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ABSTRACT In this paper, we develop a novel multiway greedy algorithm, named atom-refined multiway
orthogonal matching pursuit, for tensor-based compressive sensing (TCS) reconstruction. The alternative
supports of each dimension are selected using the respective inner product tensors and refined via a global
least square coefficients tensor. For each inner product tensor, the Frobenius-norm (F-norm) of the tensor
bands, instead of the largest magnitude entry, is employed to measure the correlation between the atoms and
the residual. Theoretical analysis shows that the proposed algorithm could guarantee to exactly reconstruct
an arbitrary multi-dimensional block-sparse signal in the absence of noise, provided that the sensing matrices
for each dimension satisfy restricted isometry properties with constant parameters. The maximum required
number of iterations for exact reconstruction shows an approximate logarithmic growth as the signal size
increases. Furthermore, under the noise condition, it is presented that the F-norm of the reconstruction
error can be upper-bounded by using the F-norm of noise and the restricted isometry constants of sensing
matrices for each dimension. The simulation results demonstrate that the proposed algorithm exhibits
obvious advantages as regards both reconstruction accuracy and speed compared with the existing multiway
greedy algorithms. Besides TCS, the proposed algorithm also has the potential to be applied in diverse fields,
such as hyperspectral image processing and tensor-based dictionary learning.

INDEX TERMS Compressive sensing, sparse representation, multi-dimensional block-sparsity, greedy
algorithm.

I. INTRODUCTION
Since its proposal, compressive sensing (CS) has attracted
considerable attention from researchers in signal process-
ing and many other fields [1]–[6]. CS aims to reconstruct
a signal from a set of measurements that are considerably
smaller than the original signal, so that the data transmis-
sion and storage loads can be reduced significantly [1], [7].
Considering a standard CS problem, let x ∈ Rn denote a
k-sparse signal. Here, k < n, meaning that only k coefficients
of x are non-zero, with the others being zero or approx-
imately zero. The signal x can be compressively sampled
with respect to a sensing matrix 8 ∈ Rm×n; this process is
expressed as

y = 8x, (1)

The associate editor coordinating the review of this manuscript and
approving it for publication was Bo Li.

where y ∈ Rm represents the measurements and k < m < n.
Recovery of the original x from y and 8 is referred to as
reconstruction, and is expressed as the following NP-hard l0
problem [8]:

x̂ = arg min‖x‖0 s.t. y = 8x, (2)

where the norm ‖x‖0 denotes the number of non-zero entries
of x. To date, a set of greedy algorithms has been developed
to solve the l0 problem, including the orthogonal match-
ing pursuit (OMP) [9], subspace pursuit (SP) [10], general-
ized orthogonal matching pursuit (GOMP) [11], stage-wise
OMP (StOMP) [12], compressive sampling matching pursuit
(CoSAMP) [13], and regularized orthogonal matching pur-
suit (ROMP) algorithms [14].

The standard CS theory primarily focuses on one-
dimensional (1D) signals. However, many applications in the
CS field are based on multi-dimensional signals (tensors),
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including wireless technology [15], [16], hyperspectral imag-
ing [17], [18], video processing [19], [20], medical imag-
ing [21], [22], and so on [23]–[26]. Based on the standard
CS theory, one must multiplex the data of all dimensions
using a global sampling device, corresponding to a dense
and large sensing matrix. This process introduces a high
physical complexity to the sampling hardware and is diffi-
cult to implement [27]–[29]. To relieve complexity of the
sampling implementation, researchers have employed the
Kronecker structure for the sensing matrix and sparsifying
base to replace the distributed scheme for global operation
[30]–[33]. Under this framework, conventional greedy algo-
rithms are hindered by the considerable computational com-
plexity of the data reconstruction [23], [30], [34]. To address
this problem, Caiafa and Cichocki [35] have developed a
well-known greedy algorithm, the N-way block orthogonal
matching pursuit (NBOMP) algorithm, by exploiting the
multi-dimensional block-sparsity of tensors. Instead of a sin-
gle support for a global sensing matrix, NBOMP aims to find
a set of supports corresponding to the sensing matrices of
each dimension, based on the Tucker model. This strategy is
called ‘‘multiway’’, meaning that an entry in the inner product
tensor indicates the correlation of the measurement tensor
and all sensing matrices [36], so that multiple supports are
updated in each iteration; thus, the total number of iterations
is reduced considerably. As an extension of NBOMP, another
multiway greedy algorithm known as the multi-atom tensor
orthogonal matching pursuit (MaTOMP) algorithm has been
proposed [37], in which, more than one atom can be added
to a support in each update. This approach accelerates the
reconstruction but loses the accuracy.

In this paper, we propose a novel multiway greedy algo-
rithm called the atom-refined multiway orthogonal match-
ing pursuit (ArMOMP) algorithm. Its convergence, low-
complexity, and robustness are verified through theoretical
analysis and numerical simulations. Our contributions can be
summarized as follows:
• We develop a novel strategy for multiway greedy recov-
ery, which is reflected in two aspects. First, we employ
the respective inner product tensors to select the alter-
native supports for each dimension while refining them
via a global least square (LS) coefficients tensor.
Second, we use the F-norm of the tensor bands instead
of the largest magnitude entry to measure the correlation
between the atoms and the residual.

• We prove that the proposed algorithm could guarantee
to exactly reconstruct an arbitrary multi-dimensional
block-sparse signal in the absence of noise, provided
that the sensing matrices for each dimension satisfy
restricted isometry properties with constant parameters,
i.e., sufficient condition for convergence. Additionally,
we derive the maximum required number of iterations
for exact reconstruction when the sufficient condition
for convergence is satisfied.

• For the noise condition, we provided the theoretical
upper-bound for the F-norm of reconstruction error,

which is determined by the noise level and the restricted
isometry constants of sensing matrices for each dimen-
sion. We also analyze the advantages of the proposed
algorithm as regards both reconstruction accuracy and
speed compared to existing multiway greedy algorithms
via numerical simulations.

This paper is organized as follows. Section II intro-
duces notation used in this paper and reviews related works.
Section III provides a detailed description of the ArMOMP
algorithm, including analysis of the algorithm convergence
and complexity. In Section IV, we study the results obtained
in Section III under noise conditions. Section V concludes the
paper. Finally, proofs of certain theorems are provided in the
Appendix.

II. PRELIMINARIES
A. NOTATION AND DEFINITIONS
The scalars, vectors, matrices, and tensors are denoted by
italic lowercase letters (e.g., x), bold italic lowercase letters
(e.g., x), bold italic capital letters (e.g., X), and bold under-
lined capital letters (e.g., X), respectively. The transpose and
pseudo inverse of a matrix X are denoted by X∗ and X†,
respectively. For a set comprised of the matrices {8j} and the
respective supports {γ j}, we denote 8γ ,j = 8j(:, γ j) in this
paper.
Definition 1: The operation that unfolds a tensor X ∈

Rn1×n2···×nd to its j−mode matrix X (j) = unfold(j)(X) is
defined as

X (j)(ij, p) = X(i1, · · · , ij, · · · , id ),

p = 1+
d−1∑
k=1

(ivk − 1)wk , wk =
k−1∏
l=1

nvl , (3)

where v = [j+ 1, j+ 2, · · · , d, 1, · · · , j− 1]∗ ,X (j) ∈

Rnj×Nj , and Nj =
∏

p 6=j np.
Definition 2: We state that Y = X ×j8j, when Y (j) =

8jX (j),where X (j) = unfold(j)(X), Y (j) = unfold(j)(Y ),X ∈
Rn1×···×nd ,Y ∈ Rn1×···×mj×···×nd , and 8j ∈ Rmj×nj .
Definition 3: The projection of a tensor Y ∈ Rm1×m2···×md

onto the space spanned by matrices {8j} is given by

pro(Y , {8j}) = Y×1818
†
1×2828

†
2 · · ·×d8d8

†
d , (4)

where 8j ∈ Rmj×kj , kj ≤ mj. The residual between Y and
pro(Y , {8j}) is given by

res(Y , {8j}) = Y − pro(Y , {8j}), (5)
Definition 4: The k−RIP constant of a sensingmatrix8 ∈

Rm×n is denoted by δk , the minimum value that satisfies 0 ≤
δk ≤ 1, and

(1− δk )‖x‖22 ≤ ‖8x‖
2
2 ≤ (1+ δk )‖x‖22, (6)

for all vectors x ∈ Rn with ‖x‖0 ≤ k. The relationship
δk1 ≤ δk2 holds if k1 ≤ k2 for integers k1 and k2.
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B. PROBLEM STATEMENT
A multi-dimensional signal X ∈ Rn1×n2···×nd is said to be
(k1, k2, · · · , kd )−block-sparse with regard to a set of sup-
ports {γ 1, γ 2, · · · , γ d } when the following equation holds:

X(i1, i2, · · · , id ) = 0

∀X(i1, i2, · · · , id ) /∈ X(γ 1, γ 2, · · · , γ d ), (7)

with |γ j| = kj, j = 1, 2, · · · , d . The term ‘‘multi-
dimensional block-sparse’’ is used here because the non-zero
entries of X are positioned in a block (core sub-tensor). This
concept is also important for compressive multi-dimensional
signals, because they exhibit multi-dimensional block-sparse
behavior when sparsely represented under the TCS frame-
work [30], [35]. Let 8j ∈ Rmj×nj , j = 1, 2, · · · , d be the
sensing matrices for each dimension of X . The compressive
sampling can be expressed as

Y = X×181×282 · · ·×d8d , (8)

where Y ∈ Rm1×m2···×md denotes the measurements. Hence,
the reconstruction problem becomes the problem of solving
X from Y and 8j, j = 1, 2, · · · , d . This is expressed as

X̂=arg min‖X‖0 s.t. Y=X×181×282 · · ·×d8d , (9)

where X is under the constraint given in (7). Eq. (9) is
the main focus of this paper, and constitutes the objective
problem addressed by the proposed algorithm. Note that
subsequent derivations require the below lemma, the proof
of which is provided in the Appendix (part V-A).
Lemma 1: Given a (k1, k2, · · · , kd )−block-sparse signal

X ∈ Rn1×n2···×nd with non-zero supports γ 1, γ 2, · · · , γ d
and sensing matrices 8j ∈ Rmj×nj , suppose that the sensing
matrices satisfy the kj-RIP with constants δkj . Then, the fol-
lowing inequalities hold.

d∏
j=1

(1− δkj )
1
2 ‖XB‖F ≤ ‖X×181 · · ·×d8d‖F ,

= ‖XB×18γ ,1 · · ·×d8γ ,d‖F

≤

d∏
j=1

(1+ δkj )
1
2 ‖XB‖F , (10)

d∏
j=1

(1− δkj )‖XB‖F ≤ ‖XB×18
∗

γ ,18γ ,1 · · ·

×d8
∗
γ ,d8γ ,d‖F ,

≤

d∏
j=1

(1+ δkj )‖XB‖F , (11)

‖XB×18
∗

ν,18γ ,1 · · ·×d8
∗
ν,d8γ ,d‖F

≤

d∏
j=1

δkj+lj‖XB‖F , (12)

where XB = X(γ 1, γ 2, · · · , γ d ), 8γ ,j ∈ Rmj×kj , 8ν,j ∈
Rmj×lj , and 8γ ,j

⋂
8ν,j = ∅.

III. PROPOSED ALGORITHM
In this section, we first detailedly introduce the ArMOMP
algorithm. Then we discuss the convergence and compu-
tational complexity of ArMOMP. Following the numerical
simulations are provided to verify the algorithm performance.

A. INTRODUCTION OF ARMOMP
1) OVERVIEW
This subsection provides a detailed introduction of the
ArMOMP algorithm, which is designed to solve Eq. (9).
For the ArMOMP algorithm, all indexes of support for each
sensing matrix are selected simultaneously; then, refinement
is conducted until all supports are correct. The ArMOMP
algorithm is divided it into two stages and presented as Algo-
rithm 1. In the first stage, the used parameters, the supports
for the sensing matrices, and the corresponding coefficients
are initialized. The second stage consists of two processes,
mixture and refinement, which cycle alternately until the
termination condition is reached.

Algorithm 1 The ArMOMP Algorithm
Require: Sensing matrices 81,82, · · · ,8d with 8j ∈

Rmj×nj , measurementsY ∈ Rm1×m2×···×md , sparsity level
{kj}, maximum number of iterations lmax , and tolerance
ε.
Initialization stage:

1: Execute Algorithm 2
Iteration stage (begin with l = 1):

2: while l ≤ lmax and the termination condition is not
reached do

3: Execute Algorithm 3.
4: l = l + 1.
5: end while
6: X̂(T l1,T

l
2, · · · ,T

l
d ) = XC,T l .

Ensure: Reconstruction X̂ .

2) INITIALIZATION
The initialization stage is summarized in Algorithm 2.
Steps 1–5 aim to determine the number of mixed indexes
{k ′1, k

′

2, · · · , k
′
d }. In general, we set k ′j = kj. However, a spe-

cial condition should be considered, in which kj > mj/2.
In this case, the LS problem has infinite solutions. To avoid
this scenario, k ′j is set to mj − kj so that kj + k ′j ≤ mj. For
convenience, we consider k ′j = kj only. One can obtain similar
conclusions under the condition k ′j = mj − kj.
In ArMOMP, the initial supports of each sensing matrix are

found by using the respective inner product tensor, and the
correlation between the atoms and the residual are measured
by the F-norm of the bands of the inner product tensor.
For example, e.g., for jth dimension, the problem can be
expressed as

T 0
j = argmaxT 0

j
‖P(:, · · · ,T 0

j , · · · , :)‖F ,

s.t. |T 0
j | = kj, P = Y×j8∗j , (13)

23040 VOLUME 7, 2019



R. Zhao et al.: Atom-Refined Multiway Greedy Algorithm for TCS

Algorithm 2 Initialization Stage
Require: Sensing matrices 81,82, · · · ,8d with 8j ∈

Rmj×nj , measurements Y ∈ Rm1×m2×···×md , and sparsity
level {kj}.

1: if kj < mj/2, then
2: k ′j = kj, ∀j = 1, 2, · · · , d ,
3: else
4: k ′j = mj − kj.
5: end if
6: for j = 1 to d do
7: P0

= Y ×j 8∗j ∈ Rm1×m2···×nj···×md .
8: P0

(j) = unfold(j)(P0).
9: ej(i) = ‖P0

(j)(i, :)‖F , i = 1, 2, · · · , nj.
10: Find the kjmaximum entries of ej, the indexes of which

are denoted T 0
j , supporting 8T 0,j.

11: end for
12: YR0 = res(Y ,8T 0,1,8T 0,2, · · · ,8T 0,d ).
Ensure: YR0 , {k

′
j }, {T

0
j }, j = 1, 2, · · · , d .

which is solved by steps 7–10 in the initialization stage. The
convergence is analyzed in the following subsection.

3) MIXTURE AND REFINEMENT
The mixture and refinement stage is summarized in
Algorithm 3. The mixture process is realized by steps 1–6,
with the aim of searching for the most likely atoms from the
remaining options. We compute the inner product between
the residual tensor and sensing matrix for each dimension,
and then compare the relevance between the residual and each
atom, which is expressed as

1j = argmax1j‖P
l
j(:, · · · ,1j, · · · , :)‖F ,

s.t. 1j ∩ T
l−1
j = ∅, |1j| = k ′j , P

l
j = YRl−1×j8

∗
j .

(14)

The indexes of the k ′j most relevant atoms 1j are selected
to merge with the current indexes T l−1j , denoted by T̃j =
T l−1j ∪1j. It should be noted that, for simplicity, we omit the
superscripts of the intermediate variables T̃ ,1j, and so on.

Next, it is necessary to refine the supports {T̃j} and aban-
don the k ′j indexes for each support. The specific method
is to first compute the LS coefficient for Y using {8T̃ ,j},
j = 1, 2, · · · , d , such that

XC,T̃ = argminC‖(C×18T̃ ,1×28T̃ ,2 · · ·×d8T̃ ,d − Y‖F .

(15)

This can be solved via

XC,T̃ = Y×18
†
T̃ ,1
×28

†
T̃ ,2
· · ·×d8

†
T̃ ,d
. (16)

Then, the refined indexes that make the greatest contributions
to the LS representation are determined. For each dimension j,

Algorithm 3 Mixture and Refinement Stage
Require: Sensing matrices 81,82, · · · ,8d with 8j ∈

Rmj×nj , measurements Y ∈ Rm1×m2×···×md ,YR0 ,
l, {kj}, {k ′j }, {T

0
j }, and j = 1, 2, · · · , d

1: for j = 1 to d do
2: P lj = YRl−1 ×j 8

∗
j ∈ Rm1×m2···×nj···×md .

3: P l(j) = unfold(j)(P lj).

4: ej(i) = ‖P l(j)(i, :)‖F , i = 1, 2, · · · , nj.
5: Find the k ′j maximum entries of ej, the indexes of

which are denoted as 1j, s.t 1j ∩ T
l−1
j = ∅.

6: T̃j = T l−1j ∪1j, supporting 8T̃ ,j.
7: end for
8: XC,T̃ = argminC ||(C ×1 8T̃ ,1 ×2 8T̃ ,2 · · · ×d 8T̃ ,d −

Y ||F .
9: for j = 1 to d do
10: XC,T̃ (j) = unfold(j)(XC,T̃ ).
11: f j(i) = ‖XC,T̃ (j)(i, :)‖F , i = 1, 2, · · · , kj + k ′j .
12: Find the kj maximum entries of f j, the indexes of

which are denoted T lj , supporting 8T l ,j.
13: end for
14: XC,T l = Y ×1 8

†
T l ,1 ×2 8

†
T l ,2 · · · ×d 8

†
T l ,d .

15: YRl = Y − XC,T l ×1 8T l ,1 ×2 8T l ,2 · · · ×d 8T l ,d .

Ensure: YRl ,XC,T l , {T
l
j }, j = 1, 2 · · · d .

we select the supports T lj that satisfies

T lj = argmaxT lj ‖XC,T̃ (:, · · · ,T
l
j , · · · , :)‖F . (17)

Here, we employ the F−norm of the coefficients supported
by T lj to measure the contribution. The convergence is proven
in later subsections. The mixture process and refinement
process are executed alternately until the maximum number
of iterations or the termination condition is reached. There are
two different termination conditions, which are introduced as
follows.

First, ‖YRl‖F < ε. This condition means the residual
is sufficiently small that the reconstruction has succeeded.
For multi-dimensional block-sparse signals, there theoreti-
cally exists YRl = 0 when all supports are found correctly.
However, for approximate multi-dimensional block-sparse
signals or compressible signals under multi-dimensional
block-sparse representation, the reconstruction residual can-
not be completely eliminated. Generally, we do not know
the degree of approximation; thus, it is difficult to deter-
mine ε. In that case, we prefer to use the below termination
condition.

Second, YRl ≥YRl−1 . The residual after the latter iteration
is larger than that after the former iteration, demonstrating
that the iteration has reached a point where the reconstruc-
tion may be moving towards non-convergence. In this case,
we should break the iteration and revert the outputs XC,T l

and {T lj } to XC,T l−1 and {T
l−1
j }, respectively.

VOLUME 7, 2019 23041



R. Zhao et al.: Atom-Refined Multiway Greedy Algorithm for TCS

B. CONVERGENCE
In this subsection, we provide a series of theorems regarding
the algorithm convergence, which explain why the ArMOMP
algorithm can recover a multi-dimensional block-sparse sig-
nal with a few iterations.
Theorem 1: Let XT ∈ Rk1×k2×···×kd represent the core

sub-tensor of a (k1, k2, · · · , kd )-block-sparse tensor X ∈
Rn1×n2×···×nd with regard to the supports {T1,T2, · · · ,Tj},
and XT−T l−1 and XT−T̃ denote the unrecovered parts in XT

after the (l − 1)th iteration and the mixture process of the l th

iteration, respectively. Then, the following inequality holds.

‖XT−T̃ ‖F ≤ �1‖XT−T l−1‖F , (18)

�1 =
2dδ3k (1+δ3k )

d−1
2

[
(1−δ3k )d+(2d−1)

1
2 δ3k

]
(1−δ3k )

3d+1
2

,

(19)

where δ3k is defined as the maximum of the 3k−RIP con-
stants of all sensing matrices, i.e., δ3k = max{δ3kj},
j = 1, 2, · · · , d.

FIGURE 1. Intuitive representation of supports T − T l−1 and T − T̃ , with
d = 2, n1 = n2 = 12, and k1 = k2 = 6.

An intuitive representation of XT−T l−1 and XT−T̃ is dis-
played in Fig. 1. A fundamental difference is that, compared
to the 1-D scenario, a position is said to be on a support only
when all its coordinate indexes are on the support. This is an
embodiment of coupling undermulti-dimensional conditions.

This theorem is derived from the below two lemmas, indi-
cating the relationship between the unrecovered signal after
the preceding iteration and that after the mixture process in
the current iteration.
Lemma 2: Let XRl−1 denote the residual after the (l−1)th

iteration. Then, there exists

‖XRl−1‖F ≤

[
1+

(2d − 1)
1
2 δ2k

(1− δk )d

]
‖XT−T l−1‖F , (20)

where δk and δ2k are defined as the maximum of the k−
and 2k−RIP constants of all sensing matrices, i.e., δk =
max{δkj}, δ2k = max{δ2kj}, and j = 1, 2, · · · , d.
Lemma 3: It holds that

‖XT−T̃ ‖F ≤
2dδ3k (1+ δ2k )

d−1
2

(1− δk )
d+1
2

‖XRl−1‖F . (21)

FIGURE 2. Intuitive representation of XT ,XT l−1 , XRl−1 , with d = 2 and
k1 = k2 = 6.

The proofs of Lemmas 2 and 3 are presented in the
Appendix (parts V-B and V-C, respectively). The unrecov-
ered signal XT−T l−1 is derived by removing the recovered
component XT∩T l−1 from XT , where XT∩T l−1 = XT (T1 ∩
T l−11 , · · · ,Td ∩ T

l−1
d ). It should be noted that the residual

X l−1
R between the original signal and the current reconstruc-

tion is not equal to the unrecovered signal XT−T l−1 . Fig. 2

illustrates their relationship, where X l−1
R is composed of

XT−T l−1 and XP. The latter essentially corresponds to the
coefficients with respect to the projection of the unrecovered
signal onto the selected support, which is derived as follows.

Y l−1R = res(Y , {8T l−1,j}),

= res(YT∩T l−1 , {8T l−1,j})+ res(YT−T l−1 , {8T l−1,j}),

(a)
= 0+ YT−T l−1 − pro(YT−T l−1 , {8T l−1,j}),

(b)
= YT−T l−1 − XP×18T l−1,1 · · ·×d8T l−1,d , (22)

where YT−T l−1 represents the component of Y from the

unrecovered signal XT−T l−1 . Equation (a) is valid because

YT∩T l−1 can be obtained through linear operations of
{8T l−1,j}, and (b) holds as a result of the definition

XP = −YT−T l−1×18
†
T l−1,1

×28
†
T l−1,2

· · ·×d8
†
T l−1,d

. (23)

Combining Lemmas 2 and 3, we obtain

‖XT−T̃ ‖F ≤
2dδ3k (1+ δ2k )

d−1
2

(1− δk )
d+1
2

[
1+

(2d − 1)
1
2 δ2k

(1− δk )d

]
×‖XT−T l−1‖F ,

≤

2dδ3k (1+δ3k )
d−1
2

[
(1−δ3k )d+(2d−1)

1
2 δ3k

]
(1−δ3k )

3d+1
2

×‖XT−T l−1‖F . (24)

This proves Theorem 1.
The previous theorems relate to the changes in the unre-

covered signal during the mixture process. In the following,
we focus on examining the refinement process.

Then, we obtain the following theorem describing the
relationship between the unrecovered signal after the mix-
ture process and that after the refinement process in the
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FIGURE 3. Graphical representation of notation in refinement process, with d = 2,k1 = k2 = 6.

l−th iteration. A graphical representation of the notation of
the refinement process can be found in Fig. 3.
Theorem 2: Let XT−T l represent the unrecovered signal

after the refinement process in the l−th iteration. The follow-
ing inequality then holds:

‖XT−T l‖F ≤ �2‖XT−T̃ ‖F , (25)

�2 = 1+
(2d − 1)

1
2 (d + 1)δ3k

(1− δ3k )d
. (26)

Proof: Initially, it is obvious that

‖XT−T l‖F ≤ ‖XT∩0‖F + ‖XT−T̃ ‖F , (27)

where 0 represents the global support abandoned during the
refinement process. For an arbitrary dimension j, the aban-
doned support is denoted by 0j. Further detail is provided
in Fig. 3. Hence, for the relationship between ‖XT−T l‖F and
‖XT−T̃ ‖F , we are only required to study the relationship
between ‖XT∩0‖F and ‖XT−T̃ ‖F , which is given by the
following two lemmas.
Lemma 4: By the definition of E = XC,T̃ − X T̃ , we have

‖XT∩0‖F ≤ (d + 1)‖E‖F , (28)

where XC,T̃ denotes the LS coefficient tensor with respect to
Y and {8T̃ ,j}, and j = 1, 2 · · · d.

Lemma 5: It holds that

‖E‖F ≤
(2d − 1)

1
2 δ3k

(1− δ2k )d
‖XT−T̃ ‖F . (29)

The proofs for Lemmas 4 and 5 are presented in the
Appendix (parts V-D and V-E, respectively). By substituting
(28) and (29) into (27), we have

‖XT−T l‖F ≤

[
1+

(2d−1)
1
2 (d+1)δ3k

(1− δ3k )d

]
‖XT−T̃ ‖F , (30)

which completes the proof. �
Combining Theorems 1 and 2, we can obtain the relation-

ship between the unrecovered signal after the (l−1)−iteration
and that after the l−iteration.

Theorem 3: The following inequality is valid.

‖XT−T l‖F ≤ �‖XT−T l−1‖F = �1�2‖XT−T l−1‖F , (31)

where �1 and �2 are given by (19) and (26), respectively.
In addition, a sufficient condition for exact reconstruction

of a multi-dimensional block-sparse signal from finite itera-
tions with the termination condition ‖YRl‖F <ε is �<1.

Remark:The condition� < 1 implies that the unrecovered
signal is always reduced after an iteration. Thus, after a finite
number of iterations, there exists ‖XT−T l‖F → 0, demon-
strating that all correct supports are determined. If and only if
this situation occurs, we have ‖XRl‖F → 0 and ‖YRl‖F → 0.
In other words, once the termination condition ‖YRl‖F <ε is
reached, the original signal is reconstructed successfully.

FIGURE 4. The scale factor � versus δ3k .

The scale factor � is a function of d and δ3k . A numerical
analysis of� versus δ3k with d = 1−4 is displayed in Fig. 4,
where the area below the baseline � = 1 corresponds to
the sufficient condition for convergence. We can note that the
critical point becomes smaller as the number of dimensions
increases, indicating a stricter condition. The critical values of
δ3k for� < 1 are summarized in Table 1. Below, we consider
the sufficient condition with another termination condition,
i.e., ‖YRl‖F ≥ ‖YRl−1‖F .
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TABLE 1. Critical values of δ3k for � < 1 and �C < 1.

Theorem 4: A sufficient condition for exact reconstruction
of a multi-dimensional block-sparse signal from finite itera-
tions with the termination condition ‖YRl‖F ≥ ‖YRl−1‖F is

�C =
�3�

�4
< 1 (�4 > 0), (32)

where � is given by (31) and

�3 = (1+ δ3k )
d
2 ,

�4 = (1− δ3k )
d
2 −

δ3k (2d − 1)
1
2 (1+ δ3k )

d
2

(1− δ3k )d
. (33)

The proof is given in the Appendix (part V-F). The factor�C
is also a function of d and δ3k , and its expansion may be
complicated. One could visually comprehend this factor by
observing Fig. 5, where the relationships between�C and δ3k
with d = 1 − 4 are displayed. The critical values of δ3k for
�C < 1 are summarized in Table 1.

FIGURE 5. The scale factor �C versus δ3k .

Remark: When recovering a multi-dimensional block-
sparse signal, �C < 1 means that there always
exists ‖YRl‖F < ‖YRl−1‖F after each iteration, unless
‖YRl−1‖F = 0. In other words, the termination condition is
only reached if a signal is reconstructed successfully.

C. COMPLEXITY
The complexity of a greedy algorithm for CS reconstruction
primarily arises from two aspects, the complexity during a
single iteration and the required number of iterations. In this
subsection, we present a detailed analysis of the compu-
tational complexity of the ArMOMP based on these two
aspects.

First, we begin with the complexity during a single itera-
tion. For convenience and without loss of generality, we set

FIGURE 6. Maximum required iterations versus k for zero-one
multi-dimensional block-sparse signals d = 3, k1 = k2 = k3 = k .

nj = n,mj = m, and kj = k; n > m > k always holds.
Obviously, by considering the ordinary condition for the
major computational process only, the computational com-
plexity for a single ArMOMP iteration is O(dnmd ), which
occurs at the computation for inner product tensors {P lj}.
In the following, we explore the required iterations for exact
reconstruction of a multi-dimensional block-sparse signal
using the ArMOMP algorithm.
Lemma 6: When the sufficient condition for convergence

is satisfied, after the initialization stage, it holds that

‖XT−T 0‖F ≤ �i‖X‖F , (34)

�i = min(�0, 1), (35)

�0 =
d
[
(1+δ3k )d+1−[(1− δ3k )

d+1
2 − δ3k (1+δ3k )

d−1
2 ]2

] 1
2

(1+δ3k )
d+1
2

.

(36)
The proof is provided in the Appendix (part V-G). Then,

we define β as follows:

β = mini,j
[
‖X (j)(ij, :)‖F/‖X‖F

]
,

X (j) = unfoldj(X), (37)

with j = 1, 2 · · · , d and ij = 1, 2 · · · nj. Note that β‖X‖F
represents the F−norm lower-bound of an arbitrary band
of X . Hence, once the unrecovered signal satisfies

‖XT−T l‖F
T3,L6
= �i�

l
‖X‖F ≤β‖X‖F , (38)

all correct supports are determined so that the signal is recov-
ered successfully. Hence, we obtain the following theorem
regarding the maximum required iterations.
Theorem 5: When the sufficient condition for convergence

is satisfied, one requires lmax iterations at most to reconstruct
a multi-dimensional block-sparse signal exactly, and

lmax = ceil
[
log(β/�i)
log�

]
. (39)

It is apparent that lmax is a function of δ3k and β, while
β depends on the original signal only. Obviously, β will
be reduced as the number of entries increases; thus, more
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iterationswill be required for reconstruction. Here, we give an
example in Fig. 6 to intuitively show the relationship between
lmax and k using the zero-one signals. One can note that only
a slight increase in the required iterations occurs for increased
k , and high-performance sensing matrices, corresponding to
smaller δ3k , can reduce lmax .

D. NUMERICAL SIMULATIONS
We perform numerical simulations to compare the ArMOMP
algorithm with the well-known NBOMP multiway greedy
algorithm [35], and its extension, MaTOMP [37]. All three
algorithms are used for TCS reconstruction by exploiting the
Tucker structure of the measurement and sparsity operators,
i.e., they work with the same model. The simulation setup is
listed as follows.
• For simplicity and without loss of generality, we set the
number of dimensions d = 3, with nj = n = 256,
mj = m = 128, k1 = k , j ∈ {1, 2, 3}; therefore,
the total sampling ratio r = (m/n)3. We are interested
in the scenario d = 3, as many multi-dimensional
applications of CS belong to this case, such as videos
and hyperspectral images [29], [38].

• Given the parameters n and k , a (k, k, k)-block-sparse
signal with Gaussian random supports is generated by
following these steps:
(1) First, a zero-tensor X = 0 ∈ Rn×n×n is initialized.
(2) Second, three supports containing k indexes each

are randomly selected for each dimension, denoted
T1,T2,T3.

(3) Third, the entries of sub-tensor X(T1,T2,T3) are
set to 1 or a Gaussian-distributed number, referred
to as a ‘‘zero-one signal’’ and ‘‘Gaussian random
signal,’’ respectively, in this paper.

• Three Gaussian random sensing matrices are generated
with size 8j ∈ Rm×n, j ∈ {1, 2, 3}.

• We regard the reconstruction as successful when
‖X̂ − X‖F/‖X‖F < 0.001. The simulation is repeated
100 times for each set of parameters and the average
success ratios are calculated for comparison.

FIGURE 7. Comparison of reconstruction success ratios for zero-one and
Gaussian random signals, and for ArMOMP, NBOMP, and MaTOMP
algorithms.

The simulation results for the reconstruction accuracy
are shown in Fig. 7. Regardless of the Gaussian random

or zero-one signals, the critical sparsity levels of the
ArMOMP algorithm obviously exceed those of the NBOMP
and MaTOMP algorithms. In the following, we dis-
cuss the improvement in reconstruction accuracy pro-
vided by the ArMOMP. Considering that a d-dimensional
(k, k, · · · , k)-block-sparse zero-one signal with regard to the
{T1,T2, · · · ,Td } supports is reconstructed byNBOMPwith a
set of sensing matrices {8j}, the selected supports are correct
in the first iteration only, if the following inequality holds:

max
{∀ij∈Tj}

|Y×1φ
∗
i1 · · ·×dφ

∗
id |> max

{∃ij /∈Tj}
|Y×1φ

∗
i1 · · ·×dφ

∗
id |,

(40)

whereφij denotes the ij−th column of8j and Tj represents the
correct support of 8j. Without loss of generality, we assume
that ∀ij, lj ∈ Tj, ij 6= lj, 〈φij ,φlj〉 = −µ. Then, we have

max
{∀ij∈Tj}

|Y×1φ
∗
i1 · · ·×dφ

∗
id | = |1− (k − 1)µ|d , (41)

where µ denotes the coherence of the {8j} sensing matrices.
Hence, the left side of (40) tends to zero as k and d increase,
demonstrating that inequality (40) is easy to break. In this
scenario, the incorrect supports will be selected, yielding
reconstruction failure. Further, the above discussion focuses
on the first iteration, and the condition for correct support
selection becomes harsher during subsequent iterations. For
NBOMP and MaTOMP, incorrect choices are irreversible.
On the other hand, the ArMOMP algorithm allows the exis-
tence of incorrect support choices, as they will certainly be
removed via the refinement process if the sufficient condition
for exact reconstruction is satisfied. Furthermore, even if this
condition is not completely satisfied, the incorrect supports
can also be refined with high probability as a result of the
simulations. Hence, we believe that the sufficient condition
for exact reconstruction can be further relaxed; this merits
future study.

The enhancement in the reconstruction precision does not
introduce a higher computational complexity. On the con-
trary, theArMOMP algorithm yields improved reconstruction
speed with the benefit that less computation is required.
In fact, the computational complexities of ArMOMP during a
single iteration are close to those of NBOMP and MaTOMP.
However, the required numbers of iterations for NBOMP
and MaTOMP are approximately linear with k , being sig-
nificantly higher than those for ArMOMP, which is approxi-
mately linear with the logarithm of k . The iteration numbers
and time consumption of ArMOMP rise considerably more
slowly than those of NBOMP andMaTOMP as the signal size
increases, as shown in Figs. 8 and 9. Further, it is interesting
to note that the computational consumption for ArMOMP has
a downward trend when k is sufficiently large. This is because
the reconstruction success ratio begins to drop and, therefore,
the termination condition is frequently reached ahead of time.

IV. ROBUSTNESS TO NOISE
In this section, we focus on the CS reconstruction using
the ArMOMP algorithm under the noisy scenario. First, we
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FIGURE 8. Comparison of required number of iterations for zero-one and
Gaussian random signals, and for ArMOMP, NBOMP, and MaTOMP
algorithms.

FIGURE 9. Comparison of reconstruction time for zero-one and Gaussian
random signals, and for ArMOMP, NBOMP, and MaTOMP algorithms.

discuss several noisy scenarios and give a unified model
for these cases. Then, we provide theorems related to the
reconstruction precision and the corresponding numerical
simulations.

A. NOISY MODEL
We primarily consider the following three scenarios, which
include the most common scenarios in CS reconstruction.

1) APPROXIMATE MULTI-DIMENSIONAL
BLOCK-SPARSE SIGNAL
It is known that some multi-dimensional signals such as
videos and hyperspectral images are not naturally multi-
dimensional block-sparse. For CS reconstruction, these sig-
nals must be represented as approximate multi-dimensional
block-sparse signals by sparsifying bases [30], [35]. LetXA ∈

Rn1×n2···×nd be an approximate signal that can be split into
two parts as follows

X(i1, i2 · · · id ) =

{
XA(i1, i2 · · · id ), ij ∈ Tj,
0, otherwise,

(42)

Z(i1, i2 · · · id ) =

{
0, ij ∈ Tj,
XA(i1, i2 · · · id ), otherwise,

(43)

where X ∈ Rn1×n2···×nd is a (k1, k2, · · · , kd )-block-sparse
tensor with supports {T1,T2, · · · ,Td } and Z ∈ Rn1×n2···×nd

denotes the approximate component. Therefore, one can

express the compressive sampling model as

Y = XA×181· · ·×d8d = (X + Z)×181· · ·×d8d ,

= X×181· · ·×d8d + N = Y0 + N . (44)

The tensor N can be regarded as the noise introduced by
the sampling process in terms of Z and the {8j} sensing
matrices. The magnitude of N is upper-bounded by ‖N‖F ≤
σ1σ2 · · · σd‖Z‖F , where σj denotes the largest singular value
of 8j. Hence, the magnitude of the resulting noise depends
on the sparsity level and the sensing matrix performance.
Considering that ‖Z‖F is generally several orders of magni-
tude lower than ‖X‖F , ‖N‖F is always considerably smaller
than ‖Y0‖F .

2) NOISED SIGNAL
Let X ∈ Rn1×n2···×nd be a (k1, k2, · · · , kd )-block-sparse sig-
nal with supports {T1,T2, · · · ,Td } and XN ∈ Rn1×n2···×nd be
the additive noise tensor. The sampling model is expressed as

Y = (X + XN )×181· · ·×d8d ,

= X×181· · ·×d8d + N = Y0 + N . (45)

3) NOISED MEASUREMENT
This scenario considers the noise from a compressive sam-
pling process. This noise is primarily generated by the
sampling mechanisms and signal transmission systems. The
model can be expressed as

Y = X×181×282 · · ·×d8d + N = Y0 + N . (46)

The equations (44), (45), and (46) imply that all three scenar-
ios mentioned above can be unified in (46). For convenience
and unity, in the following, we present theories based on
(46) only, where N denotes the noise introduced by all three
scenarios.

B. THEORIES FOR NOISY SCENARIO
Theorem 6: In the noisy scenario, the following inequality

holds

‖XT−T l‖F ≤ �‖XT−T l−1‖F +�N‖N‖F ,

=�‖XT−T l−1‖F+(�2�N1+�N2)‖N‖F , (47)

�N1 =
2d(1+ δ3k )

1
2

(1− δ3k )
d+1
2

, �N2 =
(d + 1)(1+ δ3k )

d
2

(1− δ3k )d
,

(48)

where�2 and� are given by Theorems 2 and 3, respectively.
This theorem implies the upper bound of the unrecovered
signal with regard to the noise after the l−th iteration. The
proof is provided in the Appendix (part V-H). Quite evidently,
the reconstruction error caused by the noise cannot be elim-
inated within a finite number of iterations. To evaluate the
reconstruction precision, we employ the following theorem.
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Theorem 7: When the termination condition ‖YRl‖F ≥
‖YRl−1‖F is reached, there exists

‖X − X̂‖F ≤
[
�5(�3�N + 2)
�4 −�3�

+�N3

]
‖N‖F , (49)

when �4 − �3� > 0. The notation X̂ represents the final
reconstruction, �3, �4, �N , and � are given in (33), (47),
and (31), respectively, and

�5 = 1+
δ3k (2d − 1)

1
2

(1− δ3k )d
, �N3 =

(1+ δ3k )
d
2

(1− δ3k )d
. (50)

The proof is given in the Appendix (part V-I).
Remark: The relationships for the theoretical upper-bound

factor versus δ3k are given for different d in Fig. 10. As the
noise levels are generally several orders of magnitude lower
than the original signal, we can always obtain reconstructions
with high accuracy.

FIGURE 10. Theoretical upper-bound factor versus δ3k for reconstruction
in noisy scenario.

C. NUMERICAL SIMULATIONS FOR NOISY SCENARIOS
Besides the theoretical analysis, we also simulate reconstruc-
tions for noised scenarios. For convenience, we continue to
set d = 3, n1 = n2 = n3 = n = 256, m1 = m2 = m3 = m
and k1 = k2 = k3 = k; therefore, the total sampling
ratio r = m3/n3. Gaussian random sensing matrices are
used for all simulations. The Gaussian noise is added to
the measurements obtained from zero-one multi-dimensional
block-sparse signals.

1) APPROXIMATE MULTI-DIMENSIONAL
BLOCK-SPARSE SIGNAL
The approximate multi-dimensional block-sparse signal is
also referred to as the multi-dimensional power-law decaying
signal, defined as

XA(i1, i2 · · · id ) = ci−pm ,

im = max(ij), j = 1, 2 · · · d, (51)

where the constants c>0 and p>1. One can understand this
signal as a tensor for whichmost of the energy is concentrated

FIGURE 11. Simulations for approximate multi-dimensional block-sparse
signal, relative reconstruction error versus sampling ratio.

FIGURE 12. Simulations for noised signal, relative reconstruction error
versus relative signal error.

on a sub-tensor (block) while the entries decay away from
the block. A larger p can help to concentrate the energy and
improve the sparsity level. We select the tensor-based power-
law decaying signal for the simulations because this is closest
to reality. Most multi-dimensional signals can be represented
in the form of a power-law decaying based on sparsifying
bases. The lengths of the supports for each dimension are
set to k = 20, meaning that a 20 × 20 × 20-sized block
is recovered as the reconstruction, while the other entries
are regarded as noise. For each set of parameters p and m,
we repeat the simulations 100 times and calculate the average
relative reconstruction error ‖X̂ − XA‖F/‖XA‖F . Note that
the constant c represents a scaling factor, which has no effect
on the results. Hence, we set c = 1 for simplicity. The
results are displayed in Fig. 11. We can see that the recon-
struction error reduces rapidly and becomes stable at a very
low sampling ratio (approximately r = 0.03). In addition,
the stabilized reconstruction error is primarily determined by
the sparsity level.
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FIGURE 13. Simulations for noised measurements, relative
reconstruction error versus relative signal error.

2) NOISED SIGNAL
We randomly generate zero-one signals and then add Gaus-
sian noise at different levels. The parameter m is set to 128.
The simulation is repeated 100 times and the average values
of the relative reconstruction error ‖X̂ − X‖F/‖X‖F and
relative signal error ‖XN −X‖F/‖X‖F are taken into consid-
eration. The results are plotted in Fig. 12, where we can see
that the robustness of the ArMOMP algorithm is satisfactory.

3) NOISED MEASUREMENTS
In the next set of simulations, the Gaussian noise is added to
the measurements obtained from zero-one multi-dimensional
block-sparse signals. We set m = 128 and also repeat each
simulation 100 times to obtain ‖X̂ − X‖F/‖X‖F and the
relative measurement error ‖N‖F/‖Y‖F . The results are pre-
sented in Fig. 13. As mentioned above, the reconstruction
error is considerably lower than its theoretical upper bound.

V. CONCLUSION
In this paper, we have proposed a novel multiway greedy
algorithm named ArMOMP for TCS reconstruction. We have
determined the sufficient conditions for convergence and the
maximum required number of iterations for exact reconstruc-
tion in the absence of noise. We have also provided the
upper-bound for the F-norm of reconstruction error under
the noise condition. Simulation results demonstrate that the
ArMOMP algorithm has advantages over existing multiway
greedy algorithms as regards reconstruction speed and preci-
sion. We believe that the proposed algorithm can be used not
only for TCS, but also in other fields that require computation
of Tucker-model-based sparse representation like hyperspec-
tral image processing and tensor-based dictionary learning.

APPENDIX
A. PROOF OF LEMMA 1
Here, we prove Inequality (10) only, because (11) and (12)
can be easily obtained by employing this proof and the
consequences of the RIP. Because of the definition of block

sparsity, the equation ‖X ×1 81 · · · ×d 8d‖F = ‖XA ×1
8A,1 · · · ×d 8A,d‖F obviously holds, as X(i1, i2 · · · , id ) =
0 ∀X(i1, i2 · · · , id ) /∈ XA. Without losing generality,
we decompose the TTM operation for the 1D case first

‖XA×18A,1‖
2
F

=

k2∑
i2=1

· · ·

kd∑
id=1

‖8A,1(XA(:, i2, · · · , id ))‖2F ,

≤

k2∑
i2=1

· · ·

kd∑
id=1

(1+ δk1 )‖XA(:, i2, · · · , id )‖2F ,

= (1+ δk1 )‖XA‖
2
F . (52)

Using the same strategy, we have

‖XA×18A,1×28A,2‖
2
F ≤ (1+ δk1 )(1+ δk2 )‖XA‖

2
F . (53)

Therefore,

‖XA×18A,1 · · ·×d8A,d‖F ≤

d∏
j=1

(1+ δkj )
1
2 ‖XA‖F . (54)

Similarly, we can obtain the lower bound
d∏
j=1

(1− δkj )
1
2 ‖XA‖F ≤ ‖XA×18A,1 · · ·×d8A,d‖F , (55)

which completes the proof.

B. PROOF OF LEMMA 2
This lemma claims the relationship between ‖XRl−1‖F and
‖XT−T l−1‖F . According to the composition of ‖XRl−1‖F , it is
obviously

‖XRl−1‖F ≤ ‖XP‖F + ‖XT−T l−1‖F . (56)

Therefore, we need to derive the relationship between ‖XP‖F
and ‖XT−T l−1‖F . Note that YT−T l−1 is generated from
XT−T l−1 , which is irregularly shaped. Thus, we split this term
as follows.

YT−T l−1 =
∑

ξ⊆{1,2···d}

‖Xξ
T−T l−1

· · · ×j 8T−T l−1,j · · ·

×h8T∩T l−1,h · · · ‖F , (57)

where Xξ
T−T l−1

represents a sub-tensor having j−dimension

supported by Tj − T
l−1
j , while h−dimension is supported by

Th∩T
l−1
h , ∀j∈ξ, h /∈ξ . We provide a graphical representation

in Fig. 14, taking d = 2 as an example. Substituting (57)
into (23), we obtain

‖XP‖F ≤
∑

ξ⊆{1,2···d}

‖Xξ
T−T l−1

· · ·×j8
†
T l−1,j

8T−T l−1,j · · ·

×h8
†
T l−1,h

8T∩T l−1,h· · ·‖F , (58)

where j∈ξ , and h /∈ξ . Then, we expand Xξ
T−T l−1

to X̃
ξ

T−T l−1 ,

which is also represented in Fig. 14. ComparedwithXξ
T−T l−1

,
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FIGURE 14. Example of splitting and expanding of unrecovered signal
XT−T l−1 , with d = 2, k1 = k2 = 6.

the supports of the ξ−dimension remain the same, while the
others are expanded to T l−1h , h /∈ ξ . Considering the fact
that the extensions contain zero-entries only, and 8†

T l−1,j
=

(8∗T l−1,j8T l−1,j)
−18∗T l−1,j, we rewrite Inequality (58) as

‖XP‖F ≤
∑

ξ⊆{1,2···d}

‖X̃
ξ

T−T l−1 · · ·×j (8
∗

T l−1,j8T l−1,j)
−1

×8∗T l−1,j8T−T l−1,j· · ·×hIh· · ·‖F , (59)

where Ih denotes the unit matrix, j∈ξ , and h /∈ξ . Then, using
Lemma 1, and the fact ‖Xξ

T−T l−1
‖F = ‖X̃

ξ

T−T l−1‖F , we have

‖XP‖F ≤
δ2k

(1− δk )d
6ξ⊆{1,2···d}‖X

ξ

T−T l−1
‖F ,

(a)
≤

δ2k

(1− δk )d
(C1

d + C
2
d · · · + C

d
d )

1
2

×(6ξ⊆{1,2···d}‖X
ξ

T−T l−1
‖
2
F )

1
2 ,

=
δ2k (2d − 1)

1
2

(1− δk )d
‖XT−T l−1‖F , (60)

where (a) follows from the average inequality andC j
d denotes

a composite number. By substituting (60) into (56), we can
obtain

‖XRl−1‖F ≤

[
1+

δ2k (2d − 1)
1
2

(1− δk )d

]
‖XT−T l−1‖F , (61)

which completes the proof.

C. PROOF OF LEMMA 3
According to the algorithm flow, we have

‖YRl−1×j8
∗
1,j‖F ≥ ‖YRl−1×j8

∗

T−T l−1,j‖F . (62)

Without loss of generality, we begin with j = 1, and remove
the same parts from both sides of (62), so that

‖YRl−1×18
∗

1−T ,1‖F ≥ ‖YRl−1×18
∗

T−T̃ ,1‖F . (63)

Now, we extend XRl−1 to obtain a complete and regular
tensor Xext

Rl−1 , which is presented in Fig. 15. Note that the
extension contains zero-entries only; thus,

‖YRl−1×18
∗

1−T ,1‖F = ‖X
ext
Rl−1×18

∗

1−T ,18T∪T l−1,1

×28T∪T l−1,2 · · ·×d8T∪T l−1,d‖F .

(64)

FIGURE 15. Graphical representation of notations used in proof of
Lemma 3, for d = 2, k1 = k2 = 6.

Then, we enlarge the left side of (63) by employing Lemma 1,
such that

‖YRl−1×181−T ,1‖F
L1
≤ δ3k1

[
(1+ δ2k2 )· · ·(1+ δ2kd )

] 1
2

×‖XRl−1‖F . (65)

On the other hand, a split of the right side of (63) is given by

‖YRl−1×18
∗

T−T̃ ,1‖F

= ‖X1
Rl−1,T−T̃ ×18

∗

T−T̃ ,18T−T̃ ,1

×28T ,2 · · ·×d8T ,d + X1
Rl−1,(T∪T l−1)−(T−T̃ )

×18
∗

T−T̃ ,18(T∪T l−1)−(T−T̃ ),1

×28T∪T l−1,2 · · ·×d8T∪T l−1,d‖F , (66)

where X1
Rl−1,T−T̃

represents a sub-tensor, the 1−dimension

of which is supported by T1 − T̃1, while the other dimen-
sions are supported by Th, h 6= 1. X1

Rl−1,(T∪T l−1)−(T−T̃ )
is

obtained by extendingXRl−1 withoutX
1
Rl−1,T−T̃

to a complete

and regular sub-tensor. Likewise, the extension is composed
of zero-entries only. Then, the lower-bound of (66) can be
expressed as

‖YRl−1×18
∗

T−T̃ ,1‖F

≥ ‖X1
Rl−1,T−T̃×18

∗

T−T̃ ,18T−T̃ ,1

×28T ,2 · · ·×d8T ,d‖F − ‖X1
Rl−1,(T∪T l−1)−(T−T̃ )

×18
∗

T−T̃ ,18(T∪T l−1)−(T−T̃ ),1

×28T∪T l−1,2 · · ·×d8T∪T l−1,d‖F . (67)

By employing Lemma 1 and ‖X1
Rl−1,(T∪T l−1)−(T−T̃ )

‖F ≤

‖X1
Rl−1‖F , we can further simplify (67) to

‖YRl−1×18
∗

T−T̃ ,1‖F ≥ (1− δk1 )
[
(1− δk2 ) · · · (1− δkd )

] 1
2

‖X1
Rl−1,T−T̃ ‖F − δ2k1

[
(1+ δ2k2 ) · · · (1+ δ2kd )

] 1
2 ‖XRl−1‖F .

(68)

Combining (63), (65), (68), and considering that the relation-
ship is valid for each j ∈ {1, 2, · · · , d}, we obtain

‖X j
Rl−1,T−T̃

‖F ≤
2δ3k (1+ δ2k )

d−1
2

(1− δk )
d+1
2

‖XRl−1‖F . (69)
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FIGURE 16. Graphical representation of notations used in proof of
Lemma 4, with d = 2, k1 = k2 = 6.

Now, we return to XT−T̃ with reference to Figs. 1 and 15.
We have

‖XT−T̃ ‖F ≤

d∑
j=1

‖X j
Rl−1,T−T̃

‖F

≤
2dδ3k (1+ δ2k )

d−1
2

(1− δk )
d+1
2

‖XRl−1‖F , (70)

which completes the proof.

D. PROOF OF LEMMA 4
From the definition of E, one can directly obtain

‖XT∩0‖F ≤‖XC,T∩0‖F + ‖E‖F , (71)

by which the problem is translated into proving
‖XC,T∩0‖F ≤ d‖E‖F . For an arbitrary dimension j, it holds
that

‖X j
C,T∩0‖F ≤ ‖X̃

j
C,T∩0‖F , (72)

where X j
C,T∩0 denotes a sub-tensor of XC,T̃ , the j-dimension

of which is supported by 0j while the others are supported
by Tj ∩ T̃j. Another sub-tensor X̃C,T∩0 can be regarded as

the extension of X j
C,T̃

, supported by 0 in the j−dimension

and T̃ in other dimensions. We also provide a graphical
illustration of this notation in Fig. 16. Obviously, there
always exists a set of supports {ωj} for each dimension that
satisfies

‖X̃
j
C,T∩0‖F ≤ ‖X̃

j
C,ω‖F , (73)

with ωj ⊆ T̃j, ωj ∩ Tj = ∅, and |ωj| = |Tj ∩ 0j|.

Similarly, the notation X̃
j
C,ω represents a sub-tensor of XC,T̃ ,

the j−dimension of which is supported by ωj, while the other

dimensions are supported by T̃h, h 6= j. For example, X̃
1
C,ω =

X̃C,T̃ (ω1, :, · · · , :). Therefore, we have

‖X̃
j
C,ω‖F = ‖X

j
ω + E

j
ω‖F ≤ ‖X

j
ω‖F+ ‖E

j
ω‖F ,

(a)
= 0+ ‖Ejω‖F ≤ ‖E‖F , (74)

where (a) holds becauseωj∩Tj = ∅, andX
j
ω andE

j
ω share the

same support with X̃
j
C,ω. Then,XC,T∩0 is split with reference

FIGURE 17. Graphical representation of notations used in proof of
Lemma 5, with d = 2, k1 = k2 = 6.

to Fig. 16, and we obtain

‖XC,T∩0‖F

≤

d∑
j=1

‖X j
C,T∩0‖F

(72)
≤

d∑
j=1

‖X̃
j
C,T∩0‖F

(73)
≤

d∑
j=1

‖X̃
j
C,ω‖F

(74)
≤

d∑
j=1

‖E‖F = d‖E‖F . (75)

By substituting (75) into (71), we find

‖XT∩0‖F ≤ (d + 1)‖E‖F , (76)

which completes this proof.

E. PROOF OF LEMMA 5
We begin this proof with the definition of XC,T̃ :

XC,T̃ =XT×18
†
T̃ ,1
8T ,1×28

†
T̃ ,2
8T ,2 · · ·×d8

†
T̃ ,d
8T ,d .

(77)

By splitting XT , we obtain

XC,T̃ = XT∩T̃ ×1 8
†
T̃ ,1
8T∩T̃ ,1 · · · ×d 8

†
T̃ ,d
8T∩T̃ ,d

+

∑
ξ⊆{1,2···d}

Xξ
T∩T̃
· · · ×j 8

†
T̃ ,j
8T−T̃ ,j · · ·

×h8
†
T̃ ,h
8T∩T̃ ,h · · · , (78)

where Xξ
T∩T̃

denotes a sub-tensor of X , the ξ−dimensions of

which are supported by Tj−T̃j while the other dimensions are
supported by Th ∩ T̃h, ∀j ∈ ξ, h /∈ ξ . Then, we extend X

ξ

T∩T̃

to Xξ
T̃
. The supports for the ξ−dimensions remain Tj − T̃j,

while those for the other dimensions are expanded to T̃h, j∈
ξ, h /∈ ξ . It should be noted that the expansion only contains
zero-entries. It holds that

XC,T̃ =X T̃+
∑

ξ⊆{1,2···d}

Xξ
T̃
· · ·×j8

†
T̃ ,j
8T−T̃ ,j · · · ×h Ih · · · ,

(79)

where Ih denotes the unit matrix, j ∈ ξ , and h /∈ ξ . Next,
we substitute (79) into the definition E = XC,T̃ − X T̃
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to obtain

‖E‖F =‖
∑

ξ⊆{1,2···d}

Xξ
T̃
· · · ×j 8

†
T̃ ,j
8T−T̃ ,j · · · ×h Ih · · · ‖F .

(80)

Then, by employing Lemma 1, we obtain

‖E‖F ≤
δ3k

(1− δ2k )d
∑

ξ⊆{1,2···d}

‖Xξ
T̃
‖F ,

=
δ3k

(1− δ2k )d
∑

ξ⊆{1,2···d}

‖Xξ
T∩T̃
‖F

(a)
≤

(2d − 1)
1
2 δ3k

(1− δ2k )d
‖XT−T̃ ‖F , (81)

where (a) follows from the average inequality, which is sim-
ilar to (60). Thus, we have completed the proof of Lemma 5.

F. PROOF OF THEOREM 4
By reference to (22), one can write YRl as

‖Y lR‖F = ‖res(YT−T l , {8T l ,j})‖F ≤‖YT−T l‖F , (82)

where YT−T l denotes a component of Y generated by
XT−T l . The graphical illustration is similar to that presented
in Fig. 14. Now, we define a new tensorXext

T−T l ∈ Rk1×k2···×kd

as

Xext
T−T l (i1, i2 · · · id ) =

{
0, ij ∈ Tj ∩ T lj ,

XT (i1, i2 · · · id ), otherwise.
(83)

It is clear that ‖Xext
T−T l‖F = ‖XT−T l‖F . Thus, we have

‖Y lR‖F
≤ ‖YT−T l‖F

= ‖Xext
T−T l ×1 8T ,1 ×2 8T ,2 · · · ×d 8T ,d‖F ,

L1
≤ (1+ δ3k )

d
2 ‖XT−T l‖F

(31)
≤ (1+ δ3k )

d
2�‖XT−T l−1‖F ,

= �3�‖XT−T l−1‖F . (84)

On the other hand, the lower bound for ‖Y l−1R ‖F is
expressed as

‖Y l−1R ‖F

(a)
≥ ‖Xext

T−T l−1 ×1 8T ,1 ×2 8T ,2 · · · ×d 8T ,d‖F

−‖XP,T l−1 ×1 8T l−1,1 ×2 8T l−1,2 · · · ×d 8T l−1,d‖F ,

(60),L1
≥

[
(1−δ3k )

d
2 −

δ3k (2d−1)
1
2 (1+δ3k )

d
2

(1−δ3k )d

]
‖XT−T l−1‖F ,

= �4‖XT−T l−1‖F (85)

where (a) holds based on the split of Y l−1R , shown in Fig. 15.
The definition of Xext

T−T l−1 is identical to Xext
T−T l and

‖Xext
T−T l−1‖F = ‖XT−T l−1‖F . Combining (84) and (85),

we obtain

‖Y lR‖F ≤
�3�
�4
‖Y l−1R ‖F = �C‖Y l−1R ‖F . (86)

FIGURE 18. Graphical representation of notations used in proof of
Lemma 6, with d = 2, k1 = k2 = 6.

Obviously, there always exists ‖Y lR‖F < ‖Y l−1R ‖F when
�C < 1. Hence, this proof is complete.

G. PROOF OF LEMMA 6
Obviously, it always holds that

‖XT−T 0‖F ≤ ‖XT ‖F = ‖X‖F . (87)

Then, we derive another upper-bound for ‖XT−T 0‖F . With-
out loss of generality, we start the proof considering the
1−dimension in the initialization stage:

‖Y×18
∗

T 0,1‖F ≥‖Y×18
∗

T ,1‖F
L1
≥ (1− δ3k )

d+1
2 ‖X‖F . (88)

On the other hand, an upper bound can be obtained:

‖Y ×1 8
∗

T 0,1‖F

≤ ‖XT−T 0,1 ×1 8
∗

T 0,18T−T 0,1 · · · ×d 8T ,d‖F

+‖XT∩T 0,1 ×1 8
∗

T 0,18T∩T 0,1 · · · ×d 8T ,d‖F ,

(a)
= ‖XT−T 0,1 ×1 8

∗

T 0,18T−T 0,1 · · · ×d 8T ,d‖F

+ ‖XT 0,1 ×1 8
∗

T 0,18T 0,1 · · · ×d 8T ,d‖F , (89)

where the notation is graphically represented in Fig. 18. Note
that (a) holds as the extension from XT∩T 0,1 to XT 0,1 is
composed of zero-entries only.
By employing Lemma 1 for (89), we have

‖Y×18
∗

T 0,1‖F

≤ δ3k (1+δ3k )
d−1
2 ‖X‖F+(1+δ3k )

d+1
2 ‖XT∩T 0,1‖F . (90)

Combining (88) and (90), we obtain

(1− δ3k )
d+1
2 ‖X‖F

≤ δ3k (1+δ3k )
d−1
2 ‖X‖F+(1+δ3k )

d+1
2 ‖XT∩T 0,1‖F . (91)

Elementary calculations show that (1 − δ3k )
d+1
2 > δ3k (1 +

δ3k )
d−1
2 when the sufficient condition for convergence is sat-

isfied; therefore,

‖XT∩T 0,1‖F ≥
(1−δ3k )

d+1
2 −δ3k (1+δ3k )

d−1
2

(1+δ3k )
d+1
2

‖X‖F . (92)
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Note that the relationship holds for each dimension j, so that

‖XT−T 0,j‖F

= (‖X‖2F − ‖XT∩T 0,j‖
2
F )

1
2

≤

[
(1+δ3k )d+1−[(1−δ3k )

d+1
2 −δ3k (1+δ3k )

d−v1
2 ]2

] 1
2

(1+δ3k )
d+1
2

‖X‖F .

(93)

With reference to Fig. 18, we have

‖XT−T 0‖F

≤

d∑
j=1

‖XT−T 0,j‖F

≤

d
[
(1+δ3k )d+1−[(1−δ3k )

d+1
2 −δ3k (1+δ3k )

d−1
2 ]2

] 1
2

(1+δ3k )
d+1
2

‖X‖F ,

= �0‖X‖F . (94)

By combining (87) and (94), we finally complete this proof.

H. PROOF OF THEOREM 6
First, we derive the relationship between ‖XT−T̃ ‖F and

‖XT−T l−1‖F . During the mixture process, ∀j ∈ {1, 2 · · · d},
there exists

‖YRl−1×j8
∗
1−T ,j‖F ≥ ‖YRl−1×j8

∗

T−T̃ ,j‖F . (95)

As YRl−1 can be expressed as

YRl−1 = res(Y0, {8T l−1,j})+ res(N, {8T l−1,j}),

= Y0Rl−1 + NRl−1 , (96)

the left side of (95) can be enlarged to

‖YRl−1 ×j 8
∗
1−T ,j‖F

≤ ‖Y0Rl−1×j8
∗
1−T ,j‖F + ‖NRl−1×j8

∗
1−T ,j‖F ,

(a)
≤ ‖Y0Rl−1×j8

∗
1−T ,j‖F + (1+ δkj )

1
2 ‖NRl−1‖F ,

(65)
≤ δ3k (1+ δ3k )

d−1
2 ‖XRl−1‖F + (1+ δ3k )

1
2 ‖N‖F , (97)

where NRl−1 denotes the residual of N , (a) holds because
of Lemma 1 and the fact that ∀α ∈ Rmj , ‖8∗1−T ,jα‖2 ≤

‖8∗1−T ,j‖2‖α‖2 = ‖81−T ,j‖2‖α‖2 = (1 + δkj )
1
2 ‖α‖2.

The concepts behind the notation used here can be found
in Fig. 15. On the other hand, the lower bound for the right
side of (95) is given by

‖YRl−1 ×j 8
∗

T−T̃ ,j‖F

≥ ‖Y0Rl−1 ×j 8
∗

T−T̃ ,j‖F − ‖NRl−1 ×j 8
∗

T−T̃ ,j‖F ,

(68)
≥ (1− δ3k )

d+1
2 ‖X j

Rl−1,T−T̃
‖F − δ3k (1+ δ3k )

d−1
2 ‖XRl−1‖F

−(1+ δ3k )
1
2 ‖N‖F . (98)

By combining (95), (97) and (98), we have

‖XT−T̃ ‖F

≤

d∑
j=1

‖X j
Rl−1,T−T̃

‖F ,

≤
2dδ3k (1+ δ2k )

d−1
2

(1− δk )
d+1
2

‖XRl−1‖F +
2d(1+ δ3k )

1
2

(1− δ3k )
d+1
2

‖N‖F ,

L2,T1
≤ �1‖XT−T l−1‖F +

2d(1+ δ3k )
1
2

(1− δ3k )
d+1
2

‖N‖F ,

= �1‖XT−T l−1‖F +�N1‖N‖F . (99)

Next, we derive the relationship between ‖XT−T̃ ‖F and
‖XT−T l‖F . Obviously, it holds that

‖XT−T l‖F ≤ ‖XT∩0l‖F + ‖XT−T̃ ‖F ,

T5
≤ (d + 1)‖E‖F + ‖XT−T̃ ‖F , (100)

where the notation is graphically represented in
Figs. 16 and 17. From the definition of E, we have

‖E‖F = ‖XC,T̃ − X T̃ ‖F

= ‖Y ×1 8
†
T̃ ,1
· · · ×d 8

†
T̃ ,d
− X T̃ ‖F ,

≤ ‖Y0 ×1 8
†
T̃ ,1
· · · ×d 8

†
T̃ ,d
− X T̃ ‖F

+‖N ×1 8
◦

T̃ ,1 · · · ×d 8
†
T̃ ,d
‖F . (101)

Note that, here, Y0 is equivalent to the Y in Eq. (77), and

8
†
T̃ ,j
= (8∗

T̃ ,j
8T̃ ,j)

−18∗
T̃ ,j

. Hence, we can rewrite (101) as

‖E‖F
L5,L1
≤

(2d − 1)
1
2 δ3k

(1− δ3k )d
‖XT−T̃ ‖F +

(1+ δ3k )
d
2

(1− δ3k )d
‖N‖F .

(102)

Combining (102), (100), and (99), we obtain

‖XT−T l‖F ≤ �2�1‖XT−T l−1‖F

+(�2�N1 +�N2)‖N‖F ,
T7
= �‖XT−T l−1‖F +�N‖N‖F , (103)

which completes this proof.

I. PROOF OF THEOREM 7
One can give an upper bound for ‖YRl‖F :

‖YRl‖F ≤ ‖res(Y0, {8T l ,j})‖F + ‖res(N, {8T l ,j})‖F .

(104)

Note that, here, Y0 is equivalent to the Y in Eq. (82). Thus,
we have

‖YRl‖F
(84)
≤ (1+ δ3k )

d
2 ‖XT−T l‖F + ‖N‖F ,

= �3‖XT−T l‖F + ‖N‖F . (105)
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The lower bound for ‖YRl−1‖F can be given as

‖YRl−1‖F ≥ ‖res(Y0, {8T l−1,j})‖F
−‖res(N, {8T l−1,j})‖F ,

(85)
≥ �4‖XT−T l−1‖F − ‖N‖F . (106)

It is clear that, once the termination condition is reached, there
must exist:

�4‖XT−T l−1‖F − ‖N‖F ≤ �3‖XT−T l‖F + ‖N‖F . (107)

We substitute (103) into (107) and note that support T l−1

is selected as the final support for the reconstruction T̂ .
We obtain

‖XT−T̂ ‖F ≤
�3�N + 2
�4 −�3�

‖N‖F , (108)

when�4−�3�>0. Thus, we have claimed an upper bound
for ‖XT−T̂ ‖F with respect to the noise level ‖N‖F . In the fol-
lowing, we derive the relationship between the reconstruction
error ‖X−X̂‖F and ‖XT−T̂ ‖F . With reference to the strategy
used in the proof of Lemma 2,

‖X − X̂‖F
≤ ‖XT−T̂ ‖F+‖X T̂ − XC,T̂ ‖F ,

≤ ‖XT−T̂ ‖F+‖X T̂−Y0×18
†
T̂ ,1
×28

†
T̂ ,2
· · · ×d 8

†
T̂ ,d
‖F

+‖N ×1 8
†
T̂ ,1
×2 8

†
T̂ ,2
· · · ×d 8

†
T̂ ,d
‖F ,

(60),L1
≤

[
1+

δ3k (2d−1)
1
2

(1−δ3k )d

]
‖XT−T l−1‖F+

(1+ δ3k )
d
2

(1− δ3k )d
‖N‖F ,

= �5‖XT−T l−1‖F +�N3‖N‖F . (109)

Substituting (108) into (109), we have

‖X − X̂‖F ≤
[
�5(�3�N + 2)
�4 −�3�

+�N3

]
‖N‖F , (110)

when �4 −�3�>0. Hence, this proof is completed.
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