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ABSTRACT The F composite fading model was recently proposed as an accurate and tractable statistical
model for the characterization of the composite fading conditions encountered in realistic wireless commu-
nication scenarios. In the present contribution, we capitalize on the distinct properties of this composite
model to derive an analytical framework and then to evaluate the achievable channel capacity over F
composite fading channels under different channel state information (CSI) assumptions. To this end, we first
consider that the CSI is known only at the receiver, for which we derive novel analytic expressions for the
channel capacity under optimum rate adaptation as well as for the corresponding effective capacity. Then,
by considering that the CSI is known both at the transmitter and at the receiver, we derive novel analytic
expressions for the channel capacity under optimum power and rate adaptation, channel inversion with fixed
rate and truncated channel inversion with fixed rate. The derived analytic expressions for the considered
scenarios are provided in closed-form and benefit from being tractable both analytically and numerically.
This enables the derivation of simple bounds as well as approximate and asymptotic expressions, which are
shown to be useful as they provide meaningful insights on the effect of fading conditions and/or latency on
the overall system performance.

INDEX TERMS Channel capacity, channel state information, composite fading channel, effective capacity.

I. INTRODUCTION
It is well-known that wireless transmission is subject to
multipath fading which is mainly caused by the constructive
and destructive interference between two or more versions
of the transmitted signal. Since multipath fading is typi-
cally detrimental to the performance of wireless communi-
cations systems, it is important to characterize and model

The associate editor coordinating the review of this manuscript and
approving it for publication was Shree Krishna Sharma.

multipath fading channels accurately in order to understand
and improve their behavior. In this context, numerous fad-
ing models such as Rayleigh, Rice and Nakagami-m have
been utilized in an attempt to characterize multipath fad-
ing, depending on the nature of the radio propagation
environment [1]–[4].

Based on the above, extensive analyses on the perfor-
mance of various wireless communication systems have been
reported in [5]–[14] and the references therein. Specifically,
the authors in [5]–[7] introduced the concepts of capacity
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analysis under different adaptation policies and carried out
an extensive analysis over Rayleigh and Nakagami-m fad-
ing channels. Likewise, the ergodic capacity over correlated
Rician fading channels and under generalized fading condi-
tions was investigated in [8] and [9], respectively. In the same
context, comprehensive capacity analyses over independent
and correlated generalized fading channels were performed
in [10]–[12] for different diversity receiver configurations.
Also, a lower bound for the ergodic capacity of distributed
multiple input multiple output (MIMO) systems was derived
in [13], while the effective throughput over generalized mul-
tipath fading in multiple input single output (MISO) systems
was analyzed in [14].

In most practical wireless scenarios, the transmitted sig-
nal may not only undergo multipath fading, but also simul-
taneous shadowing. Shadowing can be typically modeled
with the aid of lognormal, gamma, inverse Gaussian and
inverse gamma distributions [15]–[20]. Following from this,
the simultaneous occurrence of multipath fading and shad-
owing can be taken into account using any one of the
composite fading models, introduced in the open technical
literature [21]–[28]. Capitalizing on this, the performance
of digital communications systems over composite fading
channels has been analyzed in [29]–[48]. The majority of
these contributions are concerned with analyses relating
to outage probability and error analyses in conventional
and diversity based communication scenarios. However, a
corresponding analysis of the channel capacity has only
been partially addressed. Furthermore, many of the exist-
ing studies are either limited to an ergodic capacity analy-
sis for the case of independent and correlated fading chan-
nels in conventional, relay and multi-antenna communi-
cation scenarios or to the effective capacity and channel
capacity under different adaptation policies for the case of
conventional communication scenarios. In addition, these
analyses have been comprehensively addressed only for
the case of gamma distributed shadowing and partially for
composite models based on lognormal or IG shadowing
effects.

Motivated by this, the authors in [49] recently proposed
the use of the Fisher-Snedocor F distribution to describe
the composite fading conditions encountered during realistic
wireless transmission. This composite model is based on the
key assumption that the root mean square (rms) power of
a Nakagami-m signal is subject to variation induced by an
inverse Nakagami-m random variable (RV). It was shown in
[49] that this assumption renders theF fading model capable
of providing a better fit to measurement data than the widely
used generalized-K fading model. Additionally, the algebraic
representation of theF composite fading distribution is fairly
tractable and simpler than that of the generalized-K distribu-
tion, which until now has largely been considered the most
analytically tractable composite fading model.

As a result, this model is characterized by its distinct
combination of accurate modeling capability and algebraic
tractability. In the present contribution, a comprehensive

framework for the capacity analysis overF composite fading
channels is provided. The main contributions of the this paper
are summarized below:
• We derive additional analytic expressions for the key
statistical metrics of the F composite fading model.
These formulations are generic and thus, well suited
to information-theoretic analyses, such as those in the
present contribution.

• We quantify the channel capacity under F composite
fading conditions assuming that CSI is known only
at the receiver. Based on this, we derive novel exact
closed-form expressions for the corresponding channel
capacity with optimum rate adaptation (CORA) and effec-
tive capacity (Ceff ) measures.

• Capitalizing on the above, we derive accurate approxi-
mations and tight bounds for the considered (CORA) and
effective capacity (Ceff ) measures. These expressions
are particularly simple and provide useful theoretical
and practical insights into the impact of multipath fading
and shadowing on the overall system performance.

• We quantify the channel capacity under F composite
fading conditions assuming that CSI is known both
at the transmitter and at the receiver. Based on this,
we derive novel exact closed-form expressions for the
corresponding channel capacity with optimum power
and rate adaptation (COPRA), the channel inversion and
fixed rate (CCIFR) and the truncated channel inversion
and fixed rate (CTIFR).

• Based on the above, we then derive accurate approxima-
tions and tight bounds for the considered cases, which
are rather simple and insightful.

• We also derive analytic expressions for the optimum
cut-off SNR (γ0) for the considered COPRA case.

• We utilize all of these results to provide a quantifica-
tion of the channel capacity limits for different fading
conditions. This provides numerous insights which are
expected to be useful in the design and deployment
of communication systems in the context of emerging
wireless applications, such as body area networks and
vehicular communications, to name but a few.

The remainder of the paper is organized as follows: In
Section II, we briefly review and redefine the F composite
fading model. Then an analytical framework for the capacity
analysis over F composite fading channels is derived in
Section III. Section IV provides some numerical results while
Section V presents some concluding remarks.

II. THE F COMPOSITE FADING MODEL
Similar to the physical signal model proposed for the
Nakagami-m fading channel [50], the received signal in an F
composite fading channel is composed of separable clusters
of multipath in which the scattered waves have similar delay
times, with the delay spreads of different clusters being rela-
tively large. However, in contrast to the Nakagami-m signal,
in an F composite fading channel, the rms power of the
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received signal is subject to random variation induced by
shadowing. Based on this, the received signal envelope, R,
can be expressed as

R =

√√√√ m∑
i=1

α2I2i + α
2Q2

i , (1)

where m represents the number of clusters of multipath,
Ii and Qi are independent Gaussian RVs which denote the
in-phase and quadrature phase components of the multipath
cluster i, respectively, where

E[Ii] = E[Qi] = 0 (2)

and

E[I2i ] = E[Q2
i ] = σ

2, (3)

with E[·] denoting statistical expectation. In (1), α is a
normalized inverse Nakagami-m RV where ms is the shape
parameter and E[α2] = 1, such that

fα(α) =
2(ms − 1)ms

0 (ms) α2ms+1
exp

(
−
ms − 1
α2

)
, (4)

where0(·) represents the gamma function [51, eq. (8.310.1)].
Following the approach in [49], we can obtain the corre-

sponding PDF1 of the received signal envelope, R, in an F
composite fading channel, namely

fR(r) =
2mm(ms − 1)ms �msr2m−1

B (m,ms)
[
mr2 + (ms − 1) �

]m+ms , (5)

which is valid for ms > 1, while B(·, ·) denotes the beta
function [51, eq. (8.384.1)]. The form of the PDF in (5) is
functionally equivalent to the F distribution.2 In terms of its
physical interpretation,m denotes the fading severity whereas
ms controls the amount of shadowing of the rms signal
power. Moreover, � = E[r2] represents the mean power.
As ms→ 0, the scattered signal component undergoes heavy
shadowing. In contrast, as ms → ∞, there exists no shad-
owing in the wireless channel and therefore it corresponds
to a standard Nakagami-m fading channel. Furthermore, as
m→∞ and ms → ∞, the F composite fading model
becomes increasingly deterministic, i.e., it becomes equiva-
lent to an additive white Gaussian noise (AWGN) channel.

Based on (5), the PDF of the instantaneous SNR, γ , in anF
composite fading channel can be straightforwardly deduced
by using the variable transformation γ = γ r2/�, such that

fγ (γ ) =
mm(ms−1)ms γmsγm−1

B (m,ms) [mγ + (ms − 1) γ ]m+ms
, (6)

1It is worth highlighting that in the present paper, we have modified
slightly the underlying inverse Nakagami-m PDF from that used in [49] and
subsequently the PDF for the F composite fading model. While the PDF
in [49] is completely valid for physical channel characterization, it has some
limitations in its admissible parameter range when used in analyses relating
to digital communications. The redefined PDF in (5), on the other hand,
is well consolidated.

2Letting r2 = x,m = d1/2,ms = d2/2,� = d2/(d2−2) and performing
the required transformation yields theF distribution, fX (x), with parameters
d1 and d2.

where γ = E[γ ] denotes the corresponding average SNR. To
this effect, the redefined moments,

E[γ n] ,
∫
∞

0
γ nfγ (γ )dγ (7)

whereas the moment-generating function (MGF),

Mγ (s) ,
∫
∞

0
exp(−sγ )fγ (γ )dγ (8)

are expressed as [52]

E[γ n] =
(ms − 1)nγ n0(m+ n)0(ms − n)

mn0(m)0(ms)
(9)

and

Mγ (−s) = 1F1

(
m; 1− ms;

sγ (ms − 1)
m

)
+
0(−ms)smsγms (ms − 1)ms

B(m,ms)mms

× 1F1

(
m+ ms; 1+ ms;

sγ (ms − 1)
m

)
(10)

respectively, with 1F1(·, ·, ·) denoting the Kummer confluent
hypergeometric function [51, eq. (9.210.1)]. Similarly, with
the aid of [51, eq. (3.194.1)] the envelope cumulative distri-
bution function (CDF) is expressed as

FR(r) =
mm−1r2m

B(m,ms)(ms − 1)m�m

× 2F1

(
m,m+ ms,m+ 1;−

mr2

(ms − 1)�

)
, (11)

where 2F1(·, ·; ·; ·) is the Gauss hypergeometric func-
tion [51, eq. (9.111)], whereas its respective SNR CDF is
readily given by

Fγ (γ ) =
mm−1γm

B(m,ms)(ms − 1)mγm

× 2F1

(
m,m+ ms,m+ 1;−

mγ
(ms − 1)γ

)
. (12)

It is noted that the above CDF expressions are valid for
arbitrary values of the fading parametersm and ms. However,
an additional expression can be derived for the special case
of arbitrary values of ms and integer values of m.
Lemma 1: For γ, γ ∈ R+, m ∈ N and ms > 1, the out-

age probability under F composite fading conditions can be
expressed as

Fγ (γ ) =
m−1∑
l=0

(
m− 1
l

)
(−1)l

B(m,ms)

{
1

ms + l

−
(ms − 1)ms+lγms+l

(ms + l)(mγ + (ms − 1)γ )ms+l

}
, (13)

where
(
·

·

)
denotes the binomial coefficient [51, eq. (1.111)].

Proof: It is recalled that the CDF of the F composite
statistical distribution is given by

Fγ (γ ) =
∫ γ

0

mm(ms−1)ms γmsxm−1

B (m,ms) [mx + (ms − 1) γ ]m+ms
dx. (14)
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By setting

u = mx + (ms − 1)γ (15)

and after some algebraic manipulations, it follows that

Fγ (γ ) =
(ms − 1)msγms

B(m,ms)

×

∫ mγ+(ms−1)γ

(ms−1)γ

(u− (ms − 1)γ )m−1

um+ms
du. (16)

By applying the binomial theorem in [51, eq. (1.111)], one
obtains

Fγ (γ ) =
(ms − 1)msγms

B(m,ms)

m−1∑
l=0

(
m− 1
l

)
(1− ms)lγ l

×

∫ mγ+(ms−1)γ

(ms−1)γ

1
ums+l+1

du (17)

which is valid when m ∈ N. Consequently, the above integral
can be evaluated straightforwardly. Based on this and after
some algebraic manipulations, the simplified expression for
the CDF in (13) is deduced, which completes the proof. �
The derived expression in Lemma 1 is novel and has a

relatively simple algebraic representation. Therefore, it is
useful in cumbersome analyses relating to digital commu-
nications over F composite fading channels, where (13)
proves intractable to lead to the derivation of useful analytic
solutions.

In the sequel, we use these results for the F composite
model to perform a comprehensive capacity analysis for the
cases of receiver CSI and transmitter/receiver CSI.

III. CHANNEL CAPACITY WITH RECEIVER CSI
Channel capacity is a core performance metric in conven-
tional and emerging communication systems, and its limits
are largely affected by the incurred fading conditions during
wireless transmission. Ergodic capacity is the most widely
used capacity measure and is concerned with CSI knowledge
only at the receiver and a fixed transmit power. The effective
capacity is also a particularly useful information theoretic
measure as it accounts for the achievable capacity subject to
the incurred latency relating to the corresponding buffer occu-
pancy. In what follows, we derive novel exact, approximate
and asymptotic analytic expressions for these two measures,
namely CORA and Ceff , over F composite fading conditions.

A. ERGODIC CAPACITY
A closed-form expression for the ergodic capacity is derived
in the following theorem.
Theorem 1: For m, γ, γ ,B ∈ R+ and ms > 1, the channel

capacity per unit bandwidth with optimum rate adaptation
under F composite fading conditions can be expressed as
CORA
B
=
ψ(m+ms)−ψ(ms)

ln(2)

+
(ms−1) γ−m
(m+ms) ln(2)

3F2 (1, 1, 1+m; 2, 1+m+ms;D1),

(18)

where

D1 =
m− (ms − 1) γ

m
(19)

whereas B denotes the channel bandwidth, ψ(·) is the
digamma function, ln(·) is the natural logarithm and
3F2(·, ·, ·; ·, ·; ·) is a special case of the generalized hyper-
geometric function pFq(·, ·, ..., ·; ·, ..., ·; ·), with p = 3 and
q = 2 [51].

Proof: It is recalled that the channel capacity with opti-
mum rate adaptation in the presence of fading is defined as

CORA , B
∫
∞

0
log2(1+ γ )fγ (γ )dγ. (20)

Therefore, by substituting (6) in (20), the CORA per unit
bandwidth for the case of F composite fading channels is
given by

CORA
B
=

mm(ms−1)ms γms

B (m,ms)

×

∫
∞

0

γm−1 log2(1+ γ )

[mγ + (ms − 1) γ ]m+ms
dγ. (21)

The involved integral in (21) can be expressed in closed-form
using [53, eq. (2.6.2.7)] as well as the logarithmic and
hypergeometric function identities [51], [53]. By performing
the necessary change of variables and after some algebraic
manipulations, (18) is deduced, which completes the proof.

It is worth highlighting that (18) is expressed in terms of
widely known functions, which are readily available in most
standard scientific software packages. Nonetheless, an accu-
rate closed-form approximation can be also deduced as a
special case.
Proposition 1: Form, γ, γ ,B ∈ R+, ms > 1 andms � m,

the channel capacity per unit bandwidth with optimum rate
adaptation over F composite fading channels can be tightly
approximated as follows:

Cappr .
ORA

B
≈

1
ln(2)

(ms−1) γ − m
ms

× 3F2 (1, 1, 1+ m; 2, 1+ m+ ms;D1) . (22)

Proof: It is obvious that

m+ ms ≈ ms (23)

when ms � m. By recalling (18) and the properties of the
digamma function [51], [53], it is evident that

ψ(m+ ms) ≈ ψ(ms) (24)

when ms � m, which yields

ψ(m+ ms)− ψ(ms) −→ 0. (25)

Based on the above, (18) reduces to (22), which completes
the proof. �
In the same context, a particularly simple and tight asymp-

totic expression is derived for the case of high average SNR
values.
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Proposition 2: For m, γ, γ ,B ∈ R+, ms > 1 and
γ � 0, the channel capacity per unit bandwidth with opti-
mum rate adaptation over F composite fading channels can
be asymptotically expressed as follows:

Casym.
ORA

B
'

ln(γ )+ ln(ms − 1)− ln(m)+ ψ(m)− ψ(ms)
ln(2)

.

(26)

Proof: The ergodic capacity per unit bandwidth at the
high SNR regime can be accurately expressed as [54], [55]

CORA(γ ) '
ln(γ )
ln(2)

+
1

ln(2)
∂

∂n
AF (n)

γ

∣∣∣
n=0

(27)

=
1

ln(2)
∂

∂n
E[γ n]

∣∣∣
n=0

(28)

where

AF ,
E[γ n]
E[γ ]n

− 1 (29)

denotes the corresponding amount of fading. It is recalled
that the moments of the F composite fading model are given
in (9); therefore, the asymptotic capacity for this case can be
derived by determining the first derivative of (9) with respect
to n and then setting n = 0, namely

Casym.
ORA =

∂

∂n

[
(ms − 1)nγ n0(m+ n)0(ms − n)

ln(2)mn0(m)0(ms)

]
n=0
.

(30)

Following from this, with the aid of the properties of the
gamma function along with some algebraic manipulations,
the first derivative of (9) for the case of the F compos-
ite fading with respect to n is expressed by the following
closed-form representation

∂

∂n
E[γ n] =

(ms − 1)nγ n0(m+ n)0(ms − n)
mnB(m,ms)0(m+ ms)

×

{
ψ(m+n)−ψ(ms−n)−ln

(
m

(ms−1) γ

)}
.

(31)

By substituting (31) in (30), setting n = 0, i.e.
(1/ ln(2))∂E[γ n]/∂n|n=0, and carrying out some algebraic
manipulations, (26) is deduced, which completes the
proof. �

It is noted that the simple algebraic representation of (26)
provides useful insights on the impact of the involved param-
eters on the overall system performance. This is also evident
through the fact that it can be also expressed in terms of γ ,
namely

γORA ≈ 2
Casym.ORA

B eψ(ms)−ψ(m)
m

ms − 1
, (32)

which provides insights on the value of γORA for fixed CORA,
B and fading parameters. Hence, this is useful in quantifying
the required average SNR value for meeting target quality of
service and bandwidth requirements under different fading
conditions.

B. EFFECTIVE CAPACITY
It is recalled that the effective rate accounts for the channel
capacity as a function of the asymptotic decay rate of the
corresponding buffer occupancy. This is an insightful mea-
sure, particularly in emerging technologies where latency is
a critical quality of service criterion.
Theorem 2: For m, γ, γ , θ,B,T ∈ R+ and ms > 1,

the effective capacity Ceff = Ec(θ ) underF composite fading
conditions can be expressed as

Ceff =
ms
A

log2

(
m

(ms − 1) γ

)
+

1
A
log2

(
(m+ ms)A
(ms)A

)
−

log2 ( 2F1 (A+ ms,m+ ms;A+ m+ ms;D1))

A
,

(33)

where

(x)n ,
0(x + n)
0(x)

(34)

denotes the Pochhammer symbol [51] and

A =
BT θ
ln(2)

(35)

is a metric of delay constraint with B and T denoting the
system bandwidth and the block/frame length, respectively,
whereas θ represents the quality of service (QoS) exponent
in terms of the corresponding asymptotic decay rate of the
buffer occupancy.

Proof: Given the instantaneous service rate of a system
as

R = TB log2(1+ γ ) (36)

the corresponding effective rate can be expressed as

Ec(θ ) = −A−1 log2
(
E
[
e−θR

])
, (37)

which can be re-written as [43], [56], [57]

Ceff = −
1
A
log2

(∫
∞

0
e−θTB log2(1+γ )fγ (γ )dγ

)
, (38)

where fγ (γ ) accounts for the corresponding fading statistics.
Therefore, for the case of F composite fading channels,
we substitute the redefined PDF in (6) into (38), which after
some algebraic manipulations yields

Ceff =
1
A
log2

(
B (m,ms)

mm(ms−1)ms γms

)
−
1
A
log2

(∫
∞

0

γm−1dγ

(1+ γ )A [mγ + (ms − 1) γ ]m+ms

)
.

(39)

The integral in (39) can be expressed in closed-form with
the aid of [51, eq. (3.259.3)]. Therefore, by performing the
necessary change of variables one obtains the following
closed-form expression

Ceff = −
1
A
log2

{
B(m,A+ ms)
B(m,ms)

(
(ms − 1)γ

m

)ms
× 2F1 (A+ ms,m+ ms;A+ m+ ms;D1)

}
. (40)
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To this effect and by also applying the properties and identi-
ties of the logarithm, gamma and beta functions, (40) reduces
to the compact form of (33), which completes the proof. �
It is noted that similar expressions to (33) were derived

in [47] and [48]. However, these expressions are limited
due to the constrained consideration of the SNR PDF of the
F fading model in [49]. As a result, the derived result in
Theorem 2 is more suitable since it is based on the well con-
solidated SNR PDF in (6). Furthermore, the corresponding
analytic expression in [48] can be readily modified in order to
lead to more generic, and practically more useful and reliable
results. In addition, this expression can be used as a bench-
mark for the derivation of simple tight bounds and an accurate
approximation, which provide useful insights on the impact
of the involved parameters on the system performance.
Proposition 3: For m, γ, γ , θ,B,T ∈ R+, ms > 1 and

assuming ms + m� A and γ ≥ 10dB, the effective capacity
under F composite fading conditions can be bounded by the
following inequalities3:

CUB
eff <

log2 ((ms + A)m)− log2 ((ms)m)
A

+ log2 (γ )+ log2 (ms − 1)− log2 (m) (41)

and

CLB
eff > log2 (γ )+ log2

(
ms − 1
m

)
−

log2 ((ms)A)
A

, (42)

which constitute tight upper and lower bounds, respectively,
to (33).

Proof: It is evident that

A+ m+ ms ≈ m+ ms (43)

when m + ms � A. As a result, (33) can be tightly upper
bounded as follows:

CUB
eff < −

1
A
log2

{
(ms)A

(ms + m)A

(
(ms − 1)γ

m

)ms
×2F1 (A+ ms,m+ ms;m+ ms;D1)

}
. (44)

Given that

2F1 (A+ ms,m+ ms;m+ ms;D1) = 1F0 (A+ ms; ;D1)

(45)

and by recalling that

1F0(n; ; 1+ x) ,
(−1)n

xn
(46)

when n ∈ R, (44) reduces to

CUB
eff < −

1
A
log2

(
(ms)A(ms−1)msγms

(ms+m)Amms

(
m

(ms−1)γ

)A+ms)
.

(47)

To this effect and after some algebraic manipulations,
the closed-form upper bound in (41) is deduced.

3It is noted that (ms + m)A/(ms)A = (ms + A)m/(ms)m = 0(ms + m +
A)0(ms)/(0(ms + m)0(ms + A)).

Based on (41) and recalling that A+m+ms ≈ m+ms when
m + ms � A, the left hand side term on the fraction of (41)
can be reasonably eliminated. This readily yields (42), which
is a tight lower bound to the exact effective capacity in (33)
for the given conditions and thus, it completes the proof. �
It is noted here that (41) and (42) are particularly insightful

and they can be also expressed in terms of the involved
average SNR, namely

γ eff '
m2C

UB
eff

ms − 1

(
(ms)A

(ms + m)A

) 1
A

'
m2C

LB
eff

ms − 1
((ms)A)

1
A , (48)

which is rather accurate when m + ms � A. Importantly,
this allows the determination of γ for different values of m,
ms and A along with specific values of Ceff . This is useful in
determining the required SNR for specific fading conditions
and target quality of service requirements, particularly in
emerging wireless communication systems.

In the same context as with the derived bounds in
Proposition 3, a simple and accurate approximate expression
to (33) can be additionally derived.
Proposition 4: For m, γ, γ ,B ∈ R+, ms > 1 and γ � 0,

the effective capacity under F composite fading conditions
can be accurately approximated as follows:

Cappr .
eff ' −

1
A
log2 ( 2F1(A,ms;A+ m+ ms; 1− γ )) . (49)

Proof: In the high SNR regime, i.e. γ � 0, it readily
follows that γ � m, γ � ms and γ � A. To this effect and
by expanding the logarithmic terms in (33), one obtains

(ms)A
(m+ ms)A

(
(ms − 1)γ

m

)ms
' γ ms . (50)

Based on this and after some algebraic manipulations, (49) is
deduced, which completes the proof. �
It is evident that (49) can be also solved with respect to the

average SNR, namely

γ eff ' 1− 2F
−1
1

(
A,ms;A+ m+ ms; 2

−ACappr .eff

)
, (51)

where 2F
−1
1 (·, ·; ·; ·) denotes the inverse Gauss hypergeomet-

ric function.
To the best of the authors knowledge, the analytic expres-

sions provided here have not been previously reported in the
open technical literature.

IV. CHANNEL CAPACITY WITH TRANSMITTER
AND RECEIVER CSI
The previous section was devoted to the capacity analysis
for the case of known CSI at the receiver side. However,
in several emerging systems, CSI can be also available at the
transmitter as this allows greater flexibility and adaptability,
which results in amore efficient and intelligent overall system
operation. A typical feature in the case of knowing CSI at
the transmitter and at the receiver is the ability to benefit
from adaptive transmit power. This is the key process of the
so called water-filling approach and in fixed rate systems.
In the former, higher power and rate levels are allocated in
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good fading conditions and less power in severe fading con-
ditions. In the latter, the transmitter adapts the power accord-
ingly in order to maintain a fixed rate at the receiver [52].
These concepts are critical in numerous emerging applica-
tions that are characterized by stringent quality of service
requirements, such as telemedicine and vehicle to vehicle
communications [49]. Subsequently, this section is devoted
to the capacity analysis overF composite fading channels for
the following adaptation policies: i) optimum power and rate
adaptation; ii) channel inversion with fixed rate; iii) truncated
channel inversion with fixed rate.

A. OPTIMUM POWER AND RATE ADAPTATION
This policy is based on the aforementioned water-filling con-
cept and it is characterized by a power constraint, which
ensures a more efficient operation [52].
Theorem 3: For m, γ, γ ,B, γ0 ∈ R+, and ms > 1,

the channel capacity per unit bandwidth with optimum power
and rate adaptation underF composite fading conditions can
be expressed as

COPRA
B
=

(ms − 1)msγms

ln(2)B(m,ms)m2
s mmsγ

ms
0

× 3F2 (ms,ms,m+ms; 1+ms, 1+ms;D2) , (52)

where

D2 =
(1− ms)γ

mγ0
(53)

with γ0 denoting the SNR threshold that determines
transmission.

Proof: It is recalled that the channel capacity with
optimum power and rate adaptation over fading channels is
defined as [5], [6], [52]

COPRA = B
∫
∞

γ0

log2

(
γ

γ0

)
fγ (γ )dγ. (54)

Therefore, for the case of F composite fading channels,
we substitute (6) in (54), which yields

COPRA
B
=

mm(ms−1)ms γ̄ms

B(m,ms) ln(2)

×

∫
∞

γ0

ln(γ /γ0)γm−1

(mγ + (ms − 1)γ )m+ms
dγ. (55)

The integral in (55) can be expressed in closed-form with
the aid of [53]. To this effect, by performing the necessary
variable transformation, utilizing the hypergeometric func-
tion identities in [51] and [53] and carrying out some alge-
braic manipulations, one obtains (52), which completes the
proof. �
Remark 1: It is noted that the COPRA in Theorem 3 can be

alternatively expressed equivalently as follows:

COPRA
B
=

ln(γ )+ ln(ms − 1)− ln(m)+ ψ(m)− ψ(ms)
ln(2)

+
mm−2γm0

ln(2)(ms − 1)m γmB(m,ms)

× 3F2

(
m,m,m+ms; 1+m, 1+m;

mγ0
(1−ms) γ

)
−

mm−1γm0 ln(γ0)

ln(2)(ms − 1)m γmB(m,ms)

× 2F1

(
m,m+ ms; 1+ m;

mγ0
(1− ms) γ

)
−

ln(γ0)(ms − 1)ms γms

ln(2)msmmsγ
ms
0 B(m,ms)

× 2F1

(
ms,m+ ms; 1+ ms;

(1− ms) γ
mγ0

)
. (56)

It is worth noting that (52) is tractable both analytically
and numerically. Likewise, (56) has the same algebraic rep-
resentation as (52) but it is less suitable because it involves
more terms. Nonetheless, (56) can be useful in that it can
be used as a benchmark for the derivation of an accurate
approximation for the considered scenario, which is both
simple and insightful.
Proposition 5: For m, γ, γ0,B ∈ R+, ms > 1 and γ � 0,

the channel capacity per unit bandwidth with optimum power
and rate adaptation under F composite fading conditions
can be accurately approximated by the following closed-form
representation

Cappr .
OPRA

B
≈ log2(γ )− log2(γ0)(ms − 1)ms γmsD3, (57)

where

D3 = 2F1

(
ms,m+ ms; 1+ ms;

(1− ms) γ
mγ0

)
. (58)

Proof: It is evident that at the high average SNR regime,
the argument of the first two hypergeometric function in (52)
tends to zero i.e.

mγ0
(1− ms)γ

−→ 0. (59)

To this effect and by recalling the hypergeomeric function
property

pFq(a1, a2, · · · ; b1, b2, · · · ; 0) , 1 (60)

it immediately follows that

Cappr .
OPRA

B
≈

ln(ms − 1)+ ln(γ )+ ψ(m)− ψ(ms)− ln(m)
ln(2)

+
mm−2γm0 − m

m−1γm0 ln(γ0)

ln(2)γm(ms − 1)mB(m,ms)

−
ln(γ0)γms (ms − 1)ms

ln(2)msmmsγ
ms
0 B(m,ms)

× 2F1

(
ms,m+ ms; 1+ ms;

γ (1− ms)
mγ0

)
.

(61)

Given also the practical range of values of γ0, [5]–[7], [52],
it is reasonable to assume that

mm−2 ' mm−1 ln(γ0), (62)
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which yields

Cappr .
OPRA

B
≈

ln(ms − 1)+ ln(γ )+ ψ(m)− ψ(ms)− ln(m)
ln(2)

−
ln(γ0)γms (ms − 1)ms

ln(2)msmmsγ
ms
0 B(m,ms)

× 2F1

(
ms,m+ ms; 1+ ms;

γ (1− ms)
mγ0

)
.

(63)

It is evident that ln(γ ) is the dominant term of the first fraction
of (63). Based on this and after some algebraic manipulations,
(57) is deduced, which completes the proof. �
It is recalled that the cut-off SNR, γ0, determines the

optimum operation in this policy since when the average
SNR value drops below its level, transmission is suspended.
In what follows, we derive a useful analytic expression for γ0.
Lemma 2: For m, γ, γ ,B, γ0 ∈ R+, and ms > 1, the opti-

mum SNR cut-off level for the case of F composite fading
channels can be expressed as

γ0 =
(1− ms) γ m−1

B−1
(
(−1)ms (ms−1)γB(m,ms)

m ; 1+ ms, 1− m− ms
) ,
(64)

where B−1(·; ·, ·) denotes the inverse incomplete beta
function.

Proof: It is recalled that the optimum cut off SNR in the
case of optimum power and rate adaptation must satisfy the
following expression∫

∞

γ0

(
1
γ0
−

1
γ

)
fγ (γ )dγ = 1, (65)

which yields

γ0 =

∫
∞

γ0

fγ (γ )dγ − γ0

∫
∞

γ0

fγ (γ )
γ

dγ. (66)

By substituting (6) in (66), we obtain (67) at the top of the
next page.

Then, by taking the first derivative in both sides of (67) and
carrying out some algebraic manipulations, one obtains∫

∞

γ0

mm(ms−1)ms γmsγm−2

B (m,ms) [mγ + (ms − 1) γ ]m+ms
dγ = −1. (68)

The above integral can be expressed in closed-form with
the aid of the incomplete beta function in [51, eq. (8.391)],
which yields

B
(
(1− ms)γ

mγ0
; 1+ ms, 1− m− ms

)
D2 = −1, (69)

where

D2 =
m(−1)−1−ms

B(m,ms)(ms − 1) γ
. (70)

Finally, by solving (69) with respect to γ0 yields (64), which
completes the proof. �

Remark 2: The integral in (68) can be equivalently
expressed in closed-form in terms of the Gauss hypergeomet-
ric function with the aid of [51, eq. (3.194.1)]. Based on this
and by following the same procedure as in Lemma 2 along
with some algebraic manipulations, the following exact ana-
lytic expression can be also deduced

γ0 =
(−1)

1
ms+1 γ

ms
1+ms (ms − 1)

ms
1+ms

[B(m,ms)]
1

1+ms (1+ ms)
1

1+ms m
ms

1+ms

×

[
2F1

(
ms + 1,m+ ms;ms + 2;

(1− ms)γ
mγ0

)] 1
1+ms

,

(71)

which can be evaluated numerically with the aid of standard
mathematical software packages.

B. CHANNEL INVERSION WITH FIXED RATE
This policy ensures a fixed data rate at the receiver by means
of inverting the channel and adapting the transmit power
accordingly. This is particularly useful in numerous appli-
cations where a fixed rate is the core requirement. In what
follows, we derive the channel capacity with channel inver-
sion and fixed rate in the presence of F composite fading
conditions [5]–[7], [52].
Theorem 4: For m, γ, γ ,B ∈ R+ and ms > 1, the channel

capacity per unit bandwidth with channel inversion and fixed
rate under F composite fading conditions can be expressed
as follows:

CCIFR
B
= log2

(
1+

(m− 1)(ms − 1) γ
mms

)
. (72)

Proof: The channel capacity with channel inversion and
fixed rate is defined as

CCIFR = B log2

1+
1∫

∞

0
fγ (γ )
γ
dγ

. (73)

Therefore, for the case of F composite fading conditions,
we substitute (6) into (72), yielding

CCIFR
B
= log2

1+
B(m,ms)m−m(ms − 1)−msγ−ms∫

∞

0
γm−1

[mγ+(ms−1) γ ]m+ms
dγ

.
(74)

The above integral can be obtained in closed-form
using [51, eq. (3.194.3)]. To this end, by making the neces-
sary change of variables and substituting in (74) one obtains

CCIFR
B
= log2

(
1+

B(m,ms)0(m+ ms)(ms − 1) γ
m0(m− 1)0(ms + 1)

)
,

(75)

which with the aid of the properties of the beta and gamma
functions and after some algebraic manipulations yields (72),
which completes the proof. �
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∫
∞

γ0

mm(ms−1)ms γmsγm−1

B (m,ms) [mγ + (ms − 1) γ ]m+ms
dγ = γ0 + γ0

∫
∞

γ0

mm(ms−1)ms γmsγm−2

B (m,ms) [mγ + (ms − 1) γ ]m+ms
dγ. (67)

It is evident that (72) has a rather simple algebraic repre-
sentation. Furthermore, it is particularly insightful since it can
be expressed exactly in terms of the average SNR, namely

γ =
mms

(m− 1)(ms − 1)

(
2
CCIFR
B − 1

)
(76)

as well as in terms of the fading parametersm andms, namely

m =
(ms − 1)γ

(ms − 1)γ − ms
(
2
CCIFR
B − 1

) (77)

and

ms =
(m− 1)γ

(m− 1)γ − m
(
2
CCIFR
B − 1

) (78)

respectively. The above expressions can provide meaningful
insight on the impact of the involved parameters on the overall
system performance. Also, they are useful in determining the
required average SNR values for target quality of service and
bandwidth requirements under different multipath fading and
shadowing conditions.

C. TRUNCATED CHANNEL INVERSION WITH FIXED RATE
Channel inversion with fixed rate constitutes a low com-
plexity and effective method to achieve fixed rate commu-
nications. However, the main drawback of this technique is
the large transmit power requirements in case of deep fades.
Nonetheless, this specific issue can be resolved by inverting
the channel above a fixed cut-off level, namely channel trun-
cation. In what follows, we quantify the channel capacity with
truncated channel inversion and fixed rate for the case of F
composite fading conditions.
Theorem 5: For γ, γ ,B ∈ R+, and ms > 1, the channel

capacity per unit bandwidth with truncated channel inversion
and fixed rate under F composite fading conditions can be
expressed as

CTIFR
B
= log2

(
1+

B(m,ms)(ms + 1)mmsγms+10

(ms − 1)msγmsD3

)

×

(
1−

mm−1γmthD4

B(m,ms)(ms − 1)mγm

)
(79)

when m ∈ R+, and
CTIFR
B
= log2

(
1+

B(m,ms)
m(ms − 1)msγmsD5

)
×

(
1−

m−1∑
l=0

(
m− 1
l

)
(−1)l

B(m,ms)
1−D6

ms + l

)
(80)

when m ∈ N. The terms D3 and D4 in (79) are expressed as

D3 = 2F1

(
ms + 1,m+ ms;ms + 2;

(1− ms)γ
mγ0

)
(81)

and

D4 = 2F1

(
m,m+ ms; 1+ m;

mγth
(1− ms)γ

)
, (82)

whereas the D5 and D6 terms in (80) are given by

D5 =

m−2∑
l=0

(
m− 2
l

)
(−1)l(ms + l + 1)−1(ms − 1)lγ l

(mγ0 + (ms − 1)γ )ms+l+1
(83)

and

D6 =
(ms − 1)ms+l γms+l

(mγth + (ms − 1)γ )ms+l
. (84)

Proof: The channel capacity with truncated channel
inversion and fixed rate is defined as

CTIFR , B log2

1+
1∫

∞

γ0

fγ (γ )
γ
dγ

∫ ∞
γ0

fγ (γ )dγ, (85)

which with the aid of (6) for the case of F composite fading
channels and recalling that∫

∞

γ0

f (x)dx = 1−
∫ γ0

0
f (x)dx (86)

= 1− Pout (87)

is expressed as

CTIFR
B
= log2

1+
B(m,ms)∫

∞

γ0

mm(ms−1)ms γmsγm−2

[mγ+(ms−1) γ ]m+ms
dγ


×

(
1−D7

∫ γ0

0

γm−1

[mγ + (ms−1) γ ]m+ms
dγ
)
,

(88)

where

D7 =
mm(ms−1)ms γms

B(m,ms)
. (89)

Now, recalling that

Pout , F(γth) (90)

and using (12) for the case ofm ∈ R+ along with substituting
in (88), it follows that

CTIFR
B
= log2

1+
1

D7
∫
∞

γ0

γm−2

[mγ+(ms−1) γ ]m+ms
dγ


×

(
1−

mm−1γmthD4

B(m,ms)(ms − 1)mγm

)
. (91)

The integral in (91) can be expressed in closed-form with the
aid of [51, eq. (3.194.1)]. This is achieved by performing the
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necessary variable transformation and after some algebraic
manipulations, which yields (79) for the case of m ∈ R+.
Likewise, for the case of m ∈ N, we apply again Pout ,

F(γth) in (13), which upon substitution in (91), it follows that

CTIFR
B
= log2

1+
1

D7
∫
∞

γ0

γm−2

[mγ+(ms−1) γ ]m+ms
dγ


×

(
1−

m−1∑
l=0

(
m− 1
l

)
(−1)l

B(m,ms)
1−D6

ms + l

)
. (92)

Therefore, by setting

u = mγ + (ms − 1)γ (93)

in (92), one obtains

CTIFR
B
= log2

1+
mm−1

D7
∫
∞

mγ0+(ms−1)γ
(u−(ms−1)γ )m−2

um+ms du


×

(
1−

m−1∑
l=0

(
m− 1
l

)
(−1)l

B(m,ms)
1−D6

ms + l

)
. (94)

Now applying the binomial theorem in [51, eq. (1.111] in
the above integral along with some algebraic manipulations
yields

CTIFR
B
= log2

(
1+

B(m,ms)m−1(ms − 1)−msγ−ms∑m−2
l=0

(m−2
l

)
(−1)l(ms − 1)lγ lD8

)

×

(
1−

m−1∑
l=0

(
m− 1
l

)
(−1)l

B(m,ms)
1−D6

ms + l

)
, (95)

where

D8 =

∫
∞

mγ0+(ms−1)γ
u−ms−l−2du. (96)

It is evident that the integral above can be evaluated straight-
forwardly, which yields (80) and completes the proof for the
case of m ∈ N. �
Remark 3: It is noted that the integral in (91) can be

alternatively expressed equivalently in closed-form in terms
of the incomplete beta function [51]. As a result, the channel
capacity with truncated channel inversion and fixed rate over
F composite fading channels can be additionally expressed
as follows:

CTIFR
B
= log2

1+
(−1)msB(m,ms)(1− ms)γ

mB
(
(1−ms)γ
mγ0
; 1+ ms, 1− m− ms

)


×

(
1−

mm−1γmthD4

B(m,ms)(ms − 1)mγm

)
, (97)

which holds for m ∈ R+.
The exact analytic expressions in Theorem 5 are tractable

both analytically and numerically. However, capitalizing on
them leads to the derivation of a simple lower bound which

is both insightful and tight since it can be also regarded as an
accurate approximation.
Proposition 6: For γ, γ , γ0,B ∈ R+, m ∈ N, ms > 1

and γ � γth, the channel capacity per unit bandwidth
with truncated channel inversion and fixed rate under F
composite fading conditions can be tightly lower bounded
and approximated as follows:

CLB
TIFR

B
< log2

1+
B(m,ms)(ms − 1)γ

m
∑m−2

l=0

(m−2
l

) (−1)l
ms+l+1

. (98)

Proof: By recalling the case ofm ∈ N in Theorem 5 and
assuming large average SNR values, it follows that (80) can
be accurately approximated by the simplified representation
in (99), at the bottom of the next page. To this effect and by
assuming that γ � γth, (99) reduces to

CLB.
TIFR

B
≈ log2

1+
B(m,ms)m−1(ms − 1)−msγ−ms∑m−2
l=0

(m−2
l

) (−1)l

(ms+l+1)((ms−1)γ )ms+1


(100)

which after some algebraic manipulations yields (98), which
completes the proof. �
Remark 4: It is noted that (98) is a simple lower bound to

the exact analytic expression in (80) which is so accurate that
can be also regarded as a simple and accurate closed-form
approximation, i.e. CLB

TIFR = Cappr .
TIFR . This approximation is

also tight even for comparable values of γ and γ th; as a
result, the use of (98) as an approximation is not constrained
by the condition γ � γth in Proposition 6.
It is also worth noting that (98) is rather insightful as it can
be expressed in terms of γ , namely

γ ≈
2
Cappr .TIFR

B − 1
B(m,ms)(ms − 1)

m−2∑
l=0

(
m− 2
l

)
(−1)lm

ms + l + 1
. (101)

As in the previous scenarios, (101) is useful for target
quality of service and bandwidth requirements as it quantifies
the required average SNR value for different multipath fading
and shadowing conditions.

V. NUMERICAL RESULTS
In this section, we utilize the analytic results obtained in the
previous sections to quantify the achievable channel capacity
for the case of receiver CSI, and transmitter and receiver
CSI. This is realized for various communication scenarios
under realistic multipath fading and shadowing conditions.
The accuracy of the proposed approximate and asymptotic
expressions as well as the tightness of the proposed upper and
lower bounds are also extensively quantified.

Fig. 1 illustrates the CORA per unit bandwidth over F
composite fading channels with five different combinations
of the m and ms parameters, namely heavy shadowing (m =
50.0, ms = 1.1), severe multipath fading (m = 0.5,
ms = 50.0), intense (m = 0.5, ms = 1.1), moderate
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FIGURE 1. CORA/B versus average SNR under F fading conditions for
different values of the m and ms parameters.

(m = 3.4, ms = 3.4), and light (m = 50.0, ms = 50.0) com-
posite fading. The CORA per unit bandwidth over Rayleigh
fading channels is also illustrated in Fig. 1 for comparison.
As anticipated, the lowest spectral efficiency occurs when the
channel is subject to simultaneous severe multipath fading
and heavy shadowing, i.e., intense composite fading. On the
contrary, the highest spectral efficiency appears in the light
composite fading scenarios. This is largely due to the fact that
the F composite fading channel tends to become more deter-
ministic, i.e., approaches an AWGN channel, as the m and
ms parameters approach infinity i.e. large m and ms in reality.
Also, the difference between the two scenarios is substantial
across all SNR regimes, since the achieved channel capacity
in the case of light composite fading is over 50% more than
the capacity for the case of intense composite fading. Inter-
estingly, it is noted that the spectral efficiency is higher when
the channel is subject to severe multipath fading compared to
the channel undergoing heavy shadowing. This suggests that
the shadowing constitutes amore dominating influence on the
performance of wireless communications systems, compared
to the multipath fading. Furthermore, the severe multipath
fading (m = 0.5, ms = 50.0) case is equivalent to the
Nakagami-m fading, for m = 0.5. Accordingly, as shown
in Fig. 1, the Rayleigh fading case (m = 1) exhibits a higher
spectral efficiency compared to the severe multipath fading
case considered in this paper, which verifies its insufficient
modeling capability.

In the same context, the accuracy of the corresponding
approximate and asymptotic expressions in (22) and (26),
respectively, is depicted in Table 1 against the exact analytic
expression in (18). It is shown that (22) appears more accurate

TABLE 1. Exact, approximate & asymptotic CORA.

FIGURE 2. Effective capacity versus A under F fading channels for
different values of the m and ms parameters when γ = 5 dB.

in low average SNR values, contrary to (26) which appears
more accurate in the moderate and high SNR regimes.
Nonetheless, both (22) and (26) are acceptably accurate in all
multipath fading and shadowing conditions across all average
SNR values, which verifies their theoretical and practical
usefulness.

Fig. 2 demonstrates how the CE per unit bandwidth varies
as a function of the delay constraint over F composite fading
channels. Five different combinations of them andms param-
eters were considered for a case of low average SNR, i.e.
γ = 5 dB, whichmakes the impact of the incurred delaymore
critical. It is evident that the spectral efficiency is affected

Cappr .
TIFR

B
≈ log2

1+
B(m,ms)

m(ms − 1)msγms
∑m−2

l=0

(m−2
l

) (−1)l (ms−1)lγ l

(ms+l+1)(mγth+(ms−1)γ )ms+l+1

. (99)
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FIGURE 3. Effective capacity in an F fading channel as a function of the
m, ms and A parameters for γ = 15 dB.

considerably by the value of A across all types of fading con-
ditions, with the impact on intense fading conditions being
the most detrimental. In the same context, the effects of the
multipath fading and shadowing are shown in Fig. 3, where
the performance of the CE is illustrated along with different
values of A and γ = 15 dB. In all cases, we consider broad
ranges of the involved parameters, namely 1 < m ≤ 15,
1 < ms ≤ 15 and 0 ≤ A ≤ 20 in order to consider
all types of fading severity and incurred delays, as these
are encountered in realistic communication scenarios. As
expected, the spectral efficiency increases as the m and ms
parameters are greater (m,ms → 15) and A is smaller
(A→ 0), i.e., light composite fading conditions with no delay
constraint. Conversely, the performance of the CE is rather
poor for the case of intense composite fading conditions with
excessive delay constraint, i.e., m,ms → 1 and A → 20.
In general, it is shown that even if one of the parameters is
unfavorable i.e. excessive delay constraint or severemultipath
fading or shadowing, the corresponding achievable CE will
lie at moderate levels, regardless of how favorable the values
of the other parameters are. This verifies the need for accurate
channel modeling, and latency control and reduction in the
deployment of efficient wireless technologies.

Likewise, Table 2 depicts the accuracy and tightness of the
proposed approximation and bounds, respectively, against the
exact results. It is shown that the upper bound exhibits the
most accurate behavior across all fading conditions in the
low average SNR regime, and for small and moderate values
of A. However, as the average SNR increases, the offered
lower bound and the approximation exhibit similar accuracy.
Nonetheless, as in the case of CORA, the accuracy of (41),
(42) and (49) is acceptable in all fading and latency sce-
narios across all average SNR regimes, which verifies their
usefulness.

Regarding the capacity analyses for the case of transmitter
and receiver CSI, Fig. 4 demonstrates the considered COPRA
per unit bandwidth for the same combinations of the m
and ms parameters used in Fig. 1, with γ0 = 1 dB and

TABLE 2. Exact, bounded & approximate Ceff .

FIGURE 4. COPRA/B versus average SNR under F fading conditions for
different values of the m and ms parameters when γ0 = 1 dB and
γ0 = 10 dB.

γ0 = 10 dB. It is evident that the spectral efficiency increases
as γ0 reduces in all considered fading conditions. For exam-
ple, for the case of moderate composite fading conditions
at γ = 20 dB, COPRA/B = 5.8 bits/secs/Hz when γ0 =
1 dB and 2.8 bits/secs/Hz when γ0 = 10 dB. Yet, a similar
capacity trend is observed across all fading conditions for the
considered γ0 values.
Fig. 5 and Fig. 6 demonstrate the performance of the con-

sidered CCIFR and CTIFR, respectively, for different values of
m, ms and γ parameters of the F composite fading channels,
namely 1 < m ≤ 15, 1 < ms ≤ 15 and 0 ≤ γ ≤ 40 dB. It is
also noted that the value of γ0 for Fig. 6 was set to 5 dB. As
expected, for both CCIFR and CTIFR cases, better performance
is achieved at higher m, ms and γ whereas poor performance
is observed at lower m, ms and γ . The difference in the
achievable capacity levels is significant since variations of
even greater than 30% are noticed between intense and light
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TABLE 3. Exact channel capacity with different adaptation policies under F fading conditions.

FIGURE 5. CCIFR/B in an F fading channel as a function of the m, ms and
γ parameters.

composite fading conditions across all average SNR regimes.
Likewise, Fig. 7 shows the dependence ofCTIFR/B on the cut-
off SNR, γ0, for two different fading conditions, i.e., intense
and moderate composite fading conditions, and five different
average SNR values, namely γ = {0, 10, 20, 30, 40} dB.
Furthermore, it is observed that when γ0 = γth, the cutoff
SNR that maximizes the spectral efficiency (γ ∗0 ) increases
as γ increases. When comparing Fig. 7(a) and Fig. 7(b), for
fixed γ , the value of γ ∗0 for the moderate composite fading
conditions was greater than that for the intense composite
fading conditions. Additionally, for γ0 < γ ∗0 , the curves
in Fig. 7(b) are relatively flat compared to that for Fig. 7(a).
This verifies that the spectral efficiency improvement pro-
vided by truncated channel inversion (γ0 = γ ∗0 ), compared

FIGURE 6. CTIFR/B in an F fading channel as a function of the m, ms and
γ parameters for γ0 = 5 dB.

to total channel inversion (γ0 = 0), is more significant
when the channel is subject to severe multipath fading and
simultaneous heavy shadowing i.e., intense composite fading
conditions.

Table 3 depicts the exact achievable channel capacities for
different fading conditions and average SNR values assuming
A = 2 for Ceff and γ0 = γth = 2dB for COPRA and CTIFR.
It is shown that the achievable capacities around 0dB are com-
parable for all types of fading composite fading conditions.
However, as the average SNR values increase, we notice
larger performance deviations and achievable capacity. Also,
the detrimental effect of latency is evident, as this metric
exhibits lower performance compared to the other capacity
measures. This indicates that latency must be taken into
thorough consideration in the determination of the achievable
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FIGURE 7. CTIFR/B in an F fading channel as a function of the γ0 for different γ values for (a) intense and (b) moderate composite fading conditions.

TABLE 4. Exact and approximate COPRA and CTIFR for γ0 = γth = 1dB.

performance limits and hence, in the design and deployment
of emerging wireless communication systems with stringent
quality of service requirements.

Finally, the proposed approximate/bound representations
for COPRA and CTIFR are depicted in Table 4 assuming γ0 =
γth = 1dB. It is observed that the accuracy/tightness of
them is relatively low in the low average SNR regime but
their accuracy/tightness increases considerably as the average
SNR increases. This is observed across all average SNR
regimes and particularly in CTIFR, where the achieved accu-
racy is significantly high. This verifies the usefulness of
these additional analytic representations since they are part
of a comprehensive framework that will be useful in future
designs and deployments of emerging wireless systems.

VI. CONCLUSION
In this paper, we presented a comprehensive capacity analysis
overF composite fading channels. In particular, it was shown
that the tractability of the F composite fading model led to

the determination of the channel capacity for two distinct
cases: i) when CSI is available only at the receiver; ii) when
CSI is available both at the transmitter and at the receiver.
In this context, we derived novel analytic expressions for
the capacity of five different schemes, namely (1) optimum
rate adaptation; (2) optimum power and rate adaptation;
(3) channel inversion with fixed rate; (4) truncated channel
inversion with fixed rate; and (5) effective capacity. When
comparing these expressions with those for the generalized-
K fading channels given in [30], the F fading model exhibits
lower complexity and provides more insights on the impact of
the involved parameters on the overall system performance.
Based on this, it was shown that the spectral efficiency
changes considerably even at slight variations of the average
SNR and the severity of the multipath fading and shadowing
conditions. The impact of different types of F composite
fading was also investigated through comparisons with the
respective capacity for the case of a Rayleigh fading channel.
This has highlighted that different types of composite fading
can have a profound effect which is beyond the range of
the fading conditions experienced in a conventional Rayleigh
fading environment. Finally, the new results and insights
provided here will be useful in the design and deployment of
future communications systems. For example when assessing
technologies such as channel selection and spectrum aggre-
gation for use in heterogeneous networks, telemedicine and
vehicular communications, to name but a few.
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