = {a : O → b : O > a : O → a : R}, it indicates
that the reaction rule a : O → b : O take precedence over
reaction rule a : O→ a : R.
And CMC has 8 kinds of reaction rules:

1) Object changing rules: u : C → v : C , that indicates
the change in the name or number of objects.

2) Object transferring rules: u : C → v : Cto_k , indicating
that objects are passed to the membrane k .

3) Membrane dissolution rules: u : O → σ , indicating
that the objects’ membrane is dissolved. At the same
time, the objects, rules and sub-membrane in the mem-
brane are deleted.

4) Membrane creation rules: u : O → [mµ,O1, ...,On,
(R1, ρ1), ..., (Rn, ρn)]m, indicating the creation of a new
membrane m in object’s membrane.

5) Membrane transferring rules: u : O → λk , showing
that the whole membrane of the object moves into
membrane k and becomes the sub-membrane of mem-
brane k .

6) Replication rules: u : R → (ri, ρi)copy, indicating
that rules (ri, ρi) are added to the membrane where the
object is located.

7) Transferring rules: u : R → (ri, ρi)in_k , showing that
the rules (ri, ρi) pass into membrane k and become
rules of membrane k .

8) Deletion rules: u : R → (ri, ρi)delete, indicating the
deletion of rules (ri, ρi) in the object’s membrane.

VOLUME 7, 2019 39255



J. Ren et al.: Method of Automatically Evolving Feature Models of SPLs

FIGURE 2. Framework of AutoEvoSPL.

The details of CMC can be found in our previ-
ous article: A calculus for modeling the process of
evolution-communication membrane calculus [31]. Using
Definition 1, the static structure of a feature model and
the process of evolving feature models can be described
completely.

III. THE FRAMEWORK OF AutoEvoSPL
An SPL’s feature model can guide the evolution of SPL, so we
should pay attention to the evolution of feature models when
the SPL evolved. In this paper, CMC is used to model the
feature models and the evolution process of feature models,
to achieve automatic evolution of feature models and obtain
new feature models. Fig. 2 presents the framework of the
method of evolving SPL’s feature model automatically by
CMC and evolutionary requirements. This framework is the
technical framework of our method.

Fig. 2 shows the framework of the method proposed in
our article. In AutoEvoSPL, there are two input to start the
process of evolving a feature model. They are a feature model
and evolutionary requirements. Firstly, the feature model
of SPL are mapped into formalized feature model, and the
evolutionary requirements of SPL are changed to formalized
evolutionary requirements, the formalized feature model and
evolutionary requirements are composed as the input of next
step. And then, using steps of splitting needs, evaluating
needs and evolvingmodels, formalized evolved featuremodel
is got as the output of the multiple changes of model. Finally,
the formalized evolved feature model is changed to evolved
feature model of SPL. And the evolved feature model of
SPL is a new SPL feature model that meets evolutionary
requirements.

Firstly, using mapping rules, feature model of SPL can
be changed to the formalized feature model named FEvoFM
which is described by CMC, and evolved FEvoFM can be
changed to evolved feature model of SPL, the mapping
between feature models and FEvoFM is shown in Section IV.
And evolutionary requirements can be changed to formalize
evolutionary requirements namedAutoEvoRe by ourmethod,
and AutoEvoRe is made up of AutoEvoNeeds, the process

of getting AutoEvoNeed is shown in Section V. Then the
formalized feature model can be changed by every need from
the AutoEvoRe. The evolved FEvoFM is got after changing
the original FEvoFM by every need in AutoEvoRe. The
process of changing FEvoFM is shown in Section VI. Finally,
the evolved FEvoFM changes to a feature model of SPL by
the mapping rules in Section IV.

AutoEvoRe is the set of AutoEvoNeeds. An evolutionary
requirement contains many small changes, and every change
will evolve FEvoFM once. And then the evolved FEvoFM
is the final result of changing the initial FEvoFM by every
AutoEvoNeed in AutoEvoRe. And the definition of an Auto-
EvoNeed is in Section V.

IV. FEvoFM
With the development of SPL, in addition to the parent-
child relationships between two features, a feature model
can also contain constraints between two features. When
formalize feature model by formal methods, we should not
only consider the type of features but also discuss how to
describe the relations among features. This section gives the
mapping between feature models and CMC, it will change a
feature model to FEvoFM, and after changing FEvoFM with
the evolutionary requirements, the changed FEvoFM can be
mapped to a feature model too.

A. ABSTRACTION OF SPL’S REATURE MODELS
In order to facilitate the formal modeling of SPL’s feature
models, we need give an abstract definition of the feature
models.
Definition 2 (ThrTFM): ThrTFM is a three tuple

(FN ,FR,FC) to represent a SPL’s feature model Fn, where
FN represents a set of feature name that contains the feature
type, FR represents a set of relationships between two fea-
tures, and FC represents a set of the constraints in the feature
model.

The element in FN is a symbol with superscript, such as
FMn ,Fn represents the name of a feature, the corner represents
the type of a feature. There are four types of features: manda-
tory (M), optional (O), alternative (A), and or (R). In the

39256 VOLUME 7, 2019



J. Ren et al.: Method of Automatically Evolving Feature Models of SPLs

following, a feature with no superscript means it can be any
features.

In a feature model, if feature Fn0 is the root node of feature
Fn1, then Fn0 is called the parent feature of Fn1 and Fn1 is the
sub-feature of Fn0. Fn1 can be a feature or several features
with a parent feature named combination of features.

An element of FR represents a relationship of parallel or
inclusion between two arbitrary features, such as Fn0 ⊃ Fn1,
Fn1∪Fn2,Fn0 ⊃ Fn2. IfFn1 is a sub-feature of another feature
Fn0, we call that Fn0 and Fn1 have inclusion relationship,
denoted as Fn0 ⊃ Fn1. For three features Fn0, Fn1 and Fn2,
if Fn1 and Fn2 are sub-features of Fn0, then Fn1 and Fn2 have
the parallel relationship, denoted as Fn1 ∪ Fn2.

If there is no inclusion or parallel relationship between any
two features, the relationship between the two features will
not appear in FR, such as Fn0 ⊃ Fn1, Fn0 ⊃ Fn2, Fn1 ∪ Fn2,
Fn1 ⊃ Fn3, the relationship between Fn3 and Fn2, will not
appear in FR.

An element of FC represents a constraint condition of
excludes or requires between two features. If the feature Fn1
and Fn2 exclude each other, Fn1 and Fn2 cannot exist at the
same time in any software generated by the SPL, denoted as
Fn1 ↔ Fn2. If feature Fn1 depends on feature Fn2, when Fn1
exists in a software generated by the SPL, Fn2 must exist in
the software too, denoted as Fn1 ⇒ Fn2. If Fn1 ⇒ Fn2, and
Fn2 ⇒ Fn1, then Fn1 ⇔ Fn2.
In the feature model, the tree diagram contains all the

features, types of features and relationship of features. And
constraints need to be considered in selecting features to cre-
ate software, and they ensure the availability and security of
the generation of software products. Therefore in the describ-
ing of feature models by CMC, all the features and corre-
sponding types should be described first, then, describing the
relationship between two features, and last, considering how
to describe the constraints between two features. Using the
ThrTFM defined in Definition 2, we can abstract the tree
diagram of the feature model in Fig. 1, which is convenient
to model SPL’s feature models by a formal method.

B. MAPPING BETWEEN FEATURE MODEL AND FEvoFM
FEvoFM is a feature model described by CMC, and it can be
changed using the change mechanism of CMC. This section
introduces the method of mapping between FEvoFM and
feature model.
Definition 3 (FEvoFM): FEvoFM is a multivariate set F =

(V , µ,OF1 , ...,OFn , (RF1 , ρF1 ), ..., (RFn , ρFn )). Where V is a
collection of all the names of objects which represents the
constraint in the feature model, µ is a collection of the mem-
brane structure which represents relationships between two
features, OFi is a objects multiset to represent constraint in
membrane Fi, RFi is a reaction rule set to represent detection
process of constraint relation in membrane Fi, ρi is a priority
set of rules.

Definition 3 is another way of representing a featuremodel.
Definition 2 and Definition 3 are two different ways to
describe the feature models. And there is a mapping method

to change the description ways. The mapping method is as
follows:

1) The element in FN is corresponding to the name of a
membrane. Each feature corresponds to a membrane,
the presentation of a membrane is same as the repre-
sentation of a feature.

2) The parallel and inclusion relationships in FR are
mapped to the membrane structures of sibling and
parent-child. The inclusion relation Fn0 ⊃ Fn1 cor-
responds to the parent-child structure [Fn0 [Fn1 ]Fn1 ]Fn0 ,
and the parallel relation Fn1 ∪ Fn2 corresponds to
the sibling structure [Fn1 ]Fn1[Fn2 ]Fn2 . In other words,
the collection of mapped membrane structures is µ in
FEvoFM.

3) The excludes and requires in FC are corresponding to
objects and rules in CMC, where

• The excludes Fn1 ↔ Fn2 is corresponding to the
specific objects and rules in the membrane Fn1 and
membrane Fn2. The objects and rules in the mem-
brane Fn1 are: MutexFn1−Fn2 : O, MutexFn1−Fn2 :
OOi : O → MutexFn1−Fn2 : OMutexFn1−Fn2 :
Oto−Fn1 , MutexFn1−Fn2 : O → CheckFn1−not :
Oto−Fn2 , MutexFn1−Fn2 : OMutexFn1−Fn2 : O →
MutexFn1−Fn2 : OCheckFn1−in : Oto−Fn2 ,
CheckFn2−in : O → FeasibleFn1−Fn2 : Oto−Fn0 ,
CheckFn2−in : O → unFeasibleFn1−Fn2 :

Oto−Fn0 , The objects and rules in the membrane
Fn2 are: MutexFn1−Fn2 : O, MutexFn1−Fn2 :
OOi : O → MutexFn1−Fn2 : OMutexFn1−Fn2 :
Oto−Fn2 , MutexFn1−Fn2 : O → CheckFn2−not :
Oto−Fn1 , MutexFn1−Fn2 : OMutexFn1−Fn2 : O →
MutexFn1−Fn2 : OCheckFn2−in : Oto−Fn1 ,
CheckFn1−in : O → FeasibleFn1−Fn2 : Oto−Fn0 ,
CheckFn1−in : O→ unFeasibleFn1−Fn2 : Oto−Fn0 .

• The requires Fn1 ⇒ Fn2 are associated with
membranes Fn1 and Fn2 specific objects and rules
in correspondence, objects and rules in the mem-
brane Fn1 are, BingFn1−Fn2 : O, BingFn1−Fn2 :
OOi : O → BingFn1−Fn2 : OBingFn1−Fn2 :
Oto−Fn2 , CheckFn2−in : O → FeasibleFn1−Fn2 :
Oto−Fn0 , CheckFn2−not : O→ unFeasibleFn1−Fn2 :
Oto−Fn0 , and objects and reaction rules in the mem-
brane Fn2 are, BingedFn1−Fn2 : O, BingFn1−Fn2 :
OBingedFn1−Fn2 : O → CheckFn2−in : Oto−Fn1 ,
BingFn1−Fn2 : O→ CheckFn2−not : Oto−Fn1 .

The reaction rules in mapping 3 use the object transfer
rules to transfer objects between the two membranes with
constraints. These rules represent the process of checking
the objects are in or not in the two membranes with con-
straints. If membranes have the objects, the new objects are
generated or transferred to make the next rule react. Finally,
if the receiving membrane includes corresponding objects,
then it transfers the objects FeasibleFn1−Fn2 : O to the skin
membrane Fn0, otherwise, it transfers unFeasibleFn1−Fn2 :
O to the skin membrane Fn0. FeasibleFn1−Fn2 : O and

VOLUME 7, 2019 39257



J. Ren et al.: Method of Automatically Evolving Feature Models of SPLs

unFeasibleFn1−Fn2 : O represent the detection results. This
allows the skin membrane to know whether all of the fea-
tures are satisfied with constraints. The representation of con-
straints is changed to the objects and rules in everymembrane.
So when the constraints change, the membranes must be
changed.

The mapping process is reversible. It can describe a given
feature model by CMC, and map FEvoFM to ThrTFM which
is proposed in Def. 3 by the above three mapping rules.
Theorem 1: If ThrTFM can describe a feature model,

FEvoFM can describe the feature model too.
Proof: FN is the feature names in a feature model, from

the mapping rules of 1, it is easy to know that for every
element in FN , there is a membrane to represent it. And FR
describes the relationship between two features in a feature
model. From the mapping rules of 2, we can use the way of
[Fn0 [Fn1 ]Fn1 ]Fn0 and [Fn1 ]Fn1 [Fn2]Fn2 to describe the relation-
ship in FR. At the same time, for each element in FC , we can
find objects and rules in the corresponding membranes in
FEvoFM. Therefore, when using (FN ,FR,FC) to describe a
feature model, the feature model can be specified to the form
of (V , µ,OF1 , ...,OFn , (RF1 , ρF1 ), ..., (RFn , ρFn )) too.
Theorem 2: If FEvoFM can describe a feature model,

ThrTFM can describe the feature model too.
Proof: In FEvoFM, every membrane represents a fea-

ture. From the definition of ThrTFM, every element in FN is
represented as a feature too. µ in FEvoFM can describe the
relationship among features. From themapping rules of 2, it is
a bijection between µ and FR in ThrTFM. So when using
µ to describe the relationship among features in a feature
model, we can use FR to describe the relationship too. At the
same time, the rules and objects in the membrane describe the
constraint of the membrane. And in ThrTFM, FC can repre-
sent the constraint relation of a feature model. Accordingly,
when using (V , µ,OF1 , ...,OFn , (RF1 , ρF1 ), ..., (RFn , ρFn )) to
describe a feature model, the feature model can be described
to the form of (FN ,FR,FC) too.
From the two theorems, we can know when describ-

ing a feature model, FEvoFM and ThrTFM have the
same power. In our method, by using the mapping rules
given in this section, we can change ThrTFM to FEvoFM
firstly, and after changing FEvoFM with the evolution-
ary requirements, the evolved FEvoFM can be mapped to
ThrTFM too.

In FEvoFM, µ is a set of feature pairs with a relationship
of parallel or inclusion. In the description of mapping 2, µ
will be very long. We can merge feature pairs to reduce the
length of the µ. The results of mapping 2 can be combined
and merged to get a weight in brackets ‘‘[]’’. The process of
combing and merging is:

1) Find the root node in the tree diagram (the membrane
Fn0 representing the feature model’s name) and use it
as a skin membrane,

2) Remove all of the sibling structures in the results of
mapping 2,

3) Find all membranes that have a parent-child relation-
ship with Fn0, put these membranes into [Fn0 ]Fn0 in
parallel, and get a newmembrane structureµx , such as,
[Fn0 [Fn1 ]Fn1 ]Fn0 and [Fn0 [Fn2]Fn2 ]Fn0 should be changed
to the structure of [Fn0 [Fn1 ]Fn1 [Fn2 ]Fn2 ]Fn0 ,

4) the membranes of newly added to µx are used as new
parent membranes by turns, find all of the membranes
that have a parent-child relationship with the new par-
ent membrane, and they are juxtaposed into the new
parent membrane in turn, until all the membranes are
obtained in the newest µx .

Finally, we can get µx , it is the string µ that we want.
µ represents the relationships among all the features in
the feature model. Then, a complete model of multi tuple
(V , µ,OF1 , ...,OFn , (RF1 , ρF1 ), ..., (RFn , ρFn ) can represent a
feature model. V represents all names of objects in every
feature, µ describes the structure of all the features, Oi is the
objects in each feature, if there is no constraint relation of
this feature, Oi is an empty set, (Ri, ρi) is a set of reaction
rules and the priority of the rule of each feature, if there is no
constraint of this feature, (Ri, ρi) is empty.

C. EXAMPLE
To explain our method, we give an example to help to under-
stand our method. In the following sections, we will use the
example to show how to use our method to change FME with
evolutionary requirements.

Example:
1) Feature model named FME, FME has two mandatory

features A and B, A has two optional features C and
D, B has two alternative features E and F and two or
features G and H;

2) Evolutionary requirements, they are that add an or fea-
ture I to B, delete the feature G, change C to an optional
feature J.

Fig. 3 shows the feature model of the example.

FIGURE 3. Feature model of FME.

Using the Def. 2, the feature model of FME can be
described to ThrTFM such as (FN ,FR,FC), where FN =
{FME,AM ,BM ,CO,DO,EA,FA,GR,HR

},FR = {AM ⊂
FME,BM ⊂ FME,AM ∪ BM ,CO

⊂ AM ,DO ⊂

AM ,CO
∪ DO,EA ⊂ BM ,FA ⊂ BM ,EA ∪ FA,GR ⊂

BM ,HR
⊂ BM ,GR ∪ HR,EA ∪ GR,EA ∪ HR,FA ∪

GR,FA ∪ HR
},FC = ∅. And then, using the mapping

39258 VOLUME 7, 2019



J. Ren et al.: Method of Automatically Evolving Feature Models of SPLs

rules mentioned in part B of section IV, the ThrTFM can be
changed to FEvoFM. As FC = ∅, it means V , O, R and ρ
in FEvoFM of FME is ∅. Elements in FR can be mapped
to [FME [AM ]AM ]FME , [FME [BM ]BM ]FME , [AM ]AM [BM ]BM ,
[AM [CO ]CO ]AM , [AM [DO ]DO ]AM , [AM [CO ]CO [DO ]DO , [BM [EA ]

EA ]BM , [BM [FA ]FA ]BM , [BM [GR ]GR ]BM , [BM [HR ]HR ]BM , [EA ]EA
[FA ]FA , [EA ]EA [GR ]GR , [EA ]EA [HR ]HR , [FA ]FA [GR ]GR ,
[FA ]FA [HR ]HR , [GR ]GR [HR ]HR . Then the elements can be comb
andmerge to [FME [AM [CO ]CO [DO ]DO ]AM [BM [EA ]EA [FA ]FA [GR ]

GR [HR ]HR ]BM ]FME . Finally, the feature model in Example can
be changed toF = (V , µ,OFME , ...,OHR , (RFME , ρFME ), ...,
(RHR , ρHR )), where V = ∅, µ = [FME [AM [CO ]CO [DO ]DO ]

AM [BM [EA ]EA [FA ]FA [GR ]GR [HR ]HR ]BM ]FME , OFME = OAM =
· · · = OHR = ∅, RFME = RAM = · · · = RHR = ∅,
ρFME = ρAM = · · · = ρHR = ∅.
In this section, the method of abstracting the feature model

to ThrTFM is given, and how to map ThrTFM to FEvoFM is
given. The process of formal modeling of SPL feature model
using CMC and reduction of the formal model to SPL feature
model are completed.

V. AutoEvoNeeds
There are many ways to define the evolution of requirements
of SPL, which can be domain oriented or feature oriented.
This paper focuses on the evolution of SPL’s feature models,
so the expected evolutionary requirements are needed to be
defined in feature oriented.

A. ABSTRACTION OF SPL’S EVOLUTIONARY
REQUIREMENTS
We can use the 9 mapping rules named Requirements of
Domain Oriented to Architecture of SPL to map oriented
domain evolution requirements to features or combination of
features [23]. Then using the method of making SPL feature
model proposed by Neves et al. to model the evolutionary
requirements [26]. Domain experts can rely on the modeling
tools mentioned in above articles to complete the extraction
and construction of features and combinations of features
from requirements. The AutoEvoRe is the abstraction of
evolutionary requirements which are constructed by domain
experts.
Definition 4 (Evolutionary Feature): Evolutionary features

are features to be evolved. The evolutionary features can be
a feature or an evolutionary combination of features with the
same parent feature.
In SPL, the evolutionary combination of features is a

unique way of evolution. It comes from the evolution of
adding software with related functionality to the SPL. Or the
changes of using software with the better performance to
replace parts functionality of the SPL.
In this section, how to use CMC to describe evolutionary

requirements of SPL to AutoEvoRe is given. An evolutionary
requirement cannot be recognized by FEvoFM. We should
formalize the evolutionary requirement by CMC.
In FEvoFM, the evolutionary requirements are split into

three parts: the features to be evolved and their parent

features, the ways in which they evolve, and what features
they evolve into. Thus, the evolutionary requirements of an
SPL feature model can be represented by a set.
When evolving a feature model of SPL, it may change

many features in the feature model. It is easy to know that an
evolutionary requirement is made up of several evolutionary
needs. When using the method we proposed in this paper,
it handles an evolutionary need once. A complete evolution
requires several modifications of the feature model by the
proposed approach.
Definition 5 (Evolutionary Need): An evolutionary need is

a three-tuple (F-target, Changes, F-goal). Where F-target is
called the target features, which is an abstract expression of
evolutionary features with the same parent feature, Changes
is one of the evolution model named add, delete and replace,
F-goal is known as goal features, it is the abstract representa-
tion of the evolution result of F-target.
An evolutionary need is a part of evolutionary requirement.

An evolutionary requirement is a set of evolutionary needs.
An abstract representation of F-goal and F-target mentioned
in definition 5 is the three-tuple defined by definition 2, that
F-target is ThrTFM of the target features, F-goal is ThrTFM
of the goal features.
In the SPL’s feature model evolution, we should not only

pay attention to the features that need to be evolved but
also pay attention to their parent features. It is because that
when a feature is evolved, the relationship between the fea-
ture and its parent may be changed. For example, when
adding sub-features into a feature, a parent-child relationship
is added, the parent feature is influenced by the evolution,
the parent feature needs to be considered in the evolution of
adding features. When deleting features, the parent feature is
influenced by its nodes being deleted. In the three kinds of
changes, replacing features is minimal effect on the parent
feature, but to describe the location of the change of features
more accurately, we need to use a constant parent feature as
a reference. Thus, in definition 5, it is emphasized that the
features to be evolved and their parent feature are abstracted
together in F-target and F-goal.
The three-tuple of evolutionary need describes the evolu-

tion of the SPL’s feature model, but the three-tuple is not
identified by FEvoFM. It is necessary to formalize the evo-
lutionary need by CMC. The formalized evolutionary need is
called an AutoEvoNeed.
Definition 6 (AutoEvoNeed): An AutoEvoNeed is an

abstraction of evolutionary need using CMC. An Auto-
EvoNeed is represented as an objectReFtarget−Changes−Fgoal : O,
where Re is the identifier of the AutoEvoNeed, O is the type
of the object, Ftarget is the formal representation of target fea-
tures F-target by CMC,− is a connector to join all the features
and operations together, Changes ∈ {add, delete, replace},
Fgoal is the formal representation of goal features F-goal by
CMC.
The subscript of Re is evolutionary need information.

Using the corresponding relation, the evolutionary needs of
SPL’s feature model can be changed into AutoEvoNeeds

VOLUME 7, 2019 39259



J. Ren et al.: Method of Automatically Evolving Feature Models of SPLs

FIGURE 4. The Framework of AutoEvoChange.

which can be automatically distinguished by a FEvoFM.
Ffarher represents the parent feature in F-target. An Auto-
EvoNeed is an object that can change the system using the
characteristic of CMC. The characteristic is object can trigger
rules react to make the system change.

AutoEvoNeeds can evolve FEvoFM. But before using
AutoEvoNeeds to evolve FEvoFM, we need to evaluate
whether AutoEvoNeeds can trigger the evolution of FEvoFM
and ensure the rationality of evolution. At the same time, if we
want to evolve FEvoFM completely, every AutoEvoNeed in
AutoEvoRe should trigger the evolution of FEvoFM once.

B. EXAMPLE
Consider the evolutionary requirements of the example in
part C of section IV. The father features in the three needs
are B, B, and A. Using the way in µ to describe feature
structures in evolutionary requirements, the requirements can
be represented as

{(({BM },∅,∅), add,({BM , IO},∅,∅)), (({BM ,GR},∅,∅),
delete, ({BM },∅,∅)), (({AM ,CO

},∅,∅), replace, ({AM , JO},
∅,∅))}.

Then use the three-tuple as the subscript of Re, the
evolutionary requirements can be represented as three
AutoEvoNeeds, Re[BM ∅,∅,(∅,∅)]BM−add−[BM ∅,[IO ]IO ,(∅,∅)]BM ,
Re[BM ∅,[GR ]GR ,(∅,∅)]BM−delete−[BM ∅,∅,(∅,∅)]BM ,
Re[AM ∅,[CO ]CO ,(∅,∅)]AM−replace−[AM ∅,[JO ]JO ,(∅,∅)]AM .

VI. AutoEvoChange
The process of changing model is called AutoEvoChange.
And FEvoFM and AutoEvoNeeds are two input of Auto-
EvoChange. The purpose of AutoEvoChange is evolving
FEvoFM.AutoEvoChange is called changingmodel in Fig. 2.
There are three parts in AutoEvoChange in this paper. Firstly,
we need to split AutoEvoNeeds. Because all the information
of evolution is contained in AutoEvoNeeds, we need to know

where is changed, how to change it and what kind it will
be changed. The splitting rules will complete the splitting
of AutoEvoNeeds. Secondly, we need to determine whether
an AutoEvoNeed is reasonable. The reasonability of Auto-
EvoNeeds means it can evolve FEvoFM correctly. Finally,
we will use the results of the first two steps and the present
evolution rules list to evolve FEvoFM. Fig. 4 shows the details
of AutoEvoChange.

Fig. 4 is the framework of AutoEvoChange. It shows the
details of ‘‘Changing model’’ in Fig. 2. When an Auto-
EvoNeed appears, it will be split by splitting rules, and the
result of splitting is recognizable information. It is shown in
part A of section VI. And then the recognizable information
will be used as input of the algorithm shown in part B
of section VI to evaluating reasonability of AutoEvoNeeds.
Finally, the evaluating result T and the recognizable informa-
tion will trigger the evolution rules, the corresponding evolu-
tion rules will be transferred into FEvoFM, then FEvoFM can
evolve, andwe can get its evolution result. The evolution rules
and the evolution process of FEvoFM are shown in part C of
section VI.

A. SPLITTING AutoEvoNeeds
An AutoEvoNeed is an input of changing AutoEvoChange.
It contains all the information of evolution, and it needs to be
judged whether it is the prerequisite for the evolution of SPL.
To better extract information and prepare for the coming judg-
ment, the AutoEvoNeeds needs to be split. We need to know
the evolution model and the evolutionary features to evaluate
reasonability of AutoEvoNeeds. And in the evolution rules
list of feature models, all the evolution rules meet the three
kinds of evolution model will be given. But the abstract
objects are used in evolution rules, and we need to instantiate
them firstly. The process of splitting AutoEvoNeeds con-
tains three parts in Fig. 4. They are AutoEvoNeeds, splitting

39260 VOLUME 7, 2019



J. Ren et al.: Method of Automatically Evolving Feature Models of SPLs

TABLE 1. Splitting rules of AutoEvoNeeds.

rules of AutoEvoNeeds and recognized information. Auto-
EvoNeeds are the input and recognized information is the
output in the splitting process. And by using the splitting
rules, the splitting process can be done. The splitting process
of an AutoEvoNeed is to materialize abstract objects. We can
split out target features, goal features and changes from an
AutoEvoNeed ReFtarget−Changes−Fgoal : O, and Fi, Fj, Ff used
in evolution rules will become features in a real system with
instantiated by target features, goal features and actives.

In CMC, every rule should be put into a membrane, so we
put the splitting rules in a membrane named Splitting which
are parallel to FEvoFM. The rules in Splitting are given
in Table 1. These rules split AutoEvoNeeds.

Table 1 describes the rules of splitting AutoEvoNeeds.
Firstly, it needs to split AutoEvoNeeds by rules R1 and R2.
Then, by rules R3, R4 and R5, the variables of Ft , Fg, and
Ff can be instantiated. Finally, the result is passed to the
membrane Evolution which is parallel to FEvoFM and has
evolution rules of changing FEvoFM.

When an AutoEvoNeed comes, the model can be changed
automatically. The rule R1 can make the AutoEvoNeed be
recognized without understanding the definition of CMC and
knowing the information of AutoEvoNeed. RulesR2 toR5 are
transmitting information to related membranes to notice the
system where needs to change.

An AutoEvoNeed ReFtarget−Changes−Fgoal : O is placed into
the membrane Splitting, and membrane Splitting contains
all the reaction rules in Table 1. ReFtarget−Changes−Fgoal : O
can trigger reaction rules in Splitting, then the initial object
ReFtarget−Changes−Fgoal : O will be split. Finally, the object
ReFtarget−Changes−Fgoal : O in membrane Splitting will be split
into five different objects, which are passed to membrane
Evolution.

B. EVALUATE AutoEvoNeeds
For every AutoEvoNeed in AutoEvoRe, we should evaluate
reasonability of the SPL’s AutoEvoNeeds. The reasonable of
SPL’s AutoEvoNeeds is the prerequisite for the evolution of
SPL. The evaluating condition comes from evolvingways and
evolutionary features. We will give the condition of evaluat-
ing reasonability of AutoEvoNeeds in this section.

In this article, features F1 are sub-features of a feature
model Fn, we can use F1 ⊆ Fn to donate the relationship
between of F1 and Fn. F1 ∩ Fn represents the same features
between F1 and Fn, if the results of F1 ∩ Fn are F2, we can
say that F1 ∩ Fn = F2.
Adding features means to add new features to the original

feature model. In adding features, features in the goal features
Fgoal cannot be same as the features in the feature model
Fn except the parent feature Ffarher , it means Fgoal ∩ Fn =
Ffarher . And the target feature Ftarget must be the sub-features
of the feature model Fn, it means Ftarget ⊆ Fn.
Deleting features means to delete evolutionary features

from the original feature model. The target feature to delete
must be the sub-features of the feature model, it means
Ftarget ⊆ Fn. The goal feature has the same feature Ffarher ,
and the feature belongs to feature model, it means Fgoal ∩
Fn = Ffarher .

Replacing features means to replace an evolutionary fea-
ture in feature model by a new evolutionary feature. When
replacing features, the target feature must be the sub-features
of the feature model, it means Ftarget ⊆ Fn, and the goal
features have a same feature Ffarher as the feature model,
it means Fgoal ∩ Fn = Ffarher .

Therefore, based on the above analysis of three changes
of evolution, we can obtain the evaluating condition of Auto-
EvoNeeds:

1) If Changes ∈ {add}, then (Ftarget ⊆ Fn) ∧ (Ftarget ∩
Fn = Ftarget ) ∧ (Fgoal ∩ Fn = Ffarher ). It means if the
evolution is adding features to the model, target feature
Ftarget must be a sub-feature of the model Fn, Ftarget
has a only sub-feature Ffarher which is same to Fn, and
Ffarher is the only intersection between Fn and Fgoal .

2) If Changes ∈ {delete, change}, then (Ftarget ⊆ Fn) ∧
(Fgoal∩Fn = Ffarher ). It means if the evolution is delet-
ing or changing features from the model, target feature
Ftarget must be a sub-feature of the model Fn, and Fgoal
has a only sub-feature Ffarher which is same to.

To determine whether AutoEvoNeeds meet the evolving
demands of the systems, it gives an algorithm to evaluate the
reasonability of AutoEvoNeeds. If AutoEvoNeeds meet the

VOLUME 7, 2019 39261



J. Ren et al.: Method of Automatically Evolving Feature Models of SPLs

TABLE 2. Algorithm for evaluating reasonability of AutoEvoNeeds.

demand of system’s evolution, the output of the algorithm is
passed intomembrane Evolution. In Evolution, the output can
make the membrane Evolution send messages to FEvoFM.
These messages can make FEvoFM evolve. The input of the
algorithm is the structure of AutoEvoNeed, and the struc-
ture is deleted all the ‘‘,’’, ‘‘(’’, ‘‘)’’ and ‘‘∅’’ in Ftarget , Fn
and Fgoal .
If the output of the algorithm is T , it means AutoEvoNeed

satisfies the demand of the system. If the output of the
algorithm is F , AutoEvoNeeds cannot trigger the evolution
reaction, and it needs domain experts to reconstruct the evo-
lutionary needs.

With evaluating reasonability of AutoEvoNeeds by the
algorithm, the result T of the algorithm will be put into
membrane Evolution. T is one of the initial objects to trigger
a reaction of FEvoFM automatically.

C. EVOLVE FEvoFM
So far, all the preparations have been completed. In this
section, we will give the method of evolving FEvoFM. Evolu-
tion rules in membrane Evolution are given. Using these rules
and the results from part A and B of section VI, the FEvoFM
can evolve automatically. In this section, we will provide the
reaction rules and explain how to use these rules to evolve
FEvoFM. To describe the evolution process of FEvoFM,
a membrane named Evolution is built. Membrane Evolu-
tion has all the reaction rules required by the evolution of

FEvoFM. And membrane Evolution is parallel to FEvoFM.
Objects in membrane Evolution trigger rules to react. These
reactions can transfer corresponding rules and objects to
FEvoFM. Finally, the evolved FEvoFM can be got.

The evolution rules of FEvoFMmainly include replicating
rules, transferring rules and deleting rules. In the rules, Fi,
Fg, and Ff are used to represent the target, goal and parent
features respectively, which makes the evolution rules more
universal.

The evolution rules are designed with the definition of
CMC. The adding features mean to create new membranes
in the system. The replacing features mean to dissolve the
previous membranes and create new membranes in the sys-
tem. And the deleting features mean to dissolve the previous
membranes in the system. Using the design principle and
design process, we can get all the evolution rules of FEvoFM.
These rules are shown in Table 3.

In Table 3, the first column lists the names of the reaction
rules. Reaction rules R6, R9 and R10 describe the process of
adding features. R6 is describing the process of extracting
information of the new feature from the object OAddFg : O,
the information contains where andwhat to add a new feature.
R9 sends the adding object to the father feature and copies the
related rules. R10 sends the coping rules to the father feature.
Reaction rules R7, R11 and R12 explain the process of deleting
features. R7 is describing the process of extracting informa-
tion from the object ODeleteFt : O, the information contains

39262 VOLUME 7, 2019



J. Ren et al.: Method of Automatically Evolving Feature Models of SPLs

TABLE 3. The evolution rules of FEvoFM.

where and what to delete the feature. R11 sends the deleting
object to the father feature and copies the related rules. R12
sends the coping rules to the father feature. Reaction rules R8,
R13 and R14 describe the process of changing features. R8 is
describing the process of extracting information of the chang-
ing feature from the object OFtChangeFg : O, the information
contains which and what is replaced. R13 sends the changing
object to the father feature and copies the related rules. R14
sends the coping rules to the father feature.
T : O in the reaction rules R9, R11 and R13 comes from

the result of the algorithm in part B of section VI. When the
output of the algorithm is ‘‘T’’, the object T : O is added
into membrane Evolution. And T : O is an object that can be
recognized by rules.

Objects in membrane Evolution can trigger one of R9, R11
and R13 reacting, when T : O and the five objects from
part A of section VI. are passed into membrane Evolution.
Results of the reaction can create new objects, transfer rules
and objects to the membrane Ffarher in FEvoFM. The trans-
ferred rules and objects can make FEvoFM change. And the
new objects in membrane Evolution trigger one of R10, R12
and R14 reacting. The reacting will transfer deleting rules to
Ffarher . The deleting rules can make FEvoFM have the rules
describing the constraint among features. The final FEvoFM
is the evolved FEvoFM.

It is worth mentioning that, when evolving features
Ftarget , if there are constraint relationships between Ftarget
and features F/Ftarget , it is necessary to generate another
ReFtarget−Changes−Fgoal : O to make F/Ftarget change.

D. EXAMPLE
Consider theAutoEvoNeedRe[BM ∅,∅,(∅,∅)]BM−add−[BM ∅,[IO ]IO ,
(∅,∅)]BM

in Example, it is changed to a new
object [BM∅,∅, (∅,∅)]BM add[BM∅, [IO ]IO , (∅,∅)]BM : O by

applying R1. According to R2, the object would be then
changed to five objects [BM∅,∅, (∅,∅)]BM : O, add : O,
[BM ]BM : O, [BM∅, [IO ]IO , (∅,∅)]BM : O and r : R, where
add : O and r : R should be passed to the membrane
Evolution. Finally by applying rules R3, R4 and R5, the other
three objects are changed to (Fi = [BM∅,∅, (∅,∅)]BM ): O,
(Fj = [BM∅, [IO ]IO , (∅,∅)]BM ) : O and (Ff = [BM ]BM ) : O,
and the new three objects are passed to membrane Evolution
respectively.
The structure µ of Ftarget , Ffarher and Fgoal in the Auto-

EvoNeed are the input of algorithm in part B of section VI,
where Change = add is another input to judge whether the
AutoEvoNeed satisfies the system demand. Such as the input
of the first AutoEvoNeeds is µFtarget = [BM ]BM , µFgoal =
[BM [IO ]IO ]BM ,µFfarther = [BM ]BM andChange = add . Finally,
we get the results of the algorithm, and the result is stored in
Evolution.
The changing mechanism of CMC and the rules

in Table 3 are used to change FEvoFM of FME. In Evo-
lution, R9 is used firstly. Six objects in previous jobs are
changed to five new objects and two copied rules, and
OAdd[BM ∅,[IO ]IO ,(∅,∅)]BM : O is passed into feature B. Then,
the copied rules are moved to feature B by applying R10.
Finally, using these objects and rules from Evolution, a new
feature I can be added into B. FEvoFM of FME is changed to
F = (V , µ,OFME , ...,OHR , (RFME , ρFME ), ..., (RHR , ρHR )),
where V = ∅, µ = [FME [AM [CO ]CO [DO ]DO ]AM [BM [EA ]EA
[FA ]FA [GR ]GR [HR ]HR [IO ]IO ]BM ]FME , OFME = OAM = · · · =
OHR = ∅, RFME = RAM = · · · = RHR = ∅ and ρFME =
ρAM = · · · = ρHR = ∅.
Use another two AutoEvoNeeds in turn to evolve FEvoFM

in the same way. Finally, the evolved FEvoFM is F =
(V , µ,OFME , ...,OIO , (RFME , ρFME ), ..., (RIO , ρIO )), where
V = ∅, µ = [FME [AM [JO ]JO [DO ]DO ]AM [BM [EA ]EA [FA ]FA

VOLUME 7, 2019 39263



J. Ren et al.: Method of Automatically Evolving Feature Models of SPLs

FIGURE 5. Change ThrTFM to FEvoFM.

[HR ]HR [IO ]IO ]BM ]FME , RFME = RAM = · · · = RIO = ∅,
ρFME = ρAM = · · · = ρIO = ∅. And then, using the mapping
rules in sectionV, evolved FEvoFMcan bemapped to evolved
feature model.

VII. THE TOOL OF AutoEvoFM
The tool of AutoEvoFM is designed and implemented in Java.
In our program, there are three parts of computing the system.
The first part is the method to change ThrTFM to FEvoFM.
In the second part, we implement splitting of AutoEvoNeeds,
evaluating of AutoEvoNeeds, and changing of FEvoFM with
reaction rules. The output of this part is the evolved FEvoFM.
The third part realizes the changing from evolved FEvoFM to
new ThrTFM. And the new tuple is the result of the evolution
feature model. The output of every part is exported to the
TXT file. We use the tool to change the example. The design
principle is as follows:

Firstly, ThrTFM (FN ,FR,FC) of a feature model can
be changed to FEvoFM Fn by the mapping rules between
ThrTFM and FEvoFM. Fn is a necessary model for the whole
work. The input and output of this part are shown in Fig. 5.

Secondly, a formalized evolutionary requirement is divided
into several evolutionary needs named AutoEvoNeeds, and
evolve FEvoFM with AutoEvoNeeds one by one. Every
AutoEvoNeed must be operated by splitting and evaluating.
An AutoEvoNeed is an object that can be recognized by the
system and meet the evolutionary demand. In this part, it will
change an evolutionary need of demand-oriented or feature-
oriented to a three-tuple (F-target, Changes, F-goal) by the
given tools and principles for a given need, and then (F-target,
Changes, F-goal) can be transformed into an AutoEvoNeed.
ReFtarget−Changes−Fgoal : O will be split into three parts in
the membrane Splitting and evaluated by the algorithm of
evaluating reasonability of AutoEvoNeeds, if the relationship
between object ReFtarget−Changes−Fgoal : O and structure of Fn
satisfies the conditions of evolution, it will proceed to the
next step. Reaction rules in membrane Evolution are called
by Changes : O. These invoked rules and objects are passed
into Fn and make Fn change. Repeat the process until every

AutoEvoNeed in AutoEvoRe acts on FEvoFM. The final
result Fn is the evolved FEvoFM. The input and output of
this part are shown in Fig. 6. Finally, Fn must be mapped to
new ThrTFM (FN ,FR,FC) by the mapping rules between
FEvoFM and ThrTFM. (FN ,FR,FC) is the evolved feature
model based on the evolutionary requirement.

But the structure of FEvoFM is merged feature pairs, and
we should split it first. The splitting principle of the mem-
brane structure µ is designed:

1) Take the skin membrane as the first parent feature,
and find all the sub-membranes of skin membrane
contained in µ. All the sub-membranes have an inclu-
sion relationship with the skin membrane and the
sub-membranes have a parallel relationwith each other,

2) Each sub-membrane from the previous step is used as
new parent membrane, repeating step 1 until all the
membranes do not have a sub-membrane.

The process of split the structure ofµ, and map FEvoFM to
ThrTFM are implemented in this part. The input and output
of this part are shown in Fig. 7.

The final ThrTFM is the result we want. We can use it to
guide the next evolution of SPL.

VIII. EXPERIMENTS
In this section, we use the existing feature models and evo-
lutionary requirements to evaluate the effectiveness of the
proposed method AutoEvoSPL. The required feature mod-
els in our experiments are from the acquisition of SPL
tool (SPLOT) and other open literature.

A. EXPERIMENT SETTINGS
The purpose of this experiment is to evaluate the validity
of proposed method. The experimental process is as fol-
lows: first, we collected evolutionary requirements and two
versions of feature models of SPL. And then, we use the
requirements and low version feature model as the input of
our tool to change the low version feature model. Finally,
the output is compared with high version feature model.

39264 VOLUME 7, 2019



J. Ren et al.: Method of Automatically Evolving Feature Models of SPLs

FIGURE 6. Change FEvoFM by AutoEvoRe.

FIGURE 7. Change FEvoFM to ThrTFM.

We collected two data sets as experimental subjects from
SPLOT http://www.splot-research.org/ and Mobile Media
http://www.ic.unicamp.br/∼tizzei/mobilemedia/. SPLOT is a
website for SPL’s developers to upload their feature models.

Among more than 200 feature models we chose 4 feature
modes as our experimental data. They are Smart Home,
Android SPL, Help System and SPL SimulES. These feature
models have two consecutive versions and are designed by the
same editor. In each model, there are more than 50 features.
MobileMedia is an SPL for generating mobile media players.
It is developed basing on Mobile Photo. Currently, there are
7 versions ofMobileMedia and its website provides evolution
requirements, feature models, etc.

In the experiment, comparing the differences between the
two versions of a same feature model, we give the evolution-
ary requirements of SPLs from SPLOT. And the evolutionary
requirements of Mobile Media are obtained from its web-
site. Lack of space forbids the detailed description of each
SPLs’ feature model. The evolution requirements are shown
in Table 4. In Table 4, the name of SPL is the name of low

version feature model, and the evolutionary requirements will
be used to evolve the low version feature model.

Next, we will change these requirements to AutoEvoNeed
by the methods mentioned in section V. Domain experts
can change these evolutionary requirements of Smart Home,
Android SPL, Help System, SPL SimulES andMobile Media
to AutoEvoNeeds. The AutoEvoNeeds are shown in Table 5.

And then we can use the tool of AutoEvoFM to evolve
Smart Home, Android SPL, Help System, SPL SimulES and
Mobile Media.

B. RESULTS AND ANALYSIS
Using our tool and the data sets, we can get ten evolved
feature models. We call evolved feature model as ‘‘E-SPL’’
for the sake of narrative convenience. Such as we can use
‘‘E-Smart Home’’ to represent evolved Smart Home. When
using data sets from SPLOT, we will compare E-SPLwith the
higher version feature model. And when using data sets from
Mobile Media, we will compare E-SPL with the next version

VOLUME 7, 2019 39265



J. Ren et al.: Method of Automatically Evolving Feature Models of SPLs

Table 4a. Evolutionary requirements of SPLs.

feature model. Such as E-Smart Home 2.0 is compared with
Smart Home 3.0, and E-Mobile Media 2 is compared with

Mobile Media 3. The results of the experiments are shown
in Table 6.

39266 VOLUME 7, 2019



J. Ren et al.: Method of Automatically Evolving Feature Models of SPLs

Table 4b. (Continued.) Evolutionary requirements of SPLs.

In Table 6, the list of ‘‘To be evolved SPL’’ is the name
of feature model to be evolved, and they are same as the list
of ‘‘Name of SPL’’ in table 4 and 5. The list of ‘‘Evolved
SPL’’ shows the name of evolved SPL. And the list of
‘‘Actual SPL’’ is the higher version or next version fea-
ture model. The list of comparing results shows the results
of comparing ‘‘Evolved SPL’’ with ‘‘Actual SPL’’. If they
are same, the result is ‘‘

√
’’, and if they are different, the

result is ‘‘×’’.
It is clearly that there are eight ‘‘

√
’’, and two ‘‘×’’ in

the list of results. The eight results of ‘‘
√
’’ show that the

evolved versions got by AutoEvoSPL proposed in this paper
are same as actual versions. It means the evolved versions
are correct. These experimental results can illustrate the
effectiveness of the method proposed in this paper. They
show that the method presented in this paper is relatively
effective.

From the last two results in Table 6, the two versions of
Mobile Media are evolved incorrectly. It is because the evo-
lutionary requirements given on the website are incomplete.
There are several changes achieved in the new version are not
mentioned in the requirements. Such as it adds a new optional
feature named ‘‘Capture Photo’’ to be a sub-feature of Photo
in version 6. The change is not mentioned in the requirements.
The incorrect results are not caused by our tool. The false
results can show that the method is effective, and the method
can also be used to test whether the software product evolves
according to the requirement as another application.

IX. RELATED WORKS
In this section, we will give an overview of related works on
SPL evolution. The three major types of research relate to
our method are evolutions of SPL, feature models of SPL and
changes of SPL feature models.

VOLUME 7, 2019 39267



J. Ren et al.: Method of Automatically Evolving Feature Models of SPLs

Table 5a. AutoEvoNeed of SPLs.

39268 VOLUME 7, 2019



J. Ren et al.: Method of Automatically Evolving Feature Models of SPLs

Table 5b. (Continued.) AutoEvoNeed of SPLs.

In SPL evolution, the articles on SPL evolution fall
into three categories: evolve code [13], [17], [20], [24],
evolve architecture [11], [12], [16], [30] and verify
change [2], [8], [32], [34]. In evolving code, it needs to
determine the range location of code. Heider et al. used
regression tests to determine the range of evolution and
presented a tool-supported to add code among the range
on existing SPL [17]. Mende et al. used grow-and-prune
model to locate code by identifying similar functionality in
SPL [24]. In evolving architecture, Deng et al. [11] proposed
techniques for minimizing such impacts on software product
line architectures based on model-driven development for
distributed real-time and embedded systems. Garg et al. [16]
presented Ménage, an environment specifically designed to
manage evolving structure of SPL. Polzer et al. gave the
method of integrating model-based product line techniques
into a consistent automated framework. The framework was

an abstraction of SPL architecture and supported for cus-
tomizing representations [30]. In verifying change, Anquetil
et al. [2] created a common traceability framework across
the various activities of the SPL development, it can trace
the changes in SPL. Teixeira et al. [34] proposed refinement
notions and compositionality properties to formally define
the foundations for the safe and modular evolution of SPL,
enabling developers to perform changes in a systematic
manner.

In feature models of SPL, Neves et al. [26] told us a
feature model is a description of SPL architecture. Collect-
ing recent articles about SPL evolution, Montalvillo and
Díaz [25] found that feature models have been the most
important topic and divided the articles on SPL evolution into
four categories: identify change, analyze and plan change,
implement change and verify change. Ferber et al. [14] gave
a method of building a feature model from the existing SPL,

VOLUME 7, 2019 39269



J. Ren et al.: Method of Automatically Evolving Feature Models of SPLs

Table 6. Experimental results of SPLs.

and they proposed that the feature dependencies and inter-
actions should be added into a feature model to describe the
complex relationship among features. Seidl et al. said SPL is
often described in terms of a problem space and a solution
space. The problem space is research on the method of using
feature models to represent SPL, and the solution space is
some research on sharing assets such as source code, design
and test artifacts in SPL [33]. Neves et al. said SPL consists
of feature models, configuration information and assets. They
gave the evolution model of multiple evolutionary scenarios.
They used the evolution model to determine the influence
scape of evolution. And then they found the evolution assets
among the scape by the configuration. This process is called
security evolution method, it can ensure the correctness of
the evolution [26], [27]. White et al. [36] gave the method of
how to configure information evolution of SPL based on the
feature models, and gave the method of evaluating the cost of
SPL evolution with feature models.

And in changes of SPL’s feature models, Nie et al. gave
a method of model construction based on model differ-
ence and comparison of SPL using domain requirement.
Extracting features from the domain requirement and com-
paring the features with the feature model, they achieved
adding new features from domain requirements to feature
models [22]. Pleuss et al. gave the method of managing
the feature model of SPL using the model-driven knowl-
edge. They used model fragments of cluster-related ele-
ments to determine the scope of changes. During the scope,
it could add or remove feature [28]. Cordy et al. proposed a
model-checking approach to support the evolution of models.

And the approach supported a change of adding specific types
of feature to an evolving SPL [10]. Botterweck et al. [5], [6]
proposed using feature models to describe the evolution of
product lines to integrate evolution into model-driven product
line engineering.

In the articles of SPL evolution and feature models of
SPL, we can find that the feature models are usually used
to determine the influence scope of evolution to guide SPL
evolution. But a feature model cannot guide evolution contin-
ually. It needs to evolve feature models as well. And among
the articles of feature models changes, there is no method for
evolving feature models in all evolving ways from evolution
requirements. In Nie’s article, the method they proposed can
deal with adding features from requirements to feature mod-
els. It cannot delete features or change features. In Pleuss and
Cordy’s articles, they gave the method of changing feature
models. And in Botterweck’s articles, they also study the
evolution of feature models, but the focus of this article is
on how to determine the scope of the change, then change the
feature model. They But both of the three articles did not tell
us where the changes come. We do not know whether these
changes meet the evolutionary requirements.

X. CONCLUSION
An SPL feature model can guide the evolution of SPL.
To ensure the continuous availability of the feature model,
the evolution of SPL requires the evolution of feature model
according to evolutionary requirements. Most traditional
SPL’s feature models rely on the analysis of domain experts.
At the same time, each SPL model needs domain experts
to reconstruct the feature model when the SPL is evolved.
This refactoring process entirely relies on domain experts’
understanding of SPL and evolutionary requirements, and
cannot guarantee the correctness of the feature model. This
paper presents a method of automatically generating SPL’s
feature models with evolutionary requirements. We use a
formal method named communication membrane calculus to
describe the structure of feature models and evolution process
of feature models. After describe feature models with the
three tuple of feature model and evolutionary requirements
with three-tuple evolutionary needs, the feature models can
be changed automatically by evolutionary requirements, and
the evolved feature model is got as the result of changing.

However, the tool of generating feature models automati-
cally in this paper is too simple, it cannot support all change
mechanisms of CMC, and it is proposed for the particular
given environment or some target condition, it is not the
general proposal. The tree structure of feature models can-
not be directly used in the tool, and the results of the tool
cannot change to the tree structure of feature models too. The
method just find the mistakes when evolve a feature model,
it cannot tell us the reason ofmistakes and how to handle these
conflicts. The visualization of the tool is simple. And Auto-
EvoSPL requires evolutionary requirements to be integrity.
Every changemust be concluded in the requirements.Wewill
continue to study the above issues, improve the experimental

39270 VOLUME 7, 2019



J. Ren et al.: Method of Automatically Evolving Feature Models of SPLs

tools, optimize the tool interface, and increase the demand
dynamic replenishment mechanism.

REFERENCES
[1] V. Alves, P. M. Jr, L. Cole, A. Vasconcelos, P. Borba, and G. Ramalho,

‘‘Extracting and evolving code in product lines with aspect-oriented pro-
gramming,’’ in Proc. Trans. Aspect-Oriented Softw. Develop. IV, 2007,
pp. 117–142.

[2] N. Anquetil et al., ‘‘A model-driven traceability framework for software
product lines,’’ Softw. Syst. Model., vol. 9, no. 4, pp. 427–451, 2010.

[3] S. Apel and D. Batory, ‘‘When to use features and aspects?: A case
study,’’ in Proc. 5th Int. Conf. Generative Program. Compon. Eng., 2006,
pp. 59–68.

[4] D. Benavides, P. Trinidad, and A. Ruiz-Cortés, ‘‘Automated reasoning on
feature models,’’ in Proc. Int. Conf. Adv. Inf. Syst. Eng., 2005, pp. 491–503.

[5] G. Botterweck, A. Pleuss, A. Polzer, and S. Kowalewski, ‘‘Towards
feature-driven planning of product-line evolution,’’ in Proc. 1st Int.
Workshop Feature-Oriented Softw. Develop., Denver, Colorado, USA,
Oct. 2009, pp. 109–116.

[6] G. Botterweck, A. Pleuss, D. Dhungana, A. Polzer, and S. Kowalewski,
‘‘EvoFM: Feature-driven planning of product-line evolution,’’ in Proc.
ICSE Workshop Product Line Approaches Softw. Eng., 2010, pp. 24–31.

[7] N. Cacho, C. Sant’Anna, E. Figueiredo, A. Garcia, T. Batista, and
C. Lucena, ‘‘Composing design patterns: A scalability study of
aspect-oriented programming,’’ in Proc. 5th Int. Conf. Aspect-Oriented
Softw. Develop., 2006, pp. 109–121.

[8] L. Chen andM. A. Babar, ‘‘A systematic review of evaluation of variability
management approaches in software product lines,’’ Inf. Softw. Technol.,
vol. 53, no. 4, pp. 344–362, 2011.

[9] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. New York, NY, USA: ACM, 2001.

[10] M. Cordy, A. Classen, P.-Y. Schobbens, P. Heymans, and A. Legay, ‘‘Man-
aging evolution in software product lines: A model-checking perspective,’’
in Proc. 6th Int. Workshop Variability Model. Softw.-Intensive Syst., 2012,
pp. 183–191.

[11] G. Deng, G. Lenz, and D. C. Schmidt, ‘‘Addressing domain evolution
challenges in software product lines,’’ in Proc. Int. Conf. Model Driven
Eng. Lang. Syst., 2005, pp. 247–261.

[12] J. Díaz, J. Pérez, and J. Garbajosa, ‘‘Agile product-line architecting in
practice: A case study in smart grids,’’ Inf. Softw. Technol., vol. 56, no. 7,
pp. 727–748, 2014.

[13] R. Dyer, H. Rajan, and Y. Cai, ‘‘Language features for software evolution
and aspect-oriented interfaces: An exploratory study,’’ in Transactions
on Aspect-Oriented Software Development X. Berlin, Germany: Springer,
2013, pp. 148–183.

[14] S. Ferber, J. Haag, and J. Savolainen, ‘‘Feature interaction and dependen-
cies: Modeling features for reengineering a legacy product line,’’ in Proc.
Int. Conf. Softw. Product Lines, 2002, pp. 235–256.

[15] E. Figueiredo et al., ‘‘Evolving software product lines with aspects: An
empirical study on design stability,’’ in Proc. ACM/IEEE 30th Int. Conf.
Softw. Eng., May 2008, pp. 261–270.

[16] A. Garg, M. Critchlow, P. Chen, C. Van Der Westhuizen, and
A. Van Der Hoek, ‘‘An environment for managing evolving product
line architectures,’’ in Proc. Int. Conf. Softw. Maintenance,, Sep. 2003,
pp. 358–367.

[17] W. Heider, R. Rabiser, P. Grünbacher, D. Lettner, ‘‘Using regression testing
to analyze the impact of changes to variability models on products,’’ in
Proc. 16th Int. Softw. Product Line Conf., 2012, pp. 196–205.

[18] R. Heradio, H. Perez-Morago, D. Fernandez-Amoros, F. J. Cabrerizo, and
E. Herrera-Viedma, ‘‘A bibliometric analysis of 20 years of research on
software product lines,’’ Inf. Softw. Technol., vol. 72, pp. 1–15, Apr. 2016.

[19] R. M. Hierons, M. Li, X. Liu, S. Segura, and W. Zheng, ‘‘SIP: Optimal
product selection from feature models using many-objective evolutionary
optimization,’’ Trans. Softw. Eng. Methodol., vol. 25, no. 2, p. 17, 2016.

[20] S. Jarzabek and H. D. Trung, ‘‘Flexible generators for software reuse
and evolution: NIER track,’’ in Proc. 33rd Int. Conf. Softw. Eng. (ICSE),
May 2011, pp. 920–923.

[21] C. Kastner, S. Apel, and D. Batory, ‘‘A case study implementing features
using aspectJ,’’ in Proc. 11th Int. Softw. Product Line Conf., Sep. 2007,
pp. 223–232.

[22] K. Nie and L. Zhang, ‘‘Software product line domain requirement model
construction method based on model difference and model composition,’’
Chin. J. Comput., vol. 37, no. 3, pp. 539–550, 2014.

[23] Y. Li and W. Zhao, ‘‘A feature oriented approach to mapping from domain
requirements to product line architecture,’’ J. Comput. Res. Develop.,
vol. 44, no. 7, p. 1236, 2007.

[24] T. Mende, F. Beckwermert, R. Koschke, and G. Meier, ‘‘Supporting the
grow-and-prune model in software product lines evolution using clone
detection,’’ in Proc. 12th Eur. Conf. Softw. Maintenance Reeng., Apr. 2008,
pp. 163–172.

[25] L. Montalvillo and O. Díaz, ‘‘Requirement-driven evolution in software
product lines: A systematic mapping study,’’ J. Syst. Softw., vol. 122,
pp. 110–143, Dec. 2016.

[26] L. Neves et al., ‘‘Safe evolution templates for software product lines,’’
J. Syst. Softw., vol. 106, pp. 42–58, Aug. 2015.

[27] L. Neves, L. Teixeira, D. Sena, V. Alves, U. Kulesza, and P. Borba, ‘‘Inves-
tigating the safe evolution of software product lines,’’ ACM SIGPLAN
Notices, vol. 47, no. 3, pp. 33–42, 2012.

[28] A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer, and S. Kowalewski,
‘‘Model-driven support for product line evolution on feature level,’’ J. Syst.
Softw., vol. 85, no. 10, pp. 2261–2274, 2012.

[29] K. Pohl, G. Böckle, and F. J. Van Der Linden, ‘‘Software Product Line
Engineering: Foundations, Principles, and Techniques,’’ in Proc. 1st Int.
Workshop Formal Methods Softw. Product Line Eng.,2005, vol. 49, no. 12,
pp. 29–32.

[30] A. Polzer et al., ‘‘Managing complexity and variability of a model-based
embedded software product line,’’ Innov. Syst. Softw. Eng., vol. 8, no. 1,
pp. 35–49, 2012.

[31] J. Ren, L. Liu, and P. Zhang, ‘‘A calculus for modeling the process of
evolution: Communication membrane calculus.,’’ J. Harbin Eng. Univ.,
vol. 39, no. 4, pp. 751–759, 2018.

[32] H. Sabouri and R. Khosravi, Reducing the Verification Cost of Evolv-
ing Product Families Using Static Analysis Techniques. Amsterdam, The
Netherlands: Elsevier, 2014. pp. 35–55.

[33] C. Seidl, F. Heidenreich, and U. Aßmann, ‘‘Co-evolution of models and
feature mapping in software product lines,’’ in Proc. 16th Int. Softw.
Product Line Conf., 2012, vol. 1, pp. 76–85.

[34] L. Teixeira, P. Borba, and R. Gheyi, ‘‘Safe evolution of product populations
andmulti product lines,’’ inProc. 19th Int. Conf. Softw. Product Line, 2015,
pp. 171–175.

[35] T. Vale, E. S. De Almeida, V. Alves, U. Kulesza, N. Niu, and R. De Lima,
‘‘Software product lines traceability: A systematic mapping study,’’ Inf.
Softw. Technol., vol. 84, pp. 1–18, Apr. 2017.

[36] J. White, J. A. Galindo, T. Saxena, B. Dougherty, D. Benavides, and
D. C. Schmidt, ‘‘Evolving feature model configurations in software prod-
uct lines,’’ J. Syst. Softw., vol. 87, no. 1, pp. 119–136, 2014.

JUNQI REN received the B.S. degree from the
Mathematics School, Jilin University, Changchun,
China, in 2012, where she is pursuing the Ph.D.
degree in computer software and theory. Her
research interests include formalmethods and soft-
ware engineering.

LEI LIU received the B.S. and M.S. degrees in
computer software and theory from Jilin Univer-
sity, China, in 1982 and 1985, respectively, where
he is currently a Professor and a Doctoral Super-
visor with the College of Computer Science and
Technology. His research interests include pro-
gram theory, semantic web, formal methods, and
compiler theory.

VOLUME 7, 2019 39271



J. Ren et al.: Method of Automatically Evolving Feature Models of SPLs

PENG ZHANG received the B.S. and Ph.D.
degrees in computer science from Jilin University,
China, in 2009 and 2014, respectively, where he is
currently a Lecturer with the College of Computer
Science and Technology. His research interests
include formal methods and cloud computing.

WENBO ZHOU received the M.S. degree in com-
puter software and theory from Jilin University,
China, in 2017, where he is currently pursuing
the Ph.D. degree with the College of Computer
Science and Technology. His research interests
include formal methods and cloud computing.

39272 VOLUME 7, 2019


	INTRODUCTION
	BACKGROUND
	FEATURE MODEL
	COMMUNICATION MEMBRANE CALCULUS

	THE FRAMEWORK OF AutoEvoSPL
	FEvoFM
	ABSTRACTION OF SPL'S REATURE MODELS
	MAPPING BETWEEN FEATURE MODEL AND FEvoFM
	EXAMPLE

	AutoEvoNeeds
	ABSTRACTION OF SPL'S EVOLUTIONARY REQUIREMENTS
	EXAMPLE

	AutoEvoChange
	SPLITTING AutoEvoNeeds
	EVALUATE AutoEvoNeeds
	EVOLVE FEvoFM
	EXAMPLE

	THE TOOL OF AutoEvoFM
	EXPERIMENTS
	EXPERIMENT SETTINGS
	RESULTS AND ANALYSIS

	RELATED WORKS
	CONCLUSION
	REFERENCES
	Biographies
	JUNQI REN
	LEI LIU
	PENG ZHANG
	WENBO ZHOU


